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Abstract

In his work “Mere Generation: Essential Barometer or
Dated Concept?”, Ventura (Ventura 2016) categorizes
creative processes along a spectrum of increasing cre-
ativity. While the spectrum provides insight into the di-
mensions through which creativity can be augmented, it
does not of itself provide insights into how to advance
a system through these dimensions. In this paper, we
present some theoretical and practical insights on ad-
vancing along one commonly problematic rung of this
ladder, namely from a system that exhibits generaliza-
tion (i.e., the ability to generalize beyond an inspiring
set) to a system that exhibits filtration (i.e., the ability
to self-evaluate and filter results). One potential chal-
lenge in this transition is that filtration requires having
a sufficiently large number of solutions to filter from
the generalizing model. We propose that one solution
to this problem is achieved not through increasing the
size of the inspiring set (an obvious solution that brings
additional problems), but rather through amplifying the
generalization of the system to produce a greater set of
novel artefacts to filter. We compare a new version of a
system, NhMMonic, for generating creative mnemonic
devices with a new conceptualization model that allows
greater generalization. We demonstrate how filtration,
which was not possible in the early version of NhM-
Monic, only becomes feasible with the more generaliz-
able model.

Introduction
The field of Computational Creativity (CC) has been sup-
ported in its quest by several significant contributions in the
domain of CC theory. One such contribution exists in Ven-
tura’s spectrum of creative systems (Ventura 2016). This
spectrum suggests that there exist at least seven different lev-
els along the path towards computational creativity includ-
ing levels such as randomness, memorization, generaliza-
tion, and filtration (see Figure 1). Ventura asserts that along
this spectrum, real computational creativity starts at least as
early as generalization with filtration representing perhaps a
conservative threshold.

While this spectrum is useful for measuring the progress
of applied CC systems, it leaves two important questions
unanswered:

1. For each level of the spectrum, what challenges are CC
systems likely to encounter?

2. What suggestions can be made to overcome those chal-
lenges?

Answers to these questions would provide a way to actualize
the spectrum into a guide for augmenting the creativity of
computational systems.

Our motivation in considering these issues came about in
the context of our previous work using constrained Markov
models to generate mnemonic devices (Bodily, Glines, and
Biggs 2019). Markov models are an example of a generaliz-
ing model. The application of constraints to Markov models
represents the act of filtration. In applying constraints to
generate mnemonic devices, it frequently occurred that no
satisfying solutions could be found.

The purpose of this paper is to provide answers to two
questions stated above with specific regard to systems that
have achieved the level of generalization and are attempt-
ing to make the “leap” to the level of filtration. This step is
of interest as it marks the transition from a budding creative
system to an intentionally creative system. This leap is sig-
nificant in light of the fact that of the last four levels of the
spectrum—where true creativity is said to emerge—this is
the first step.

Generalization systems produce artefacts using an inter-
nal conceptualization—a model which embodies an under-
standing of a domain and allows for the creation of artefacts
that belong to the domain (Ventura 2017). Examples of con-
ceptualizations include using long short-term memory mod-
els for music generation (Nayebi and Vitelli 2015), neural
networks for visual art (Norton, Heath, and Ventura 2013),
and Markov processes for music and text generation (Pachet,
Roy, and Barbieri 2011; Barbieri et al. 2012).

One particular challenge we have repeatedly observed in
the development of CC systems at this level is the challenge
of dealing with diminishing solution spaces. This problem
arises commonly when attempts are first made to add fil-
tration to a generalization system because filtration by def-
inition implies the reduction of a system’s solution space.
The purpose of the filtration step is to equip the system with
self-evaluative capabilities for restricting the artefacts it gen-
erates based on measurements of fitness. However, a well-
known trade-off arises: stricter filtering leads to better, but

Proceedings of the 11th International
Conference on Computational Creativity (ICCC’20)
ISBN: 978-989-54160-2-8

297



Figure 1: Ventura’s (2016) spectrum of creative systems provides a means by which to measure the progress of a system towards
becoming creative. Characterizing challenges and solutions that are specific to each level in the spectrum helps to actualize the
spectrum into becoming a guide for building more creative systems.

fewer results. In some cases the results are so few that it be-
comes difficult to justify that the system is capable of gen-
erating anything, let alone artefacts that are novel. How can
systems overcome this challenge?

A simple solution for increasing the solution space is to
simply increase the size of the inspiring set. For many con-
ceptualizations of CC systems this alone will increase the
overall throughput of the system, and often increases the
generalizability of the system as well. However, for most
domains, finding a larger inspiring set ranges from being im-
practical to an impossibility. What more practical solutions
exist?

We propose and illustrate through example how increas-
ing the generalizability of a generalization system through
abstraction and regularization can increase the solution
space without requiring a larger inspiring set. Well-known
methods exist for generalization of most conceptualization
models used for CC systems, including L1 and L2 regular-
ization for neural networks, shortening the Markov window
length in Markov processes, generalizing the fitness function
for genetic algorithms, and abstracting rules in rule-based
systems. Through regularization and abstraction, a system
is able to better leverage the knowledge in an inspiring set in
order to increase the solution space.

In demonstrating the impacts of abstraction and general-
ization, we comparatively consider the performance of two
models: a less abstract model (CoMP) and a more abstract
model (CHiMP). We assess the ability of each model to in-
tentionally produce novel artefacts. We choose to focus ex-
plicitly on the creative attribute of novelty—setting aside the
attributes of value and intentionality—inasmuch as it is the
attribute of creativity most directly relevant to our discussion
(Ritchie 2007; ?). We discuss the impacts of generalization
on value in the discussion section below.

Methods
NhMMonic (Bodily, Glines, and Biggs 2019), is a CC sys-
tem designed to generate mnemonic devices. At its heart,
NhMMonic uses a constrained Markov process (CoMP) for
its conceptualization model. This constrained Markov pro-
cess allows for the combination of a (non-hidden) Markov

process (e.g., trained on words) and a set of unary con-
straints (e.g., word-starts-with constraints) such that the
model is able to generate constraint-satisfying sequences ac-
cording to Markovian probabilities (Pachet, Roy, and Bar-
bieri 2011). In previous work we demonstrated through
qualitative surveys the strength of this model (particularly
at higher Markov orders) for generating effective mnemonic
devices. A byproduct of our analysis revealed that for many
mnemonic device problems, the addition of constraints (i.e.,
filtering) resulted in NhMMonic being incapable of find-
ing satisfying solutions despite being trained from relatively
large inspiring sets.

A known method for increasing the generalization of
Markov models is through the introducing of an abstract hid-
den layer resulting in a model known as a hidden Markov
process. Direct dependencies between adjacent observed se-
quence elements are dissolved in the hidden Markov pro-
cess, allowing for greater decoupling between sequence el-
ements. This generally results in hidden Markov processes
having significantly higher expressivity with respect to their
non-hidden counterparts.

To combat the challenges facing NhMMonic with respect
to a diminishing solution space, we designed a new con-
ceptualization model for the system that combines hidden
Markov processes with constraints in much the same way
that constrained Markov processes combined non-hidden
Markov processes with constraints (Glines, Biggs, and Bod-
ily in press). The resulting model is called a constrained
Hidden Markov process (CHiMP) which is visualized in
Figure 2. The CHiMP model was chosen under the hypoth-
esis that increased abstraction, resulting in increased gener-
alization, would lead to a significantly larger solution space.

In implementing a filtration system, it is apparent that
a large solution space is needed. Using two hypothetical
models A and B (seen in Figure 3) we illustrate the restric-
tion that solution space imposes on a system’s ability to step
from a generalization system to a filtration system. Model A
fails to have a solution space after filtering and thus remains
a conceptualization for a generalization system. Model B,
however, has a larger beginning solution space � due to an
increase in the model’s ability to generalize the inspiring set.
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Figure 2: A high-level schematic of a constrained hidden Markov process (CHiMP) of length 4 constrained so that the last
word is “red” and the first word rhymes with “red”. Each column represents a position in the sequence to be generated. Each
node represents a hidden state (i.e., part-of-speech) and a probability distribution for the observed states (i.e., words) that
can be generated from that hidden state. By pruning observed states that are disallowed by constraints and then adjusting
probabilities to maintain arc-consistency, the resulting model generates constraint-satisfying solutions with probability relative
to the original probability distribution (Glines, Biggs, and Bodily in press). Hidden states pruned directly from applying
constraints are indicated by dark grey nodes and states pruned during arc-consistency are indicated by light grey nodes.
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Thus model B has a usable solution space �0 after filtering
and can be categorized as a filtration system.

Results
In demonstrating the increased generalization (and hence in-
creased solution space) of CHiMP over CoMP, we compared
the results of each model trained on the Corpus of Contem-
porary American English (COCA) (Davies 2009) and pro-
vided the same set of constraints. In particular, we selected
training sets from the 2012 fiction portion of COCA and
constrained each model to only output sequences in which
the first letter of each word began with the same letter (e.g.,
a tongue-twister). We chose this problem because it repre-
sents a fairly general example of constrained sequence gen-
eration that is easily adapted to sequences of varying lengths.
Results are averaged over 26 instances of the problem with
each instance having constraints defined with a different let-
ter of the English alphabet.

Some qualitative results are shown in Figure 4. It should
be noted that within the subset of 40 sequences generated
by CHiMP, no duplicate or similar solutions where present;
whereas 6 sequences were duplicates (or very similar) in the
subset generated by CoMP.

We examined the effect of changing the sentence/model
length on the novelty of the system in terms of the total
number of unique solutions capable of being generated by
each model (see Figure 5). As the sentence length increases,
so too do the number of constraints on the sequence to be
generated. In the abstracted CHiMP model, this is inconse-
quential; the model can afford to make restrictions at the ob-
served node that do not affect transitions between sequence
positions (which are isolated in the hidden layer). Only oc-
casionally do a sufficient number of pruned states combine
to require the pruning of a hidden state node, but such is a
relatively rare occurrence.

By contrast, the effects of increased sentence length on
the CoMP model are severely limiting. Each added position
would typically add a number of novel unique solutions if
it did not come with the addition of a new constraint. The
newly constrained position has direct influence on previous
observed sequence states and thus pruning values from the
domain of these variables directly results in the removal of
transitions between adjacent sequence positions. This re-
sults in a relatively slow growth in the solution space as sen-
tence length grows.

The increase in the CHiMP model appears to be exponen-
tial owing to the multiplicative effect achieved by maintain-
ing large domains for adjacent variables in the hidden layer.

Similar trends in the impact on novelty are manifest when
we vary the training set size, keeping sentence length con-
stant (see Figure 6). We see that the size of the solution
space for the CHiMP model increases exponentially. The
CoMP model also appears to have some slightly exponen-
tial growth, but at a significantly lower rate. This is again
what we would expect to see. Increasing the training set
size (when such is a possibility) still has a more significant
impact on CHiMP than on CoMP model.

The results shown in Figures 5 and 6 suggest that CHiMP,
with respect to CoMP, facilitates exponentially more nov-

elty. The solution space of the CoMP model is by defini-
tion a subset of the solution space of the CHiMP model, and
for most training and constraint sets will be a substantially
smaller subset. It is expected that of the novel results pro-
duced by CHiMP, some will have higher value than the so-
lutions shared by both models. Because the CHiMP model
abstracts to a more significant degree from the training set
than the CoMP model, we might expect a greater portion
of the novel solutions to be of lower value. The suggestion
from qualitative results shown in Figure 4 is that there is
no obvious degradation of value. However, we do not cur-
rently have results to fully assess the extent to which value
degrades (or doesn’t). In any case the expressivity of the
CHiMP model enables a simple solution: introduce new or
stricter filtering by increasing the number and stringency of
constraints.

Discussion and Conclusion
In progressing from a generalizing system to a filtration sys-
tem, our results provide meaningful insight into two impor-
tant questions relating to Ventura’s spectrum of creative sys-
tems:

1. For the filtration level of the spectrum, what challenges
are CC systems likely to encounter?

2. What suggestions can be made to overcome these chal-
lenges?

A significant challenge for CC systems attempting to tran-
sition to a filtration system is as more constraints (or filters)
are put on the system, the solution space diminishes to the
point of being too small to filter. As demonstrated in the
CoMP model (Figure 5), the insufficient solution space pre-
vents being able to apply more constraints and filters to pro-
duce higher quality artefacts.

The problem is not specific to our results or to Markov
models. Filtering, by nature, reduces the solution space. As
shown in Figure 3, any CC system with low generalization
may fail to have a usable solution space after filtering.

Greater generalization can address the aforementioned
problem. We see from our results that our model with
greater generalization, CHiMP, excels in solution space size
even as constraints are added (see Figure 5). The primary
difference between CoMP and CHiMP is an added layer
of abstraction in CHiMP that affords greater generalization.
The solution to a diminished solution space is to increase the
level of abstraction in the model. This increases the gener-
alization ability of the model and results in a solution space
substantial enough to “survive” filtering.

Increased constraints allow for greater creativity and qual-
ity because the system can use constraints to explicitly ar-
ticulate and enforce the system’s goals and intentions. For
example, in Markov models, increasing the Markov order
(a form of adding more constraints) significantly improves
the coherency of natural language, but the solution space
is heavily diminished. With the CHiMP model, the solu-
tion space is sufficiently enlarged to avoid these devastat-
ing consequences to the solution space. Besides changes to
the Markov order, other possibilities open up for using con-
straints to filter results to further improve quality, including
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Figure 3: The application of filters on two hypothetical models (A and B) demonstrates the requirement for larger solution
spaces (increased generalization) in order to endure filtering with a usable solution space. Model B has a usable solution space
after filtering; thus the model has moved further along in the spectrum from generalization to filtration.

CoMP Tongue Twisters:
late last light levels like lady
Diaz did dinosaurs died dell drove
max mowed my mother made my
language lessons last look little lamb

CHiMP Tongue Twisters:
queen Quanhe quite quiet queasy qualified
flower facing forward for from forester
free feeling facing followed free fate
every educated Elizabeth expected Erika enchanting

Figure 4: Example results from generating 6-length tongue
twisters (i.e., alliterative constraints) from both the CoMP
and CHiMP models. Both models were trained on 10K sen-
tences. Results are chosen from a randomly selected subset
of 40 sequences from each model. The quality of tongue
twisters is roughly equivalent between both models (both
poor), but the CHiMP model is capable of generating expo-
nentially more solutions. This suggests that increasing the
Markov order in the CHiMP model (as an example of more
stringent constraints) will have far less deleterious affects on
the solution space as compared to a similar increase in the
CoMP model.

Figure 5: The effects of sequence length on the number of
total solutions generated by each model with a fixed train-
ing set size of 300 sentences. Both models are constrained
such that each word in a sequence starts with the same letter;
counts of total solutions are averaged over 26 runs (each run
using a different letter from the English alphabet). We see
that as the sequence length increases, total solutions for the
CHiMP model increases exponentially (given the logarith-
mic scale) whereas the CoMP model stagnates.
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Figure 6: The effects of training corpus size (number of
training sentences) on the number of total solutions gener-
ated by each model with a fixed sequence length of 3. Both
models are constrained such that each word in a sequence
starts with the same letter; counts of total solutions are av-
eraged over 26 runs (each run using a different letter from
the English alphabet). The total solutions of both models in-
crease in an almost parallel way; however, at 10K training
sentences, CHiMP well exceeds 100M total solutions which
contrasts CoMP at 1000 total solutions.

semantic constraints, structural constraints, and even more
complex n � ary constraints. It is also often the case that
constraints can be easily described in human-interpretable
language, enabling the system to provide framing for its cre-
ative behavior, contributing to an increased perception of
creativity in CC systems (Colton 2008).

It is important to acknowledge the negative consequences
of increasing the generalization in a learning model. In
particular, generalization decouples dependencies between
variables which can result in a loss of information during
variable assignment. For example, generalizing to a hidden
Markov model takes a significant toll on language coher-
ence. In short, the novelty achieved by generalization comes
with a trade-off in value. We hypothesize that this deterio-
ration can be offset in the application of filters to preserve
the information lost. We plan to examine this issue in future
work.

Through developing a system (CHiMP) that more effec-
tively achieves filtration, we have discovered insights into
the challenges present in the leap from generalization to fil-
tration and how to overcome them. The challenge of di-
minishing solution spaces can be overcome by amplifying
the generalizing ability of the system through abstraction.
Having realized the leap from generalization to filtration, the
community is now poised to address the challenge of mak-
ing the subsequent leaps along Ventura’s spectrum of cre-
ative systems, advancing past filtration into inception and
ultimately creation.
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