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Abstract
Monte Carlo Tree Search (MCTS) has recently demon-
strated considerable success for computer Go and other 
difficult AI problems. We present a general MCTS 
model that extends its  application  from searching for 
optimal actions in games and  combinatorial optimisa-
tion  tasks to the search for optimal sequences and em-
bedded subtrees. The primary application of this ex-
tended MCTS model will be for creative domains, as it 
maps naturally to a range of procedural content genera-
tion  tasks for which Markovian or evolutionary ap-
proaches would typically be used.

 Introduction
Ludi is a system for automatically generating and evaluat-
ing board games modelled as rule trees (Browne, 2008). 
New artefacts are created by evolving existing rule trees 
and measuring the results for quality through self-play. 
Although this process proved successful by creating a 
game of notable quality that is now commercially pub-
lished (Andres, 2009), it also highlighted some problems 
with the evolutionary approach for game design:

Wastage: Thousands of bad games were generated for 
every good one.

Focus: Creativity only became evident when introns 
(flawed rules) were allowed to proliferate and breed.

Bias: The choice of initial population biased the output, 
and if not themselves well-formed would not likely 
produce any playable children at all.

 Due to the random nature of crossover and mutation, 
there is no guarantee that the evolutionary process will 
converge to an optimal result. Might there be a better way? 
 Monte Carlo Tree Search (MCTS) has revolutionised 
computer Go and is now a cornerstone of the strongest AI 
players (Coulomb 2006). It works by running large num-
bers of random simulations and systematically building a 
search tree from the results. It has produced world cham-
pion AI players for Go, Hex, General Game Playing, and 
unofficial world champions for a number of other games.
 An attractive feature of MCTS is its generality. It can be 
applied to almost any domain that can be phrased in terms 
of states and actions that apply to those states, and has been 
applied to optimisation tasks other than move planning in 
games,  such as workforce scheduling, power grid control, 
economic modelling, and so on. MCTS is also:

Aheuristic: No heuristic domain knowledge is required.
Asymmetric: The search adapts to fit the search space.
Convergent: The search converges to optimal solutions.

 MCTS systematically explores a given search space by 
preferring high-reward choices while guaranteeing the 
(eventual) exploration of low-reward options, and only 
requires a fitness function for completed artefacts to oper-
ate. This makes it an attractive proposition for procedural 
content generation in creative domains; however, such 
problems tend to be more complex than simple {state, ac-
tion} pairs.  They are typically modelled as sequences, 
grammars, rule systems, expression trees, and so on, which 
are outside the scope of the standard MCTS algorithm. 
 We propose a generalisation of the MCTS algorithm and 
its extension from the search for optimal actions to the 
search for optimal sequences and subtrees. This should 
have direct applicability to procedural content generation 
in game design and other creative domains, where it might 
augment or even provide an alternative to existing methods 
for creating new high quality artefacts.

MCTS
Figure 1, from Chaslot et al (2006), shows the four basic 
steps of the MCTS algorithm. Each node represents a state 
s and each edge represents an action a that leads to an up-
dated state s’. Each node maintains a record of its esti-
mated value, number of visits, and a list of child actions.
 The algorithm repeats the following process: starting at 
the root node R, descend through the tree (choosing the 
optimal action with each step) until a leaf node L is 
reached. Then, expand the tree by adding a new node N, 
complete the game by random simulation, and backpropa-
gate the result up the list of selected nodes.

UCB The key to the algorithm’s success lies in the 
method it uses to select optimal actions from among lists of 
those available during tree descent.  A variation of the Up-
per Confidence Bounds (UCB) method (Auer et al, 2002) 
is typically used to select the node that maximises:

  

where Xi is the estimated (mean) value of child i, ni is the 
number of times child i has been visited, and n is the num-
ber of times the node itself has been visited.
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Figure 1.  The four basic steps of the MCTS algorithm. 

 UCB provides a good balance between the exploitation 
of estimated node values and the exploration of the search 
space, so that even low-value nodes are occasionally exer-
cised to increase the reliability of their value estimates. 
Kocsis and Szepesvari first proposed the use of UCB in an 
MCTS setting with their UCT (“UCB applied to Trees”) 
method in 2006, and this is the specific embodiment of 
MCTS used in most current applications. 

General MCTS Model
 The standard application of MCTS is to find optimal 
moves in zero-sum, two-player games with alternating 
moves and fixed turn order, such as Go (Gelly et al, 2006). 
While it has been applied to more general problems, such 
as general game playing (Bjornsson and Finnsson, 2009) 
and some combinatorial optimisation problems, the algo-
rithm is specifically adapted for such different domains. We 
now consider ways to simplify some underlying assump-
tions to generalise the algorithm and more cleanly separate 
it from its given application domain.

Zero-Sum MCTS is often used to model zero-sum games 
with a win given a discrete value of +1 and a loss -1 (draws 
are worth 0). We relax this assumption so that the algorithm 
works with continuous simulation results in the range 
[-1..1], where the extremes represent ideals that may never 
actually be realised. This generalises to domains in which 
individuals are measured by a fitness function rather than 
discrete win/lose/draw classifications. 
	


Two Players The algorithm often models two adversarial 
opponents, i.e. players competing for opposing rewards, 
which has implications for the backpropagation stage. In 
traditional game search terms, the instigator of the search 
(MAX) will try to maximise their reward while the oppo-
nent (MIN) will try to minimise this reward, resulting in a 
minimax tree. If a simulated playout yields a result of +1 
for the current player, then the value backpropagated 
through the tree will be negated with each search ply: +1, 
-1, +1, -1, etc.

	

 Multiplayer games (i.e. those with more than two play-
ers)  can be modelled using a paranoid approach in which 
each player simply assumes that all other players are acting 
against them. This removes complicating aspects of coali-
tions and effectively reduces N-player games to a 2-player 
model, but can give good results (Sturtevant, 2002). Play-
out results for say three players using the paranoid model 
would be negated in cycles of three during backpropaga-
tion: +1, -1, -1, +1, -1, -1, etc.
	

 Single player games, e.g. solitaire puzzles, are coopera-
tive as there is only one player who will generally not seek 
to sabotage their own moves. 	

Such games may return boo-
lean results indicating success (puzzle solved) and failure 
(dead end), or continuous reward functions that indicate 
distance from a desired perfect solution. The puzzle envi-
ronment may respond to player moves; if these responses 
are deterministic then they are simply part of the state up-
date following each action, otherwise if the environment’s 
responses are intelligent and adversarial then the puzzle is 
actually a 2-player game. 

Move Order Not all games have alternating moves; some 
have variable play order or composite multi-part moves. 
Consider a hypothetical Go variant in which the player who 
surrounds an enemy group need not remove all surrounded 
pieces but may elect which, if any, to remove. If a group of 
say 20 pieces is surrounded, the mover has 220 = 1,048,576 
possible ways to remove a subset of 0 to 20 pieces.
	

 It would be ridiculous to list all of these choices for a 
given node, so instead a more practical option is to treat 
these optional removals as a multipart move, i.e. a variable 
length sequence of single piece removals. This approach 
may be strategically dubious as each sub-move is consid-
ered in isolation rather than part of the greater move, but it 
is the only practical solution in many cases and usually 
proves sufficient (Schmidt, 2010). Such multipart moves 
are another consideration that must be taken into account 
during the backpropagation stage, as simulation results 
must then be negated across variable ply numbers to 
reward/punish the players correctly.
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Figure 2.  Example solutions for the three search types: action, sequence and subtree.

Generalising MCTS The solution to the limitations de-
scribed above is relative node ownership.  Each node in the 
search tree is assigned an owner – typically the player to 
move – and is updated during the backpropagation step 
according to the simulation result relative to its owner. In-
stead of returning a single value indicating the result of 
each simulation, the domain produces a vector of values 
indicating the result relative to each player. This removes 
underlying assumptions regarding player number, move 
order, move length and distinctions between adversarial 
versus cooperative modes of play, allowing a more general 
MCTS model that paves the way for the following exten-
sions.

Extended MCTS Model
We now extend the general MCTS model from searching 
for optimal actions to searching for optimal sequences and 
embedded subtrees, such as those typically used in proce-
dural content generation and computational creativity tasks.

MCTS  Sequence Search
Figure 2 (left) shows the result of a standard MCTS search, 
which is the highest-valued root child action. As the basic 
operation of the algorithm is to complete a sequence of 
actions each iteration, it is straightforward to make these 
sequences the target of the search (Figure 2, middle). 
	

 This can be achieved simply by keeping at all times a 
record of the best sequence so far including any random 
playouts (a pointer to the sequence’s tail is sufficient), and 
using as the reward value for each sequence an estimate of 
its fitness. For solitaire puzzles this fitness value may in-
volve distance to solution, or for more creative applications 
such as music generation, the fitness function may involve 
aesthetic measurement of passages of notes.
	

 As per standard MCTS, a sequence is run to completion 
per iteration, and its value backpropagated through the  
selected nodes. Each sequence may be completed within 
the search tree or may cross the tree boundary (as shown in 
Figure 4), hence it is possible that the best sequence could 
be at least partially randomly completed. As with action 
search, the root node is not part of the completed sequence 
but merely defines the list of possible starting points for the 
search. 

MCTS  Subtree Search
The second extension of the algorithm – from sequence 
search to subtree search – is complicated by the polyadic 
(multi-argument) nature of the problem. Rather than each 
state s having a single action a applied, each state may now 
have N actions or arguments that are simultaneously ap-
plied. For example, the search target may be an expression 
tree with nodes that contain multiple arguments. 
	

 These search target subtrees should not be confused with 
the MCTS search tree itself; we distinguish between the 
search tree and the solution subtrees that are embedded 
within it. The search tree represents the possible solution 
space while solution subtrees represent actual realisations 
of those possibilities. As per the standard MCTS approach, 
a subtree is completed with each iteration, evaluated, and 
its value backpropagated through the selected nodes. The 
subtree may be entirely embedded within the search tree or 
it may cross the search tree boundary at one or more points, 
in which case each open branch is randomly simulated to 
completion (Figure 2, right). A record of the best subtree 
must be kept at all times; a list of its leaf nodes is sufficient 
to reconstruct the subtree. It is possible that one or more 
branches of the best subtree could be randomly completed. 

Polyadic Strategies
In order to successfully extend the MCTS method to sub-
tree search, we propose a number of strategies for handling 
the selection of arguments for polyadic nodes. Dependen-
cies between such arguments – and indeed between nodes 
and even subtrees – become important in this context.
 For example, Figures 3 and 4 show two hypothetical 
games described as rule trees, such as those that might be 
generated by the Ludi system (Browne, 2008). In “Kill the 
Knights” players take turns moving one of their pieces in a 
knight move and win by capturing three enemy pieces. In 
“Pin the Knights” pieces instead pin enemy pieces that they 
land upon and a player wins by forming a stack three high.
	

 While neither game is a masterpiece, “Pin the Knights” 
may be the more interesting of the two. There is some ten-
sion between the benefit of pinning enemy pieces against 
the danger of providing height 2 stacks that the opponent 
might exploit to win the game.
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Figure 3.  Rule set for “Kill the Knights”.

	

 The rule differences between the two games (replace/pin 
and score/stack) are dependent as changing either one in 
isolation will break the game by making it unwinnable; 
both changes must occur simultaneously for the modified 
game to work. In terms of these two rules, each game is in 
a local maximum that can only be escaped by modifying 
both rules simultaneously.
	

 This example demonstrates that superior results can be 
achieved if related degrees of freedom in the content can be 
identified and adjusted in tandem. It is not guaranteed that 
an evolutionary method would ever perform such depend-
ent rule changes simultaneously, whereas MCTS performs 
a more systematic exploration of the search space due to its 
well-balanced exploration component and mechanisms 
may be added for detecting and exploiting such dependen-
cies. We distinguish between independent and dependent 
node selection in subtree search, and propose polyadic 
strategies for each case in the following sections.

Independent Node Selection
The simplest strategies for optimally completing polyadic 
subtrees during MCTS search ignore node dependencies, so 
node choices made in one part of the tree will not affect 
node choices in other parts of the tree during tree descent 
or backpropagation. We now present two such strategies.

Direct Choice The first case to consider is the most obvi-
ous; when presented with a polyadic node, simply choose 
for each argument the action selected from its available 
choices by UCB. Each selection is made independently of 
the other arguments and all other nodes in the tree.
 For example, Figure 5 shows a polyadic node pi with 
three arguments (branches) to be populated with actions. In 
the direct method, the action for argument a will be se-
lected from the set {a1, a2 ,..., an}, the action for argument b 
will be selected from the set {b1,  b2 ,..., bn}, and the action 
for argument c will be selected from the set {c1,  c2 ,...,  cn}. 
 For each iteration of the search,  a subtree is completed in 
this manner, measured for fitness, and the result back-
propagated through the selected subtree’s nodes. The result 
of the search will be the completed subtree with the highest 
reward value.

Figure 4.  Rule set for “Pin the Knights”.

Embroyonic Development Another approach inspired by 
genetic programming methods for circuit design (Koza et 
al, 2001) is to maintain a single “embryonic” individual 
that is modified over the course of the search. 
 An embryonic tree is created, then for each iteration a 
non-branching sequence is followed through it, simulated 
to completion and the result backpropagated through the 
sequence, while unvisited nodes outside the active se-
quence remain frozen for that iteration.
 Figure 6 summarises the process for a given polyadic 
node pe visited along the active sequence during tree de-
scent.  One argument is chosen from those available, in this 
case b, which will be the best action of the worst perform-
ing argument. The result of the search will be a copy of the 
embryonic tree taken on the iteration at which it achieved 
its highest estimated value.

Figure 5.  Direct approach to argument completion.

Figure 6.  Embryonic approach to argument completion.
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Figure 7.  Compound approach to argument completion.

Dependent Node Selection
The following approaches for completing polyadic subtrees 
preserve node dependencies across the tree. In Johnson-
Laird’s nomenclature (2002), these node-dependent ap-
proaches will be more Lamarckian than Darwinian in na-
ture, as individuals actively improve themselves in a sys-
tematic way. This list is not complete, but describes some 
candidate strategies that we plan to investigate in depth.

Compound Arguments Figure 7 shows a method that cor-
relates the available actions in all arguments by compound-
ing them into a single list of all possible combinations. For 
example, if the action selected by UCB is a3b1c4 then ac-
tion a3 is chosen for argument a,  action b1 is chosen for 
argument b, and action c4 is chosen for argument c.
 This approach provides a minimal degree of node de-
pendence by correlating the actions of sibling arguments.

Boundary Correlation Figure 8 shows a subtree being 
constructed during a search in progress, with five argu-
ments labelled a to e waiting to be completed along its 
boundary. Firstly, the most urgent argument is chosen using 
UCB to select among boundary updates possible from this 
state, then an action is selected for that argument.
 Separate UCT statistics are maintained for each possible 
combination of {argument, action} pairs, as indicated by 
the arrows in Figure 8.  For example, if the actions available 
to argument a are listed {a1, a2 ,..., an} and so on, then sta-
tistics will be maintained for combinations a1b1, a1c1,  a1d1, 
a1e1, a1b2,  etc. The action with the best average UCB per-
formance over all member combinations, in conjunction 
with the action’s own value, is selected for the chosen ar-
gument, the boundary is updated and the process continues. 
   Once the subtree is completed and evaluated, the back-
propagation stage must update not only the values of all 
visited nodes but also all argument correlations for all 
boundaries (i.e. rooted subtrees) contained within the solu-
tion tree. The result of the search will be the solution tree 
with the highest reward value.

Subtree Correlation Subtree correlation is similar in prin-
ciple to boundary correlation, except that instead of storing 
subtree boundaries with associated argument combinations, 
the stored subtrees are themselves associated. During sub-
tree construction, each node is then completed by the asso-
ciated subtree with the highest UCB value.

Figure 8.  Boundary correlation of arguments.

 This approach compares with Contextual MCTS (Rim-
mel and Teytaud, 2010), which partitions the search space 
into a number of “tiles”. Techniques for transposition tables 
could benefit this approach (Childs et al, 2008).
 The result should be that rule subsets found to work well 
together, even from disparate parts of the search tree, will 
occur more often in future solutions.  Such correspondence 
is not guaranteed for crossover in evolutionary strategies.
 The statistics thus accumulated could yield useful in-
sights into good rule combinations, as well as indicating 
individual rules that are more successful. For example, 
game inventors may be interested to know which subsets of 
game rules work harmoniously together and warrant further 
investigation, even if the actual games produced by the 
system are not of great interest in themselves.

Tree-to-Sequence Conversion Other approaches sug-
gested by combinatorial mathematics include the conver-
sion of trees to sequences, which would then allow MCTS 
sequence search.  This may be achieved using the Prüfer 
sequence of each tree (Prüfer, 1918) or Euler tours of their 
leaf nodes (Bender and Farach-Colton, 2000).

Application Domains
The extended model provides a framework for applying 
MCTS to PCG in creative domains. The proposed tech-
niques will be tested through their application to creative 
tasks such as those listed below, which can be divided into 
two broad categories: sequence-based and tree-based.

Sequence-Based Domains
Artefact creation in sequence-based domains is typically 
achieved using Markovian approaches, which analyse the 
recent history of a problem to predict the next step that 
maximises some reward. Can MCTS-based methods add 
value to this process by predicting entire sequences?

Word Play Pseudowords (non-words that sound plausible 
within a given language) are useful for a variety of tasks: 
word games, poetry, psycholinguistic experiments, the 
creation of unique but memorable usernames, passwords, 
domain names, CAPTCHAs, and so on. 
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Pseudowords are typically constructed using Markovian 
methods based on the distribution of letter or syllable com-
binations within the target language (Keullers and Brys-
baert, 2010). However, the sequential process of word con-
struction maps neatly to the extended MCTS approach.

Music Synthesis The Continuator (Pachet, 2004) is a sys-
tem that records passages played by musicians and pro-
duces continuations in a similar style, operating in real time 
using a Markovian model combined probabilistically with a 
fitness function. 

Tree-Based Domains
Artefact creation in tree-based domains is typically 
achieved using evolutionary methods. We will investigate 
the use of the extended MCTS model for PCG instead.

Game Design We are developing a general game system 
called Mogal (Modular Game Library) in which users – or 
the AI – may mix and match rule modules to define new 
games, which can then be measured for quality through 
self-play. Mogal will be used to compare the performance 
of extended MCTS for subtree search for the generation of 
new rule trees (and the optimisation of existing ones) 
against standard evolutionary approaches.

Visual Art There are many applications of rule based sys-
tems for the automated generation of visual art, including 
expression trees, L-systems, context free grammars, and so 
on, most of which use evolutionary approaches (Romero 
and Machado, 2008). The extended MCTS model will be 
applied to a number of visual art creation tasks with known 
fitness functions, such as the approximation of target im-
ages in artistic styles and the generation of ornamental (e.g. 
celtic)  designs, and its performance compared against cur-
rent evolutionary methods.

Conclusion
MCTS offers a number of attractive features for AI search 
but has to date only been applied to particular domain 
types. We describe ways in which the standard algorithm 
may be generalised by decoupling the domain from the 
search,  then extended to other domain types expressed as 
sequences and trees. This opens up the possibility of using 
MCTS for a range of computational creativity tasks for 
which Markovian processes or evolutionary strategies are 
typically used. The extension of MCTS to sequence search 
is straightforward, but its extension to embedded subtree 
search is complicated by its polyadic nature; several strate-
gies for tackling this problem are presented. This work 
represents the first step in our investigation of MCTS for 
creative domains. 
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