
Two New Operators for IGOR2 to Increase
Synthesis Efficieny

Emanuel Kitzelmann

International Computer Science Institute
Berkeley, USA

emanuel@icsi.berkeley.edu

Abstract. Inductive program synthesis addresses the problem of auto-
matically generating computer programs from incomplete specifications
such as input/output examples. Potential applications range from au-
tomated software development to end-user programming to autonomous
intelligent agents that learn from experience or observation. We present a
recent version of the domain-independent algorithm Igor2 for the induc-
tive synthesis of recursive functional programs, represented as rewriting
rules. Igor2 combines classical analytical methods, that detect recur-
sion by matching I/O examples, with search in program spaces as ap-
plied by recent generate-and-test methods; thereby widening the class
of programs that are synthesizable in reasonable time. In particular, we
present two recent improvements over an earlier Igor2 version which
significantly increase the efficiency of the synthesis. Functions that were
not inducible in several minutes are now induced in several seconds. It
has already been shown that an earlier version of Igor2 outperforms
other recent systems on several problems. In the empirical evaluation
here, we show the significance of the improved synthesis operators by
means of more complex problems, most of which were not tractable for
Igor2 until now.

1 Introduction

Inductive program synthesis or inductive programming (IP) means the auto-
mated synthesis of programs where the problem specification, typically some
examples of input/output behavior, is incomplete. IP has important applica-
tion fields. For a recent example in end-user programming, see [4]. In [15] it is
shown how IP can be used to model the cognitive capability of learning produc-
tive problem-solving knowledge in recursive domains. E.g., the general recursive
strategy to solve Towers of Hanoi for arbitrary numbers of discs could be learned
from solution traces for 1–3 discs.

IP and supervised machine learning have in common that a general concept
or model is learned from I/O examples. However, unlike standard supervised
learning [5], where a learned model maps objects to qualitative or quantitative
values (classification and regression, resp.) and the models are non-recursive,
in the case of IP, induced programs are typically recursive and not only is the

(input) data structured (lists, trees etc.) but in general also the output. Further,
we assume that examples are noise-free and require hypotheses to be consistent.
Since recursion is a strong pattern, few data often suffices to learn the correct
recursive function.

In this paper we are especially concerned with the synthesis of recursive,
functional programs, represented as a special kind of term rewriting systems
over first-order algebraic signatures. We describe a recent version of the Igor2
algorithm that leverages complementary strengths of two approaches to IP: An-
alytical methods detect recurrent patterns in I/O examples and generalize them
to recursive functions [16, 9]. This is efficient but suffers from strong restrictions
regarding the form of inducible programs and requires I/O examples that are
complete up to some complexity (e.g., an input-list for each number of elements
up to some maximum must be specified). Generate-and-test based systems [12,
7] generate lots of candidate programs and test them against given examples
or evaluation functions. They overcome the strong restrictions of the analytical
approach but suffer from unconstrained search in vast program spaces. Igor2
combines search in fairly unrestricted program spaces with analytical techniques
to generate candidates and thereby widens the class of programs that are synthe-
sizable in reasonable time. Igor2 is able to use background knowledge (BK) and
automatically invents recursive subfunctions. It finds complex recursion schemes
like that of Ackermann or the mutual-recursive definition of odd/even and is
applicable in different domains.

In [8], a preliminary Igor2 version is described. We here review the general
algorithm and then focus on the synthesis operators. In particular, we discuss
some shortcomings and present extended versions that lead to a much more
efficient synthesis and a wider class of tractable problems. The remainder of
the paper is organized as follows: Section 2 introduces the Igor2 algorithm
including its original synthesis operators. In Section 3 we discuss two synthesis
operators more detailed and describe improved versions of them. In Section 4
we empirically evaluate the proposed new operators. Section 5 discusses some
related work and in Section 6 we conclude.

2 The Igor2 Algorithm

We call functions that are to be synthesized target functions. Functions that
are assumed to be implemented already and can be used are called background
functions.

2.1 Representation Language

We briefly review basic term rewriting concepts as described, e.g., in [1].
Igor2 specifications of target and background functions as well as induced

definitions of target functions are represented as orthogonal (see below) con-
structor (term rewriting) systems (CSs). A CS is a set of (term rewrite) rules
over a first-order algebraic signature (function symbols) and a set of variables,

where the signature is partitioned into defined functions and constructors and
where each rule has the form

f(p1, . . . , pn)→ t .

The symbol f is a defined function, the pi are built from constructors and vari-
ables, and all variables in the right-hand side (RHS) t must also occur in the
left-hand side (LHS) f(p1, . . . , pn) (Var(t) ⊆ Var(f(p1, . . . , pn))). The argu-
ment constructor terms pi are called pattern. We denote sequences of terms like
p1, . . . , pn by p.

A CS is called orthogonal if its LHSs are linear, i.e., each variable occurs
at most once in one and the same LHS, and pairwise non-unifying. Two terms
are non-unifying if there is no substitution σ of variables by terms such that
the terms become equal if σ is applied to both of them. Orthogonal CSs are a
basic form of functional programs, excluding higher-order functions. Evaluation
of an (input) term s is done by repeatedly matching subterms of it with LHSs of
the CS—leading to substitutions σ of the pattern variables—and replacing the
subterms by the respective RHSs with variables substituted according to σ. Or-
thogonality assures that if an evaluation terminates, i.e., reaches a normal form,
then this normal form is unique. Hence orthogonal CSs denote (deterministic)
functions. The (non-unifying) patterns of different LHSs for the same defined
function act (i) as conditions to evaluate inputs of particular different forms
differently and (ii) decompose a matching term into subterms. This concept is
called pattern matching in declarative programming.

2.2 The Inductive Synthesis Problem

Specifications of target and background functions are orthogonal CSs with the
restriction that the RHSs are built from constructors (and variables) only and
hence are in normal form. Ground (no variables) specification rules denote
I/O examples whereas specification rules containing variables represent sets of
I/O examples given by all their ground instances. The inductive synthesis prob-
lem is defined as follows:

Definition 1 (Induction problem). Let Φ and B be two specifications with
disjoint sets of defined functions, DΦ ∩ DB = ∅, called target functions and
background functions, respectively. Find a CS P with defined functions DP ,
such that

1. P is orthogonal,
2. P does not (re)define background functions,
3. for each f(i)→ o ∈ Φ, P ∪B evaluates f(i) to o.

We use the Rocket problem [17], a simple benchmark problem in automated
planning, as a running example. The problem is to transport a number of objects
from earth to moon where the rocket can only move in one direction. The solution
is to load all objects, fly to the moon and unload the objects. The assumption

Listing 1.1. Examples for the Rocket problem

1 rocket(nil , s) → move(s)
2 rocket((o1 : nil) , s) → unload(o1, move(load(o1, s)))
3 rocket((o1 : o2 : nil) , s) → unload(o1, unload(o2, move(load(o2, load(o1, s)))))

Listing 1.2. Strategy for rocket induced by Igor2

rocket(nil , s) → move(s)
rocket((o : os) , s) → unload(o, rocket(os, load(o, s)))

now is that a planner (or an expert) already solved the problem for zero to
two objects.1 The problem instances and plans are then translated to example
inputs and outputs for Igor2 (Listing 1.1). The objects are provided as a list
(constructors nil , empty list, and an infix constructor : to “cons” an object,
1st argument, to a list, 2nd argument). The variable s denotes a state, similar
to situation calculus [10]. From the three examples, Igor2 induces the recursive
strategy as shown in Listing 1.2.

2.3 General Search Strategy and Preference Bias

The induction of a solution CS is organized as a uniform cost search in spaces of
orthogonal CSs, where the definition of CSs is relaxed in that Var(r) ⊆ Var(l)
need not be satisfied for all rules l → r. We refer to CSs not satisfying this
property, the respective rules, and their RHSs as unfinished and to CSs, rules,
RHSs that satisfy it as finished. Either case might be meant in the following if we
just say CS, rule etc. Unfinished CSs lead to non-unique normal forms and hence
do not encode (deterministic) functions. Purpose of the synthesis operators is to
transform an unfinished CS into a finished one. Igor2’s refinement operators,
described in the next section, assure that all constructed candidate CSs P satisfy
Def. 1. Hence each finished CS is a solution.

The cost of a candidate CS is defined as the number of disjoint patterns in it,
hence CSs that correctly compute the examples based on fewer case distinctions
have lower cost and are preferred. The initial candidate CS consists of one single
initial rule (see below) for each target function.

2.4 Initial Candidate Rules and CSs

As initial hypothesis for a set of specification rules, Igor2 takes their least
general generalization (LGG) [13]. That basically means that if all rules have
the same symbol at a particular position, it is kept for that position in the LGG,

1 The instance for zero objects is a bit artificial. We chose it to keep the example as
simple as possible, but it may be skipped and replaced by the three objects instance.

and if the symbols differ, a variable is introduced, where it is assured that the
same variable is introduced at different positions, if the corresponding subterms
in the example rules are the same at both positions. The LGG for the rocket

examples (Listing 1.1) is

rocket(os, s) → s ’ .

The variable os results from the different constructors nil and : at the same
position in the example rules. The variable s ’ results from the different symbols
move and unload. This initial rule is unfinished due to the variable s ’, which does
not occur in the LHS. Hence it will be refined.

2.5 Synthesis Operators

In general, if a candidate CS P is chosen during the search, one of its unfinished
rules r is selected to be refined. One refinement consists of a set s of successor
rules. Igor2 applies three operators independently to an unfinished rule r to
compute refinements: (i) It splits r into sets of at least two new initial rules with
disjoint patterns that are more specific than the pattern of r; (ii) it considers
unfinished subterms of the RHS of r as new subproblems; (iii) it replaces the
RHS of r by (recursive) function calls. Assume a CS P is chosen and let r ∈ P
be the selected unfinished rule. Applying the refinement operators results in a
finite (possibly empty) set {s1, . . . , sn} of successor-rule sets si. For each si a
successor candidate CS Pi is generated by Pi = (P \ {r}) ∪ si.

Rule Splitting. Consider the example rules in Listing 1.1 and the correspond-
ing initial rule, rocket(os, s) → s ’. The pattern variable os results from the
different constructors nil (1st example) and : (2nd, 3rd example). We call a
position that denotes a variable in the LHS of an initial rule and constructors in
the LHSs of the corresponding example rules a pivot position. Now the splitting
operator χsplit partitions the examples according to the different constructors
at the pivot position. In our example, the first example rule goes into one sub-
set and the remaining two into a second one. The refinement of the unfinished
initial rule then consists of a set of new initial rules, one for each subset of the
generated partition. In our example:

rocket(nil , s) → move(s)
rocket((o : os) , s) → unload(o, s ’)

Since the new initial rules always contain the different constructors at the pivot
position in their LHSs, they are non-unifying. Since χsplit increases the number
of disjoint patterns in a CS, it increases the cost of a candidate.

If more than one pivot position exists, this probably leads to different parti-
tions and different refinements, all of which are returned by χsplit. In Section 3.1
we discuss this operator more detailed and propose a variant that (i) makes
larger refinement steps and (ii) is deterministic. This leads to a more efficient
synthesis process as empirically shown in Section 4.

Dealing with Unfinished Subterms Separately. Consider the initial rule
rocket((o:os) , s) → unload(o, s ’) for example rules 2, 3 that resulted from split-
ting the original initial rule and which is unfinished due to variable s ’. Since
s ’ occurs as a proper subterm in the RHS, it can be dealt with as a subprob-
lem. Therefore, the subproblem operator χsub replaces s ’ by a call to a new
subfunction sub,

rocket((o : os) , s) → unload(o, sub((o : os) , s)) ,

and takes as examples for it the appropriate subterms of the RHSs of the corre-
sponding rocket examples:

sub((o1 : nil) , s) → move(load(o1, s))
sub((o1 : o2 : nil) , s) → unload(o2, move(load(o2, load(o1, s))))

The refinement step is finished by computing an initial rule for sub and adding
it to the rocket hypothesis:

rocket(nil , s) → move(s)
rocket((o : os) , s) → unload(o, sub((o : os) , s))
sub((o : os) , s) → s ’

The operator χsub is deterministic and only defined if the RHS of the selected
rule is rooted by a constructor. Even though χsub adds new rules to a candidate,
it does not increase its cost because the added rules always only contain patterns
already present in the candidate CS.

Introducing (Recursive) Function Calls. Introducing (recursive) function
calls with appropriate arguments is the most complex operation. For an unfin-
ished rule f(p)→ t, the function call operator χcall produces refinements of the
form f(p) → f ′(g1(p), . . . , gn(p)), where f ′ is some already defined function (a
target-, background- or previously introduced subfunction; probably f = f ′) and
the gi are new defined functions to be induced subsequently. The idea behind
the gi as arguments (instead of just constructor terms over pattern variables) is
that the arguments in the call of f ′ possibly need to be computed by another,
possibly new and/or recursive, subfunction. As an example consider the Quick-
sort algorithm where the arguments of the two recursive calls are sublists of
smaller and greater elements w.r.t. a pivot element. These sublists themselves
are computed by recursive partitioning functions.

The operator χcall is based on matching the example outputs of the current
unfinished rule for f with outputs belonging to (other) target or background
functions f ′ and then computing arguments that appropriately map the inputs
covered by the current rule for f to the corresponding inputs of f ′.

Consider the unfinished initial rule for sub as introduced in the previous step:
sub((o : os) , s) → s ’. The RHSs of both example rules of sub are subsumed by
RHSs of the rocket examples. Particularly, move(s) (the RHS of the 1st rocket

example) subsumes move(load(o1, s)) (the RHS of the 1st sub example) by sub-
stitution σ1 = {s 7→ load(o1, s)}; and unload(o1, move(load(o1, s))) (2nd rocket

example) subsumes unload(o2, move(load(o2, load(o1, s)))) (2nd sub example) by

substitution σ2 = {o1 7→ o2, s 7→ load(o1, s)}. This indicates that the sub exam-
ples can be computed by calling rocket and the unfinished sub rule is refined
to

sub((o : os) , s) → rocket(g1((o : os) , s) , g2((o : os) , s)) .

It remains to derive example rules for the new subfunctions g1 and g2 and com-
puting initial rules for them. The example inputs are the same as for sub because
g1 and g2 are called with the same inputs as sub, due to the same arguments
o : os, s. The functions g1, g2 need to map these inputs to the correct inputs of
rocket. Therefore, χcall applies the substitutions σ1, σ2 to the LHSs of the rocket

example rules and takes the appropriate subterms as outputs for g1, g2:

g1((o1 : nil) , s) → nil g2((o1 : nil) , s) → load(o1, s)
g1((o1 : o2 : nil) , s) → o2 : nil g2((o1 : o2 : nil) , s) → load(o1, s)

The initial rules (LGGs) for g1 and g2 obtained from their example rules are
finished so that the following finished CS has been achieved as solution:

rocket(nil , s) → move(s)
rocket((o : os) , s) → unload(o, sub((o : os) , s))
sub((o : os) , s) → rocket(g1((o : os) , s) , g2((o : os) , s))
g1((o : os) , s) → os
g2((o : os) , s) → load(o, s)

Neither sub nor g1, g2 are recursive. Hence they can be eliminated by unfolding,
leading to the solution in Listing 1.2.

Like χsub, also χcall does not increase the cost of the candidate because
the added rules do not introduce additional patterns. To assure termination of
Igor2, the maximal depth of nested function calls, i.e., the maximal number of
χcall applications, is bounded by the user.

3 Discussion and Improvements

In this section we identify certain shortcomings of the splitting and the function
call operators χsplit and χcall and propose variants that circumvent the problems.

3.1 Rapid Rule-Splitting

Consider the Ackermann function, defined as a CS with constructors 0 (zero),
S (successor) and variables m, n:

Ack (0, n) → S n
Ack (S m, 0) → Ack (m, S 0)
Ack (S m, S n) → Ack (m, A (S m, n))

Given some I/O examples where all the four cases of zero and non-zero inputs for
both arguments are covered, the initial unfinished rule would be Ack(m,n)→ (S x),
featuring two pivot positions that correspond to the variables m, n in the LHS.
χsplit would thus introduce two successor candidates, each specializing one of

the two pattern variables to the two cases zero and non-zero. W.l.o.g., let P de-
note one of them. P is unfinished again and does not contain the pattern of the
third rule of the Ackermann CS because in that rule, both pattern components
are non-variables. Thus, a further application of χsplit to P , leading, say, to P ′,
where the cost of P ′ is increased compared to P , would be necessary. However,
the subprogram and the function call operators would also be applicable to P
without increasing its cost. Hence, before P ′ is considered again, all possible
sequences of χsub and χcall applications to P would be tried.

The idea of an improved version of χsplit is to combine all possible splitting
refinements—if more than one pivot position and hence more than one splitting
exists—into one single splitting. Instead of computing a separate partition for
each pivot position, we compute only one partition based on all combinations of
different constructors at all pivot positions. In the case of the Ackermann func-
tion, instead of two refinements with two successor rules each, we then get one
refinement with four successor rules, covering all the four combinations for zero
and non-zero inputs for the two arguments: Ack(0, 0), Ack(0, S n), Ack(S m, 0),
Ack(S m, S n). These patterns cover all patterns of the actual definition of the
Ackermann function such that subsequent applications of χsub and χcall take
place in a search subspace which contains the solution. Since this rule splitting
variant achieves the result of several applications of χsplit in one step, we call
it rapid rule-splitting and denote it by χrsplit. The solution for the Ackermann
function that is induced with rapid rule-splitting enabled, is:

Ack (0, 0) → S 0
Ack (0, S n) → S S n
Ack (S m, 0) → Ack (m, S 0)
Ack (S m, S n) → Ack (m, Ack (S m, n))

A minor drawback of rapid rule-splitting is its potential “over-specialization”
as in the case of the Ackermann function (four induced rules instead of the
sufficient three rules). This is not a problem as long as enough examples are
provided. If, however, only few I/O examples are provided, then rapid rule-
splitting might prevent a correct generalization since too few I/O examples might
remain for each rule.

3.2 Simple Function Calls

Consider the following example rules, specifying the last function that returns
the last element of a list (x,y,z denote variables):

1 last (x : nil) → x
2 last (x : y : nil) → y
3 last (x : y : z : nil) → z
4 last (x : y : z : v : nil) → v

Further assume rule-splitting had already taken place so that the intermediate,
unfinished, candidate CS is:

last (x : nil) → x
last (x : y : xs) → q

The second unfinished rule covers example rules 2, 3, 4. Now assume we apply
χcall to introduce a recursive call of the form last (x : xs) → last (g(x : xs)).
This is possible since each RHS of rules 2, 3, 4 matches with another RHS. Ac-
tually, since all RHSs are variables, each RHS matches each other. Not all of
these matchings are considered because, to assure termination of the induced
program, the argument of the call must be decreased. Hence for each example i
only matchings to examples j < i are considered. One single refinement accord-
ing to χcall is then determined by one particular mapping of each RHS of rules
2, 3, 4 to another one, satisfying the ordering constraint. In our case these are
1 × 2 × 3 = 6 possibilities, hence χcall would result in 6 successor candidates.
In general, the more example rules are given, the more different matchings are
possible and the more successor candidates are introduced by χcall.

However, in the case of last , the argument of the recursive call need not be
computed by an own function but is a constructor term, namely the tail of the
input list: last (x : y : xs) → last (y : xs). If only candidates with a constructor
term as argument are considered, the correct solution is the only possible one.

Therefore, we developed an additional operator, χscall, called simple-call op-
erator, that finds refinements of the form f(p)→ f ′(p′), where p′ is a constructor
term over variables from p. Instead of matching specified outputs, χscall basically
works by enumerating constructor terms as arguments up to a certain size and
testing each one against the examples.

We did not completely replace χcall by χscall but we always first apply χscall

and only if it returns an empty refinement set—indicating, that a constructor
argument is not sufficient to find a consistent function call—the original call
operator χcall is applied. The general idea is thus to first check for the few
potential simple solutions and only if none exists, search for more complicated
solutions.

4 Experiments

We implemented the extended synthesis operators on top of a preliminary Igor2
version [8] that is implemented in the interpreted, rewriting based language
Maude [2]. We use the symbol Igor2pre to exclusively denote this version.
To empirically evaluate the extensions, we applied Igor2 to several non-trivial
recursive problems. Each problem was tested with three Igor2 configurations:
(i) with Igor2pre, (ii) with the simple-call operator χscall added as described
in Sec. 3.2, and (iii) with χscall added and additionally with χsplit replaced by
χrsplit (rapid rule-splitting), described in Sec. 3.1. The experiments were run on
an Intel Core i5 2.53 GHz, 64Bit Linux machine. We gave each tested Igor2
configuration 2 minutes synthesis time maximum per problem. Tab. 1 shows the
results.

The Blocksworld problem tower is taken from [15] where Igor2pre had been
applied in the domain of cognitive modeling. tower denotes the recursive problem
of building a tower of any number of blocks from initial configurations in the
Blocksworld. The concept CB of how to clear a block (i.e., putting all blocks above

Table 1. Results

Igor2 versions; times in sec.

Problems pre +χscall +χscall + χrsplit

tower w/ CB, isTower 0.90 0.94 0.89

lasts 38.37 0.43 0.54⊥

lasts w/ last � 0.23 0.23
drop � 9.87 0.05
swap � � 1.15
ack � � 2.22
weave � � 30.01
oddslist � � �

�: Timeout after 2 minutes; ⊥: one case overly special

pre: Igor2pre; +χscall: χcall only applied if χscall fails
+χscall + χrsplit: like +χscall and χsplit replaced by χrsplit

it to the table) was given as background knowledge as well as a predicate isTower

to test if a certain tower is already present. We used the original examples. Since
this problem is highly structured and the examples were well-chosen, Igor2pre
could tackle it well and the extensions have no impact.

The problems lasts and oddslist are taken from [6] where Igor2pre has been
compared with other recent IP systems on some list-processing problems. It was
shown that Igor2, pursuing a combined analytic and search-based approach, (i)
could correctly induce more problems than the recent analytic system Igor1 [9]
and inductive logic programming systems like Foil [14] and (ii) outperformed
recent generate-and-test based functional IP systems [12, 7] on several tested
problems. lasts takes a list of lists and returns a flat list of their last elements.
The predicate oddslist takes a list of natural numbers, encoded as Peano numbers
by 0 and succ, and returns true or false depending on whether all elements
are odd. No background knowledge was provided, so the IP systems had to
invent subfunctions last and odd or equivalent ways to compute the inherent
subproblems.

It is well-known in AI that background knowledge generally can help to find
solutions for complex problems, but also that irrelevant information can hamper
finding a solution. An odd thing with Igor2pre is that even relevant background
knowledge may lead to increased synthesis time. This can be observed in the
case of lasts which we tested (i) w/o background knowledge and (ii) with last as
background knowledge. Igor2pre could not find a solution in 2 minutes if last

was provided. In contrast, Igor2 with the additional χscall operator could, as one
should expect, profit from the relevant background knowledge. The additional
use of rapid rule-splitting had no further impact. We further observe that rapid
rule-splitting did not completely generalize to the intended function in case of
lasts w/o background knowledge. This is an example for that rapid rule-splitting
might need additional examples to generalize well (cp. Sec. 3.1). The predicate

Listing 1.3. swap, induced from 6 examples

swap(x0 : x1 : xs , 0, 1) → x1 : x0 : xs
swap(x0 : x1 : x2 : xs , 0, n+2) → swap(x1 : swap(x0 : x2 : xs , 0, n+1), 0, 1)
swap(x0 : x1 : x2 : xs , n+1, m+2) → x0 : swap(x1 : x2 : xs , n, m+1)

Listing 1.4. weave, induced from 11 expls; note the automatically invented recursive
subfunction sub36 that drops the first element of the first list and rotates the lists

weave(nil) → []
weave((x:xs) : : xss) → x : weave(sub36((x:xs) : : xss))
sub36((x: []) : : nil) → nil
sub36((x: []) : : (y:ys) : : xss) → (y:ys) : : xss
sub36((x:y:xs) : : nil) → (y:xs) : : nil
sub36((x:y:xs) : : (y:ys) : : xss) → (y:ys) : : sub36((x:y:xs) : : xss)

oddslist could not be synthesized by any version within the allowed 2 minutes.
Boolean-valued functions are generally hard for Igor2 because of the missing
structure in the outputs (which are just true or false in this case).

The function drop drops the first n elements from a list. We made this problem
challenging for Igor2pre by including the case where n is greater than the
number of elements in the list in which case the empty list shall be returned.
This leads to several I/O examples where the output is just the empty list,
posing a problem for Igor2pre because this causes many possible matchings of
outputs. Since the solution does not contain nested functions calls, χscall quickly
found a solution.

Finally, the Ackermann function ack and the functions weave and swap all are
more complex than the former functions in terms of syntactical size, recursion
structure, and/or number of parameters that are substituted in the recursive
calls. They were neither solvable by Igor2pre nor by just adding χscall. Yet
with rapid rule-splitting enabled, many small candidates, mostly non-solutions,
are pruned so that all three functions could be induced. swap swaps two elements
in a list, indicated by their indices, e.g., swap([a,b,c,d] , 2, 4) → [a,d,c,b]. It was
restricted to cases where the given indices occurred in the list, were different,
and the first index was the smaller one. Listing 1.3 shows the induced solution.
weave takes a list of lists and produces a (flat) list by taking, in rotation over the
inner lists, one element after the other from the inner lists.2 Listing 1.4 shows
the induced solution.

5 Related Research

Two recent functional IP systems are ADATE [12] and MagicHaskeller [7].
Both pursue a generate-and-test approach, i.e., use examples as test-cases, in-

2 This is a generalized version of the weave function as tested in [6].

stead of directly deriving candidates from them as Igor2 does. One advantage of
this approach is that it is more robust w.r.t. the selection of and noise in problem
specifications. However, they often need much more time to synthesize a solu-
tion [6]. In logic programming, the IP system Dialogs [3] is closest to Igor2.
It is interactive and uses algorithm schemas like divide-and-conquer. Recently,
domain-specific IP methods are again studied; e.g., [4] describes an algorithm
to interactively synthesize string-processing programs in spreadsheets, and [11]
describes a system to learn recursive hierarchical task networks in automated
planning.

6 Conclusions and Future Work

IP is a challenging field with various important applications and much room
for further improvement. We presented Igor2, a competitive IP system that
draws from different existing approaches to approach the practical tractability
of relevant problems. We described improvements of two synthesis operators
and empirically showed their significance w.r.t. efficient synthesis of non-trivial
programs. It is worth noting that the efficiency-gain is not based on making the
search less complete. The only drawback is that more examples might be needed
in case of rapid rule-splitting. Despite the remarkable results, there is still much
room for improvement. The current synthesis operators rule out certain program
forms and if the examples do not contain sufficient structure, the BF search
becomes intractable.

One serious disadvantage of analytical techniques including Igor2 is the re-
quirement for sets of I/O examples that are complete up to some complexity. This
often compels the programmer/specifier to think about missing I/O pairs even
if a meaningful I/O pair, that would suffice for a generate-and-test method, is
already provided. On the logical side, this problem could be tackled by introduc-
ing and reasoning with ∃-quantified variables in example outputs. To generally
become more robust w.r.t. missing or erroneous information, as generally present
in the real-world, probabilistic reasoning must be integrated into analytic IP.

Currently, we work on applying Igor2 to learning hierarchical task networks
in automated planning.

Acknowledgments

While writing this paper, the author was funded by the German Academic Ex-
change Service (DAAD) within the FIT program.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1999)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The maude 2.0 system. In: Rewriting Techniques and Applications (RTA’03).
LNCS, vol. 2706, pp. 76–87. Springer (2003)

3. Flener, P.: Inductive logic program synthesis with DIALOGS. In: 6th International
Workshop on Inductive Logic Programming, (ILP’96), Selected Papers. LNCS, vol.
1314, pp. 175–198 (1997)

4. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: 38th SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. ACM (2011)

5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer-Verlag, 2nd edn. (2009)

6. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and
evaluation of inductive programming systems. In: Artificial General Intelligence
(AGI’09). pp. 55–60. Atlantis Press (2009)

7. Katayama, S.: Systematic search for lambda expressions. In: 6th Symposium on
Trends in Functional Programming, selected Papers. pp. 111–126. Intellect (2007)

8. Kitzelmann, E.: Analytical inductive functional programming. In: 18th Interna-
tional Symposium on Logic-Based Program Synthesis and Transformation, Revised
Selected Papers. LNCS, vol. 5438, pp. 87–102. Springer-Verlag (2009)

9. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research 7,
429–454 (2006)

10. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Machine Intelligence, vol. 4, pp. 463–502. Edinburgh Uni-
versity Press (1969)

11. Nejati, N., Langley, P., Konik, T.: Learning hierarchical task networks by observa-
tion. In: 23rd International Conference on Machine Learning. pp. 665–672. ACM
(2006)

12. Olsson, J.R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1), 55–83 (1995)

13. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163
(1970)

14. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Proceedings
of the 6th European Conference on Machine Learning. pp. 3–20. LNCS, Springer-
Verlag (1993)

15. Schmid, U., Kitzelmann, E.: Inductive rule learning on the knowledge level. Cog-
nitive Systems Research (2010)

16. Smith, D.R.: The synthesis of LISP programs from examples: A survey. In: Auto-
matic Program Construction Techniques, pp. 307–324. Macmillan (1984)

17. Veloso, M.M., Carbonell, J.G.: Derivational analogy in prodigy: Automating case
acquisition, storage, and utilization. Machine Learning 10, 249–278 (1993)

