
Towards MCTS for Creative Domains

Cameron Browne
Computational Creativity Group

Imperial College London
180 Queens Gate, SW7 2RH, UK

camb@doc.ic.ac.uk

Abstract
Monte Carlo Tree Search (MCTS) has recently demon-
strated considerable success for computer Go and other
difficult AI problems. We present a general MCTS
model that extends its application from searching for
optimal actions in games and combinatorial optimisa-
tion tasks to the search for optimal sequences and em-
bedded subtrees. The primary application of this ex-
tended MCTS model will be for creative domains, as it
maps naturally to a range of procedural content genera-
tion tasks for which Markovian or evolutionary ap-
proaches would typically be used.

 Introduction
Ludi is a system for automatically generating and evaluat-
ing board games modelled as rule trees (Browne, 2008).
New artefacts are created by evolving existing rule trees
and measuring the results for quality through self-play.
Although this process proved successful by creating a
game of notable quality that is now commercially pub-
lished (Andres, 2009), it also highlighted some problems
with the evolutionary approach for game design:

Wastage: Thousands of bad games were generated for
every good one.

Focus: Creativity only became evident when introns
(flawed rules) were allowed to proliferate and breed.

Bias: The choice of initial population biased the output,
and if not themselves well-formed would not likely
produce any playable children at all.

 Due to the random nature of crossover and mutation,
there is no guarantee that the evolutionary process will
converge to an optimal result. Might there be a better way?
 Monte Carlo Tree Search (MCTS) has revolutionised
computer Go and is now a cornerstone of the strongest AI
players (Coulomb 2006). It works by running large num-
bers of random simulations and systematically building a
search tree from the results. It has produced world cham-
pion AI players for Go, Hex, General Game Playing, and
unofficial world champions for a number of other games.
 An attractive feature of MCTS is its generality. It can be
applied to almost any domain that can be phrased in terms
of states and actions that apply to those states, and has been
applied to optimisation tasks other than move planning in
games, such as workforce scheduling, power grid control,
economic modelling, and so on. MCTS is also:

Aheuristic: No heuristic domain knowledge is required.
Asymmetric: The search adapts to fit the search space.
Convergent: The search converges to optimal solutions.

 MCTS systematically explores a given search space by
preferring high-reward choices while guaranteeing the
(eventual) exploration of low-reward options, and only
requires a fitness function for completed artefacts to oper-
ate. This makes it an attractive proposition for procedural
content generation in creative domains; however, such
problems tend to be more complex than simple {state, ac-
tion} pairs. They are typically modelled as sequences,
grammars, rule systems, expression trees, and so on, which
are outside the scope of the standard MCTS algorithm.
 We propose a generalisation of the MCTS algorithm and
its extension from the search for optimal actions to the
search for optimal sequences and subtrees. This should
have direct applicability to procedural content generation
in game design and other creative domains, where it might
augment or even provide an alternative to existing methods
for creating new high quality artefacts.

MCTS
Figure 1, from Chaslot et al (2006), shows the four basic
steps of the MCTS algorithm. Each node represents a state
s and each edge represents an action a that leads to an up-
dated state s’. Each node maintains a record of its esti-
mated value, number of visits, and a list of child actions.
 The algorithm repeats the following process: starting at
the root node R, descend through the tree (choosing the
optimal action with each step) until a leaf node L is
reached. Then, expand the tree by adding a new node N,
complete the game by random simulation, and backpropa-
gate the result up the list of selected nodes.

UCB The key to the algorithm’s success lies in the
method it uses to select optimal actions from among lists of
those available during tree descent. A variation of the Up-
per Confidence Bounds (UCB) method (Auer et al, 2002)
is typically used to select the node that maximises:

where Xi is the estimated (mean) value of child i, ni is the
number of times child i has been visited, and n is the num-
ber of times the node itself has been visited.

Proceedings of the Second International Conference on Computational Creativity 96

Figure 1. The four basic steps of the MCTS algorithm.

 UCB provides a good balance between the exploitation
of estimated node values and the exploration of the search
space, so that even low-value nodes are occasionally exer-
cised to increase the reliability of their value estimates.
Kocsis and Szepesvari first proposed the use of UCB in an
MCTS setting with their UCT (“UCB applied to Trees”)
method in 2006, and this is the specific embodiment of
MCTS used in most current applications.

General MCTS Model
 The standard application of MCTS is to find optimal
moves in zero-sum, two-player games with alternating
moves and fixed turn order, such as Go (Gelly et al, 2006).
While it has been applied to more general problems, such
as general game playing (Bjornsson and Finnsson, 2009)
and some combinatorial optimisation problems, the algo-
rithm is specifically adapted for such different domains. We
now consider ways to simplify some underlying assump-
tions to generalise the algorithm and more cleanly separate
it from its given application domain.

Zero-Sum MCTS is often used to model zero-sum games
with a win given a discrete value of +1 and a loss -1 (draws
are worth 0). We relax this assumption so that the algorithm
works with continuous simulation results in the range
[-1..1], where the extremes represent ideals that may never
actually be realised. This generalises to domains in which
individuals are measured by a fitness function rather than
discrete win/lose/draw classifications.
	

Two Players The algorithm often models two adversarial
opponents, i.e. players competing for opposing rewards,
which has implications for the backpropagation stage. In
traditional game search terms, the instigator of the search
(MAX) will try to maximise their reward while the oppo-
nent (MIN) will try to minimise this reward, resulting in a
minimax tree. If a simulated playout yields a result of +1
for the current player, then the value backpropagated
through the tree will be negated with each search ply: +1,
-1, +1, -1, etc.

	

 Multiplayer games (i.e. those with more than two play-
ers) can be modelled using a paranoid approach in which
each player simply assumes that all other players are acting
against them. This removes complicating aspects of coali-
tions and effectively reduces N-player games to a 2-player
model, but can give good results (Sturtevant, 2002). Play-
out results for say three players using the paranoid model
would be negated in cycles of three during backpropaga-
tion: +1, -1, -1, +1, -1, -1, etc.
	

 Single player games, e.g. solitaire puzzles, are coopera-
tive as there is only one player who will generally not seek
to sabotage their own moves. 	

Such games may return boo-
lean results indicating success (puzzle solved) and failure
(dead end), or continuous reward functions that indicate
distance from a desired perfect solution. The puzzle envi-
ronment may respond to player moves; if these responses
are deterministic then they are simply part of the state up-
date following each action, otherwise if the environment’s
responses are intelligent and adversarial then the puzzle is
actually a 2-player game.

Move Order Not all games have alternating moves; some
have variable play order or composite multi-part moves.
Consider a hypothetical Go variant in which the player who
surrounds an enemy group need not remove all surrounded
pieces but may elect which, if any, to remove. If a group of
say 20 pieces is surrounded, the mover has 220 = 1,048,576
possible ways to remove a subset of 0 to 20 pieces.
	

 It would be ridiculous to list all of these choices for a
given node, so instead a more practical option is to treat
these optional removals as a multipart move, i.e. a variable
length sequence of single piece removals. This approach
may be strategically dubious as each sub-move is consid-
ered in isolation rather than part of the greater move, but it
is the only practical solution in many cases and usually
proves sufficient (Schmidt, 2010). Such multipart moves
are another consideration that must be taken into account
during the backpropagation stage, as simulation results
must then be negated across variable ply numbers to
reward/punish the players correctly.

Proceedings of the Second International Conference on Computational Creativity 97

Figure 2. Example solutions for the three search types: action, sequence and subtree.

Generalising MCTS The solution to the limitations de-
scribed above is relative node ownership. Each node in the
search tree is assigned an owner – typically the player to
move – and is updated during the backpropagation step
according to the simulation result relative to its owner. In-
stead of returning a single value indicating the result of
each simulation, the domain produces a vector of values
indicating the result relative to each player. This removes
underlying assumptions regarding player number, move
order, move length and distinctions between adversarial
versus cooperative modes of play, allowing a more general
MCTS model that paves the way for the following exten-
sions.

Extended MCTS Model
We now extend the general MCTS model from searching
for optimal actions to searching for optimal sequences and
embedded subtrees, such as those typically used in proce-
dural content generation and computational creativity tasks.

MCTS Sequence Search
Figure 2 (left) shows the result of a standard MCTS search,
which is the highest-valued root child action. As the basic
operation of the algorithm is to complete a sequence of
actions each iteration, it is straightforward to make these
sequences the target of the search (Figure 2, middle).
	

 This can be achieved simply by keeping at all times a
record of the best sequence so far including any random
playouts (a pointer to the sequence’s tail is sufficient), and
using as the reward value for each sequence an estimate of
its fitness. For solitaire puzzles this fitness value may in-
volve distance to solution, or for more creative applications
such as music generation, the fitness function may involve
aesthetic measurement of passages of notes.
	

 As per standard MCTS, a sequence is run to completion
per iteration, and its value backpropagated through the
selected nodes. Each sequence may be completed within
the search tree or may cross the tree boundary (as shown in
Figure 4), hence it is possible that the best sequence could
be at least partially randomly completed. As with action
search, the root node is not part of the completed sequence
but merely defines the list of possible starting points for the
search.

MCTS Subtree Search
The second extension of the algorithm – from sequence
search to subtree search – is complicated by the polyadic
(multi-argument) nature of the problem. Rather than each
state s having a single action a applied, each state may now
have N actions or arguments that are simultaneously ap-
plied. For example, the search target may be an expression
tree with nodes that contain multiple arguments.
	

 These search target subtrees should not be confused with
the MCTS search tree itself; we distinguish between the
search tree and the solution subtrees that are embedded
within it. The search tree represents the possible solution
space while solution subtrees represent actual realisations
of those possibilities. As per the standard MCTS approach,
a subtree is completed with each iteration, evaluated, and
its value backpropagated through the selected nodes. The
subtree may be entirely embedded within the search tree or
it may cross the search tree boundary at one or more points,
in which case each open branch is randomly simulated to
completion (Figure 2, right). A record of the best subtree
must be kept at all times; a list of its leaf nodes is sufficient
to reconstruct the subtree. It is possible that one or more
branches of the best subtree could be randomly completed.

Polyadic Strategies
In order to successfully extend the MCTS method to sub-
tree search, we propose a number of strategies for handling
the selection of arguments for polyadic nodes. Dependen-
cies between such arguments – and indeed between nodes
and even subtrees – become important in this context.
 For example, Figures 3 and 4 show two hypothetical
games described as rule trees, such as those that might be
generated by the Ludi system (Browne, 2008). In “Kill the
Knights” players take turns moving one of their pieces in a
knight move and win by capturing three enemy pieces. In
“Pin the Knights” pieces instead pin enemy pieces that they
land upon and a player wins by forming a stack three high.
	

 While neither game is a masterpiece, “Pin the Knights”
may be the more interesting of the two. There is some ten-
sion between the benefit of pinning enemy pieces against
the danger of providing height 2 stacks that the opponent
might exploit to win the game.

Proceedings of the Second International Conference on Computational Creativity 98

Figure 3. Rule set for “Kill the Knights”.

	

 The rule differences between the two games (replace/pin
and score/stack) are dependent as changing either one in
isolation will break the game by making it unwinnable;
both changes must occur simultaneously for the modified
game to work. In terms of these two rules, each game is in
a local maximum that can only be escaped by modifying
both rules simultaneously.
	

 This example demonstrates that superior results can be
achieved if related degrees of freedom in the content can be
identified and adjusted in tandem. It is not guaranteed that
an evolutionary method would ever perform such depend-
ent rule changes simultaneously, whereas MCTS performs
a more systematic exploration of the search space due to its
well-balanced exploration component and mechanisms
may be added for detecting and exploiting such dependen-
cies. We distinguish between independent and dependent
node selection in subtree search, and propose polyadic
strategies for each case in the following sections.

Independent Node Selection
The simplest strategies for optimally completing polyadic
subtrees during MCTS search ignore node dependencies, so
node choices made in one part of the tree will not affect
node choices in other parts of the tree during tree descent
or backpropagation. We now present two such strategies.

Direct Choice The first case to consider is the most obvi-
ous; when presented with a polyadic node, simply choose
for each argument the action selected from its available
choices by UCB. Each selection is made independently of
the other arguments and all other nodes in the tree.
 For example, Figure 5 shows a polyadic node pi with
three arguments (branches) to be populated with actions. In
the direct method, the action for argument a will be se-
lected from the set {a1, a2 ,..., an}, the action for argument b
will be selected from the set {b1, b2 ,..., bn}, and the action
for argument c will be selected from the set {c1, c2 ,..., cn}.
 For each iteration of the search, a subtree is completed in
this manner, measured for fitness, and the result back-
propagated through the selected subtree’s nodes. The result
of the search will be the completed subtree with the highest
reward value.

Figure 4. Rule set for “Pin the Knights”.

Embroyonic Development Another approach inspired by
genetic programming methods for circuit design (Koza et
al, 2001) is to maintain a single “embryonic” individual
that is modified over the course of the search.
 An embryonic tree is created, then for each iteration a
non-branching sequence is followed through it, simulated
to completion and the result backpropagated through the
sequence, while unvisited nodes outside the active se-
quence remain frozen for that iteration.
 Figure 6 summarises the process for a given polyadic
node pe visited along the active sequence during tree de-
scent. One argument is chosen from those available, in this
case b, which will be the best action of the worst perform-
ing argument. The result of the search will be a copy of the
embryonic tree taken on the iteration at which it achieved
its highest estimated value.

Figure 5. Direct approach to argument completion.

Figure 6. Embryonic approach to argument completion.

Proceedings of the Second International Conference on Computational Creativity 99

Figure 7. Compound approach to argument completion.

Dependent Node Selection
The following approaches for completing polyadic subtrees
preserve node dependencies across the tree. In Johnson-
Laird’s nomenclature (2002), these node-dependent ap-
proaches will be more Lamarckian than Darwinian in na-
ture, as individuals actively improve themselves in a sys-
tematic way. This list is not complete, but describes some
candidate strategies that we plan to investigate in depth.

Compound Arguments Figure 7 shows a method that cor-
relates the available actions in all arguments by compound-
ing them into a single list of all possible combinations. For
example, if the action selected by UCB is a3b1c4 then ac-
tion a3 is chosen for argument a, action b1 is chosen for
argument b, and action c4 is chosen for argument c.
 This approach provides a minimal degree of node de-
pendence by correlating the actions of sibling arguments.

Boundary Correlation Figure 8 shows a subtree being
constructed during a search in progress, with five argu-
ments labelled a to e waiting to be completed along its
boundary. Firstly, the most urgent argument is chosen using
UCB to select among boundary updates possible from this
state, then an action is selected for that argument.
 Separate UCT statistics are maintained for each possible
combination of {argument, action} pairs, as indicated by
the arrows in Figure 8. For example, if the actions available
to argument a are listed {a1, a2 ,..., an} and so on, then sta-
tistics will be maintained for combinations a1b1, a1c1, a1d1,
a1e1, a1b2, etc. The action with the best average UCB per-
formance over all member combinations, in conjunction
with the action’s own value, is selected for the chosen ar-
gument, the boundary is updated and the process continues.
 Once the subtree is completed and evaluated, the back-
propagation stage must update not only the values of all
visited nodes but also all argument correlations for all
boundaries (i.e. rooted subtrees) contained within the solu-
tion tree. The result of the search will be the solution tree
with the highest reward value.

Subtree Correlation Subtree correlation is similar in prin-
ciple to boundary correlation, except that instead of storing
subtree boundaries with associated argument combinations,
the stored subtrees are themselves associated. During sub-
tree construction, each node is then completed by the asso-
ciated subtree with the highest UCB value.

Figure 8. Boundary correlation of arguments.

 This approach compares with Contextual MCTS (Rim-
mel and Teytaud, 2010), which partitions the search space
into a number of “tiles”. Techniques for transposition tables
could benefit this approach (Childs et al, 2008).
 The result should be that rule subsets found to work well
together, even from disparate parts of the search tree, will
occur more often in future solutions. Such correspondence
is not guaranteed for crossover in evolutionary strategies.
 The statistics thus accumulated could yield useful in-
sights into good rule combinations, as well as indicating
individual rules that are more successful. For example,
game inventors may be interested to know which subsets of
game rules work harmoniously together and warrant further
investigation, even if the actual games produced by the
system are not of great interest in themselves.

Tree-to-Sequence Conversion Other approaches sug-
gested by combinatorial mathematics include the conver-
sion of trees to sequences, which would then allow MCTS
sequence search. This may be achieved using the Prüfer
sequence of each tree (Prüfer, 1918) or Euler tours of their
leaf nodes (Bender and Farach-Colton, 2000).

Application Domains
The extended model provides a framework for applying
MCTS to PCG in creative domains. The proposed tech-
niques will be tested through their application to creative
tasks such as those listed below, which can be divided into
two broad categories: sequence-based and tree-based.

Sequence-Based Domains
Artefact creation in sequence-based domains is typically
achieved using Markovian approaches, which analyse the
recent history of a problem to predict the next step that
maximises some reward. Can MCTS-based methods add
value to this process by predicting entire sequences?

Word Play Pseudowords (non-words that sound plausible
within a given language) are useful for a variety of tasks:
word games, poetry, psycholinguistic experiments, the
creation of unique but memorable usernames, passwords,
domain names, CAPTCHAs, and so on.

Proceedings of the Second International Conference on Computational Creativity 100

Pseudowords are typically constructed using Markovian
methods based on the distribution of letter or syllable com-
binations within the target language (Keullers and Brys-
baert, 2010). However, the sequential process of word con-
struction maps neatly to the extended MCTS approach.

Music Synthesis The Continuator (Pachet, 2004) is a sys-
tem that records passages played by musicians and pro-
duces continuations in a similar style, operating in real time
using a Markovian model combined probabilistically with a
fitness function.

Tree-Based Domains
Artefact creation in tree-based domains is typically
achieved using evolutionary methods. We will investigate
the use of the extended MCTS model for PCG instead.

Game Design We are developing a general game system
called Mogal (Modular Game Library) in which users – or
the AI – may mix and match rule modules to define new
games, which can then be measured for quality through
self-play. Mogal will be used to compare the performance
of extended MCTS for subtree search for the generation of
new rule trees (and the optimisation of existing ones)
against standard evolutionary approaches.

Visual Art There are many applications of rule based sys-
tems for the automated generation of visual art, including
expression trees, L-systems, context free grammars, and so
on, most of which use evolutionary approaches (Romero
and Machado, 2008). The extended MCTS model will be
applied to a number of visual art creation tasks with known
fitness functions, such as the approximation of target im-
ages in artistic styles and the generation of ornamental (e.g.
celtic) designs, and its performance compared against cur-
rent evolutionary methods.

Conclusion
MCTS offers a number of attractive features for AI search
but has to date only been applied to particular domain
types. We describe ways in which the standard algorithm
may be generalised by decoupling the domain from the
search, then extended to other domain types expressed as
sequences and trees. This opens up the possibility of using
MCTS for a range of computational creativity tasks for
which Markovian processes or evolutionary strategies are
typically used. The extension of MCTS to sequence search
is straightforward, but its extension to embedded subtree
search is complicated by its polyadic nature; several strate-
gies for tackling this problem are presented. This work
represents the first step in our investigation of MCTS for
creative domains.

Acknowledgements
This work is supported by EPSRC standard grant EP/
I001964. Thanks to Simon Colton, Stephen Tavener, Phillip
Rohlfshagen, Greg Schmidt and the anonymous reviewers
for useful comments.

References
Andres, N. 2009. Yavalath. http://www.nestorgames.com.
Auer, P.; Cesa-Bianchi, N. and Fischer, P. 2002. Finite time
analysis of the multiarmed bandit problem. Machine Learn-
ing 47(2-3):235–256.
Bender, M. and Farach-Colton, M. 2000. The LCA Prob-
lem Revisited. In Latin 2000: Theoretical Informatics,
LNCS 1776, 88-94. Springer:Berlin.
Bjornnsson, Y. and Finnsson, H. 2009. CadiaPlayer: A
Simulation-Based General Game Player. IEEE Computa-
tional Intelligence and AI in Games 1(1):14-15.
Browne, C. 2008. Automatic Generation and Evaluation of
Recombination Games. Ph.D. Thesis, Faculty of Informa-
tion Technology, Queensland University of Technology.
Chaslot, G.; Bakkes, S.; Szita, I. and Spronck, P. 2008.
Monte-Carlo Tree Search: A New Framework for Game AI.
In Proceedings of AIIDEC-08, 216-217.
Childs, B.; Brodeur, J. and Kocsis, L. 2008. Transpositions
and Move Groups in Monte Carlo Tree Search. In Proceed-
ings of CIG’08, 389-395.
Coloum, R. 2006. Efficient Backup and Selectivity Opera-
tors in Monte-Carlo Tree Search. In Computers and Games
2006. 72-83.
Gelly, S.; Wang, Y.; Munos, R. and Teytaud, O. 2006.
Modification of UCT with Patterns in Monte-Carlo Go.
Technical Report 6062, INRIA, Orsay Cedex:France.
Johnson-Laird, P. 2002. How Jazz Musicians Improvise.
Music Perception 19(3):415-442.
Keullers, E. and Brysbaert, M. 2010. Wuggy: A multilin-
gual pseudoword generator. Behavior Research Methods
42(3):627-633.
Kocsis, L. and Szepesvari, C. 2006. Bandit based Monte-
Carlo Planning. In Machine Learning: ECML 2006, LNCS
4212, Berlin:Springer. 282–293.
Koza, J.; Bennett, F.; Andre, D.; and Keane, M. 2001. Ge-
netic Programming. In AISB’99 Symposium on AI and Sci-
entific Creativity, 29-38.
Pachet, F. 2004. Beyond the Cybernetic Jam Fantasy: The
Continuator. IEEE Computer Graphics and Applications
4(1):31-35.

Prüfer, H. 1918. Neuer Beweis eines Satzes uber Permuta-
tions”. Arch. Math. Physics. 27:742-744.

Rimmel, A. and Teytaud, F. 2010. Multiple Overlapping
Tiles for Contextual Monte Carlo Tree Search. Applications
of Evolutionary Computing 8623:201-210.

Romero, J. and Machado, P. 2008. The Art of Artificial Evo-
lution: A Handbook on Evolutionary Art and Music.
Berlin:Springer.

Schmidt, G. Omega PC Axiom version: The making of.
http://boardgamegeek.com/thread/563815/.

Sturtevant, N. 2002. A Comparison of Algorithms for Multi-
Player Games. In Computers and Games 2002. 108-122.

Proceedings of the Second International Conference on Computational Creativity 101

