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Abstract 

Conceptual blending is a cognitive phenomenon whose 
instances range from the humdrum to the pyrotechnical. 
Most remarkable of all is the ease with which humans 
regularly understand and produce complex blends. 
While this facility will doubtless elude our best efforts 
at computational modeling for some time to come, 
there are practical forms of conceptual blending that are 
amenable to computational exploitation right now. In 
this paper we introduce the notion of a conceptual 
mash-up, a robust form of blending that allows a 
computer to creatively re-use and extend its existing 
common-sense knowledge of a topic. We show also 
how a repository of such knowledge can be harvested 
automatically from the web, by targetting the casual 
questions that we pose to ourselves and to others every 
day. By acquiring its world knowledge from the 
questions of others, a computer can eventually learn to 
pose introspective (and creative) questions of its own. 

 The Plumbing of Creative Thought 
We can think of comparisons as pipes that carry salient 
information from a source to a target concept. Some pipes 
are fatter than others, and thus convey more information: 
think of resonant metaphors or rich analogies that yield 
deeper meaning the more you look at them. By convention, 
pipes carry information in one direction only, from source 
to target. But creativity is no respecter of convention, and 
creative comparisons are sometimes a two-way affair. 
 When the actor and writer Ethan Hawke was asked to 
write a profile of Kris Kristofferson for Rolling Stone 
magazine, Hawke had to create an imaginary star of his 
own to serve as an apt contemporary comparison. For 
Hawke, Brad Pitt is as meaningful a comparison as one can 
make, but even Pitt’s star power is but a dim bulb to that of 
Kristofferson when he shone most brightly in the 1970s. 
To communicate just how impressive the singer-actor-
activist would have seemed to an audience in 1979, Hawke 
assembled the following Frankenstein-monster from the 
body of Pitt and other assorted star parts: 

 “Imagine if Brad Pitt had written a No. 1 single for 
Amy Winehouse, was considered among the finest 

songwriters of his generation, had been a Rhodes 
scholar, a U.S. Army Airborne Ranger, a boxer, a 
professional helicopter pilot – and was as politically 
outspoken as Sean Penn. That’s what a motherfuckin’ 
badass Kris Kristofferson was in 1979.” 

Pitt comes off poorly in the comparison, but this is 
precisely the point: no contemporary star comes off well, 
because in Hawke’s view, none has the wattage that 
Kristofferson had in 1979. The awkwardness of the 
comparison, and the fancifulness of the composite image, 
serves as a creative meta-description of Kristofferson’s 
achievements. In effect Hawke is saying, “look to what 
lengths I must go to find a fair comparison for this man 
without peer”. Notice how salient information flows in 
both directions in this comparison. To create a more 
rounded comparison, Hawke finds it necessary to mix in a 
few elements from other stars (such as Sean Penn), and to 
also burnish Pitt’s résumé with elements borrowed from 
Kristofferson himself. Most of this additional structure is 
imported literally from the target, as when we are asked to 
imagine Pitt as a boxer or a helicopter pilot. Other structure 
is imported in the form of an analogy: while Kristofferson 
wrote songs for Janis Joplin, Pitt is imagined as a writer for 
her modern counterpart, Amy Winehouse. 
 This Pitt 2.0 doesn’t actually exist, of course. Hawke’s 
description is a conceptual blend that constructs a whole 
new source concept in its own counterfactual space. 
Blending is pervasive in modern culture, and can be seen 
in everything from cartoons to movies to popular fiction, 
while the elements of a blend can come from any domain 
of experience, from classic novels to 140-character tweets 
to individual words. As defined by the cognitive linguists 
Gilles Fauconnier and Mark Turner (1998, 2002), 
conceptual blending combines the smoothness of metaphor 
with the structural complexity and organizing power of 
analogy. We can think of blending as a cognitive operation 
in which conceptual ingredients do not flow in a single 
direction, but are thoroughly stirred together, to create a 
new structure with its own emergent meanings. 
 The Kristofferson-as-Pitt blend shows just how complex 
a conceptual blend can be, while nonetheless remaining 
intelligible to a reader: when we interpret these constructs, 
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we are not aware of any special challenge being posed, or 
of any special machinery being engaged. Nonetheless, this 
kind of blend poses significant problems for our computers 
and their current linguistic/cognitive-modelling abilities. In 
this paper we propose a computional middle-ground, called 
a conceptual mash-up, that captures some of the power and 
utility of a conceptual blend, but in a form that is practical 
and robust to implement on a computer. From this starting 
point we can begin to make progress toward the larger goal 
of creative computational systems that – to use Hawke’s 
word  – can formulate truly badass blends of their own. 
 Creative language is a knowledge-hungry phenomenon. 
We need knowledge to create or comprehend an analogy, 
metaphor or blend, while these constructs allow us to bend 
and stretch our knowledge into new forms and niches. But 
computers cannot be creative with language unless they 
first have something that is worth saying creatively, for 
what use is a poetic voice if one has no opinions or beliefs 
of one’s own that need to be expressed? This current work 
describes a re-usable resource – a combination of 
knowledge and of tools for using that knowledge – that can 
allow other computational systems to form their own novel 
hypotheses from mashups of common stereotypical beliefs. 
These hypotheses can be validated in a variety of ways, 
such as via web search, and then expressed in a concise 
and perhaps creative lingustic form, such as in poem, 
metaphor or  riddle. The resource, which is available as a 
public web service called Metaphor-Eyes, produces 
conceptual mash-ups for its input concepts, and returns the 
resulting knowledge structures in an XML format that can 
then be used by other computational systems in a modular, 
distributed fashion. The Metaphor-Eyes service is based on 
an approach to creative introspection first presented in 
Veale & Li (2011), in which stereotypical beliefs about 
everyday concepts are acquired from the web, and then 
blended on demand to create hypotheses about topics that 
the computer may know little about. We present the main 
aspects of Metaphor-Eyes in the following sections, and 
show how the service can be called by clients on the web. 
 Our journey begins in the next section, with a brief over-
view of relevant computational work in the areas of 
metaphor and blending. It is our goal to avoid hand-crafted 
representations, so in the section after that we describe how 
the system can acquire its own common-sense knowledge 
from the web, by eavesdropping on the revealing questions 
that users pose everyday to a search engine like Google. 
This knowledge provides the basis for conceptual mash-
ups, which are constructed by re-purposing web questions 
to form new instrospective hypotheses about a topic. We 
also introduce the notion of a multi-source mash-up, which 
allows us to side-step the vexing problem of context and 
user-intent in the construction of conceptual blends. 
Finally, an empirical evaluation of these ideas is presented, 
and the paper concludes with thoughts on future directions. 

Related Work and Ideas 
We use metaphors and blends not just as rhetorical 
flourishes, but as a basis for extending our inferential 

powers into new domains (Barnden, 2006). Indeed, work 
on analogical metaphors shows how metaphor and analogy 
use knowledge to create knowledge. Gentner’s (1983) 
Structure-Mapping Theory (SMT) argues that analogies 
allow us to impose structure on a poorly-understood 
domain, by mapping knowledge from one that is better 
understood. SME, the Structure-Mapping Engine 
(Falkenhainer et al., 1989), implements these ideas by 
identifying sub-graph isomorphisms between two mental 
representations. SME then projects connected sub-
structures from the source to the target domain. SMT 
prizes analogies that are systematic, yet a key issue in any 
structural approach is how a computer can acquire 
structured representations for itself. 
 Veale and O’Donoghue (2000) proposed an SMT-based 
model of conceptual blending that was perhaps the first 
computational model of the phenomenon. The model, 
called Sapper,  addresses many of the problems faced by 
SME – such as deciding for itself which knowledge is 
relevant to a blend – but succumbs to others, such as the 
need for a hand-crafted knowledge base. Pereira (2007) 
presents an alternative computational model that combines 
SMT with other computational techniques, such as using 
genetic algorithms to search the space of possible blends. 
Pereira’s model was applied both to linguistic problems 
(such as the interpretation of novel noun-noun compounds) 
and to visual problems, such as the generation of novel 
monsters/creatures for video games. Nonetheless, Pereira’s 
approach was just as reliant on hand-crafted knowledge. 
To explore the computational uses of blending without 
such a reliance on specially-crafted knowledge, Veale 
(2006) showed how blending theory can be used to 
understand novel portmanteau words – or “formal” blends 
– such as “Feminazi”  (Feminist + Nazi). This approach, 
called Zeitgeist, automatically harvested and interpreted 
portmanteau blends from Wikipedia, using only Wikipedia 
itself and Wordnet (Fellbaum, 1998) as resources. 
 The availability of large corpora and the Web suggests a 
means of relieving the knowledge bottleneck that afflicts 
computational models of metaphor, analogy and blending. 
Turney and Littman (2005) show how a statistical model of 
relational similarity can be constructed from web texts for 
handling proportional analogies of the kind used in SAT 
and GRE tests. No hand-coded or explicit knowledge is 
employed, yet Turney and Littman’s system achieves an 
average human grade on a set of 376 SAT analogies (such 
as mercenary:soldier::?:? where the best answer among 
four alternatives is hack:reporter). Almuhareb and Poesio 
(2004) describe how attributes and values can be harvested 
for word-concepts from the web, showing how these 
properties allow word-concepts to be clustered into 
category structures that replicate the semantic divisions 
made by a curated resource like WordNet (Fellbaum, 
1998). Veale and Hao (2007a,b) describe how stereotypical 
knowledge can be acquired from the web by harvesting 
similes of the form “as P as C” (as in “as smooth as silk”), 
and go on to show, in Veale (2012), how a body of 4000 
stereotypes is used in a web-based model of metaphor 
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generation and comprehension. 
 Shutova (2010) combines elements of several of these 
approaches. She annotates verbal metaphors in corpora 
(such as “to stir excitement”, where the verb “stir” is used 
metaphorically) with the corresponding conceptual 
metaphors identified in Lakoff and Johnson (1980). 
Statistical clustering techniques are then used to generalize 
from the annotated exemplars, allowing the system to 
recognize other metaphors in the same vein (e.g. “he 
swallowed his anger”). These clusters can also be analyzed 
to identify literal paraphrases for a given metaphor (such as 
“to provoke excitement” or “suppress anger”). Shutova’s 
approach is noteworthy for the way it operates with Lakoff 
and Johnson’s inventory of conceptual metaphors without 
actually using an explicit knowledge representation. 
 The questions people ask, and the web queries they 
pose, are an implicit source of common-sense knowledge. 
The challenge we face as computationalists lies in turning 
this implicit world knowledge into explicit representations. 
For instance, Pasca and Van Durme (2007) show how 
knowledge of classes and their attributes can be extracted 
from the queries that are processed and logged by web 
search engines. We show in this paper how a common-
sense representation that is derived from web questions can 
be used in a model of conceptual blending. We focus on 
well-formed questions, found either in the query logs of a 
search engine or harvested from documents on the web. 
These questions can be viewed as atomic properties of 
their topics, but they can also be parsed to yield logical 
forms for reasoning. We show how, by representing topics 
via the questions that are asked about them, we can also 
grow our knowledge-base via blending, by posing these 
questions introspectively of other topics as well. 

“Milking” Knowledge from the Web 
Amid the ferment and noise of the Web sit nuggets of 
stereotypical world knowledge, in forms that can be 
automatically harvested. To acquire a property P for a topic 
T, one can look for explicit declarations of T’s P-ness, but 
such declarations are rare, as speakers are loathe to 
explicitly articulate truths that are tacitly assumed by 
listeners. Hearst (1992) observes that the best way to 
capture tacit truths in large corpora (or on the Web) is to 
look for stable linguistic constructions that presuppose the 
desired knowledge. So rather than look for “all Xs are Ys”, 
which is logically direct but exceedingly rare, Hearst-
patterns like “Xs and other Ys” presuppose the same 
hypernymic relations. By mining presuppositions rather 
than declarations, a harvester can cut through the layers of 
noise and misdirection that are endemic to the Web. 
 If W is a count noun denoting a topic TW, then the query 
“why do W+plural *” allows us to retrieve questions posed 
about TW on the Web, in this case via the Google API. (If 
W is a mass noun or a proper-name, we instead use the 
query “why does W *”.) These two formulations show the 
benefits of using questions as extraction patterns: a query 
is framed by a WH-question word and a question mark, 
ensuring that a complete statement is retrieved (Google 

snippets often contain sentence fragments); and number 
agreement between “do”/”does” and W suggests that the 
question is syntactically well-formed (good grammar helps 
discriminate well-formed musings from random noise). 
Queries with the subject TW are dispatched whenever the 
system wishes to learn about a topic T. We ask the Google 
API to return 200 snippets per query, which are then 
parsed to extract well-formed questions and their logical 
forms. Questions that cannot be so parsed are rejected as 
being too complex for later re-use in conceptual blending. 
 For instance, the topic pirate yields the query “why do 
pirates *”, to retrieve snippets that include these questions: 
 Why do pirates wear eye patches? 
 Why do pirates hijack vessels? 
 Why do pirates have wooden legs? 

Parsing the 2nd question above, we obtain its logical form: 

  ∀x  pirate(x) ! ∃y  vessel(y) ∧  hijack(x, y) 

A computational system needs a critical mass of such 
commonsense knowledge before it can be usefully applied 
to problems such as conceptual blending. Ideally, we could 
extract a large body of everyday musings from the query 
logs of a search engine like Google, since many users 
persist in using full NL questions as Web queries. Yet such 
logs are jealously guarded, not least on concerns about 
privacy. Nonetheless, engines like Google do expose the 
most common queries in the form of text completions: as 
one types a query into the search box, Google anticipates 
the user’s query by matching it against past queries, and 
offers a variety of popular completions. 
 In an approach we call Google milking, we coax 
completions from the Google search box for a long list of 
strings with the prefix “why do”, such as “why do a” 
(which prompts “why do animals hibernate?”), and “why 
do aa” (which prompts “why do aa batteries leak?”). We 
use a manual trie-driven approach, using the input “why do 
X” to determine if any completions are available for a topic 
prefixed with X, before then drilling deeper with “why do 
Xa” … “why do Xz”. Though laborious, this process taps 
into a veritable mother lode of nuggets of conventional 
wisdom. Two weeks of milking yields approx. 25,000 of 
the most common questions on the Web, for over 2,000 
topics, providing critical mass for the processes to come. 

Conceptual “Mash-ups” 
Google milking yields these frequent questions about poets 

 Why do poets repeat words? 
 Why do poets use metaphors? 
 Why do poets use alliteration? 
 Why do poets use rhyme? 
 Why do poets use repetition? 
 Why do poets write poetry? 
 Why do poets write about love? 

Querying the web directly, the system finds other common 
presuppositions about poets, such as “why do poets die 
poor?” and “why do poets die young?”, precisely the kind 
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of knowledge that shapes our stereotypical view of poets 
yet which one is unlikely to find in a dictionary. Now 
suppose a user asks the system to explore the ramifications 
of the blend Philosophers are Poets: this prompts the 
system to introspectively ask “how are philosophers like 
poets?”. This question spawns others, which are produced 
by replacing the subject of the poet-specific questions 
above, yielding new introspective questions such as “do 
philosophers write poetry?”, “do philosophers use 
metaphors?”, and “do philosophers write about love?”. 
 Each repurposed question can be answered by again 
appealing to the web: the system simply looks for evidence 
that the hypothesis in question (such as “philosophers use 
metaphors”) is used in one or more web texts. In this case, 
the Google API finds supporting documents for the 
following hypotheses: “philosophers die poor” (3 results), 
“philosophers die young” (6 results), “philosophers use 
metaphors” (156 results), and “philosophers write about 
love” (just 2 results). The goal is not to show that these 
behaviors are as salient for philosophers as they are for 
poets, rather that they can be meaningful for philosophers. 
 We refer to the construct Philosophers are Poets as a 
conceptual mash-up, since knowledge about a source, poet, 
has been mashed-up with a given target, philosopher, to 
yield a new knowledge network for the latter. Conceptual 
mash-ups are a specific kind of conceptual blend, one that 
is easily constructed via simple computational processes. 
 To generate a mash-up, the system starts from a given 
target T and searches for the source concepts S1 … Sn that 
might plausibly yield a meaningful blend. A locality 
assumption limits the scale of the search space for sources, 
by assuming that T must exhibit a pragmatic similarity to 
any vehicle Si. Budanitsky and Hirst (2006) describe a raft 
of term-similarity measures based on WordNet (Fellbaum, 
1998), but what is needed for blending is a generative 
measure: one that can quantify the similarity of T to S as 
well as suggest a range of likely S’s for any given topic T. 
 We construct such a measure via corpus analysis, since a 
measure trained on corpora can easily be made corpus-
specific and thus domain- or context-specific. The Google 
ngrams (Brants and Franz, 2006) provide a large collection 
of word sequences from Web texts. Looking to the 3-
grams, we extract coordinations of generic nouns of the 
form “Xs and Ys”. For each coordination, such as “tables 
and chairs” or “artists and scientists”, X is considered a 
pragmatic (rather than semantic) neighbor of Y, and vice 
versa. When identifying blend sources for a topic T, we 
consider the neighbors of T as candidate sources for a 
blend. Furthermore, if we consider the neighbors of T to be 
features of T, then a vector space representation for topics 
can be constructed, such that the vector for a topic T 
contains all of the neighbors of T that are identified in the 
Google 3-grams. In turn, this vector representation allows 
us to calculate the similarity of a topic T to a source S, and 
rank the neighbors S1 … Sn of T by their similarity to T. 

 Intuitively, writers use the pattern “Xs and Ys” to denote 
an ad-hoc category, so topics linked by this pattern are not 
just similar but truly comparable, or even interchangeable. 
Potential sources for T are ranked by their perceived 
similarity to T, as described above. Thus, when generating 
mash-ups for philosopher, the most highly ranked sources 
suggested via the Google 3-grams are: scholar, 
epistemologist, ethicist, moralist, naturalist, scientist, 
doctor, pundit, savant, explorer, intellectual and lover. 

Multi-Source Mash-Ups 
The problem of finding good sources for a topic T is highly 
under-constrained, and depends on the contextual goals of 
the speaker. However, when blending is used for 
knowledge acquisition, multi-source mash-ups allow us to 
blend a range of sources into a rich, context-free structure.  
If S1 … Sn are the n closest neighbors of T as ranked by 
similarity to T, then a mash-up can be constructed to 
describe the semantic potential of T by collating all of the 
questions from which the system derives its knowledge of 
S1 … Sn, and by repurposing each for T. A complete 
mashup collates questions from all the neighbors of a topic, 
while a 10-neighbor mashup for philosopher, say, would 
collate all the questions possessed for scholar … explorer 
and then insert philosopher as the subject of each. In this 
way a conceptual picture of philosopher could be created, 
by drawing on beliefs such as naturalists tend to be 
pessimistic and humanists care about morality. 
 A 20-neighbor mashup for philosopher would also 
integrate the system’s knowledge of politician into this 
picture, to suggest e.g. that philosophers lie, philosophers 
cheat, philosophers equivocate and even that philosophers 
have affairs and philosophers kiss babies. Each of these 
hypotheses can be put to the test in the form of a web 
query; thus, the hypotheses “philosophers lie” (586 Google 
hits), “philosophers cheat” (50 hits) and “philosophers 
equivocate” (11 hits) are each validated via Google, 
whereas “philosophers kiss babies” (0 hits) and 
“philosophers have affairs” (0 hits) are not. As one might 
expect, the most domain-general hypotheses show the 
greatest promise of taking root in a target domain. Thus, 
for example, “why do artists use Macs?” is more likely to 
be successfully re-purposed for the target of a blend than 
“why do artists use perspective drawing?”. 
 The generality of a question is related to the number of 
times it appears in our knowledge-base with different 
subjects. Thus, “why do ___ wear black” appears 21 times, 
while “why do ___ wear black hats” and “why do ___ wear 
white coats” each just appear twice. When a mash-up for a 
topic T is presented to the user, each imported question Q 
is ranked according to two criteria: Qcount, the number of 
neighbors of T that suggest Q; and Qsim, the similarity of T 
to its most similar neighbor that suggests Q (as calculated 
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using a WordNet-based metric; see Seco et al., 2006). Both 
combine to give a single salience measure Qsalience  in (1): 

   (1)  Qsalience   =    Qsim * Qcount / (Qcount + 1) 

Note that Qcount is always greater than 0, since each 
question Q must be suggested by at least one neighbor of 
T. Note also that salience is not a measure of surprise, but 
of aptness, so the larger Qcount, the larger Qsalience. It is 
time-consuming to test every question in a mash-up against 
web content, as a mash-up of m questions requires m web 
queries. It is more practical to choose a cut-off w and 
simply test the top w questions, as ranked by salience in 
(1). In the next section we evaluate the ranking of 
questions in a mash-up, and estimate the likelihood of 
successful knowledge transfer from one topic to another. 

Empirical Evaluation 
Our corpus-attested, neighborhood-based approach to 
similarity does not use WordNet, but is capable of 
replicating the same semantic divisions made by WordNet. 
In earlier work, Almuhareb and Poesio (2004) extracted 
features for concepts from text-patterns found on the web. 
These authors tested the efficacy of the extracted features 
by using them to cluster 214 words taken from 13 semantic 
categories in WordNet (henceforth, we denote this 
experimental setup as AP214), and report a cluster purity 
of 0.85 in replicating the category structures of WordNet. 
But if the neighbors of a term are instead used as features 
for that term, and if a term is also considered to be its own 
neighbor, then an even higher purity/accuracy of 0.934 is 
achieved on AP214. Using neighbors as features in this 
way requires a vector space of just 8,300 features for 
AP214, whereas Almuhareb and Poesio’s original 
approach to AP214 used approx. 60,000 features. 
 The locality assumption underlying this notion of a 
pragmatic neighborhood constrains the number of sources 
that can contribute to a multi-source mash-up. Knowledge 
of a source S can be transferred to topic T only if S and T 
are neighbors, as identified via corpus analysis. Yet, the 
Google 3-grams suggest a wealth of neighboring terms, so 
locality does not unduly hinder the transfer of knowledge. 
Consider a test-set of 10 common terms, artist, scientist, 
terrorist, computer, gene, virus, spider, vampire, athlete 
and camera, where knowledge harvested for each of these 
terms is transferred via mash-ups to all of their neighbors. 
For instance, “why do artists use Macs?” suggests 
“musicians use Macs” as a hypothesis because artists and 
musicians are close neighbors, semantically (in WordNet) 
and pragmatically (in the Google n-grams); this hypothesis 
is in turn validated by 5,700 web hits. In total, 410,000 
hypotheses are generated from these 10 test terms, and 
when posed as web queries to validate their content, 
approx. 90,000 (21%) are validated by usage in web texts. 
 Just as knowledge tends to cluster into pragmatic 
neighborhoods, hypotheses likewise tend to be validated in 
clusters. As shown in Figure 1, the probability that a 

hypothesis is valid for a topic T grows with the number of 
neighbors  of T for which it is known to be valid (Qcount). 

 
Figure 1. Likelihood of a hypothesis in a mash-up being 
validated via web search (y-axis) for hypotheses that are 
suggested by Qcount  neighbors (x-axis). 

Unsurprisingly, close neighbors with a high similarity to 
the topic exert a greater influence than more remote 
neighbors. Figure 2 shows that the probability of a 
hypothesis for a topic being validated by web usage grows 
with the number of the topic’s neighbors that suggest it and 
its similarity to the closest of these neighbors (Qsalience). 
 In absolute terms, hypotheses perceived to have high 
salience (e.g. > .6) are much less frequent than those with 
lower ratings. So a more revealing test is the ability of the 
system to rank the hypotheses in a mash-up so that the top-
ranked hypotheses have the greatest likelihood of being 
validated on the web. That is, to avoid information 
overload, the system should be able to distinguish the most 
plausible hypotheses from the least plausible, just as search 
engines like Google are judged on their ability to push the 
most relevant hits to the top of their rankings. 

 
Figure 2. Likelihood of a hypothesis in a mash-up being 
validated via web search (y-axis) for hypotheses with a 
particular Qsalience measure (x-axis). 

Figure 3 shows the average rate of web validation for the 
top-ranked hypotheses (ranked by salience) of complete 
mash-ups generated for each of our 10 test terms from all 
of their neighbors. Since these are common terms, they 
have many neighbors that suggest many hypotheses. On 
average, 85% of the top 20 hypotheses in each mash-up are 
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validated on by web search as plausible, while just 1 in 4 
of the top 60 hypotheses in a mashup is not web-validated. 

 
Figure 3. Average % of top-n hypotheses in a mash-up (as 
ranked by Qsalience) that are validated by Web search. 

Figures 1 – 3 show that the system is capable of extracting 
knowledge from the web which can be successfully 
transferred to neighboring terms via metaphors and mash-
ups, and then meaningfully ranked by salience. But just 
how useful is this knowledge? To determine if it is the kind 
of knowledge that is useful for categorization – and thus 
the kind that captures the perceived essence of a concept – 
we use it to replicate the AP214 categorization test of 
Poesio and Almuhareb (2004). Recall that AP214 tests the 
ability of a feature–set / representation to support the 
category distinctions imposed by WordNet, so that 214 
words can be clustered back into the 13 WordNet 
categories from which they are taken. Thus, for each of 
these 214 words, we harvest questions from the Web, and 
treat each question body as an atomic feature of its subject. 

 
Figure 4. Performance on AP214 improves as knowledge is 
transferred from the n closest neighbors of a term. 

Clustering over these features alone offers poor accuracy 
when reconstructing WordNet categories, yielding a cluster 
purity of just over 0.5. One AP214 category in particular, 
for time units like week and year, offers no traction to the 
question-based approach, and accuracy / purity increases to 
0.6 when this category is excluded. People, it seems, rarely 
question the conceptual status of an abstract temporal unit. 

 But as knowledge is gradually transferred to the terms in 
AP214 from their corpus-attested neighbors, so that each 
term is represented as a conceptual mash-up of its n nearest 
neighbors, categorization markedly improves. Figure 4 
shows the increasing accuracy of the system on AP214 
(excluding the vexing time category) when using mashups 
of increasing numbers of neighbors. Blends really do 
bolster our knowledge of a topic with insights that are 
relevant to categorization. 

Conclusions: A Metaphor-Eye to the Future 
We have shown here how common questions on the web 
can provide the world knowledge needed to drive a robust, 
if limited, form of blending called conceptual mash-ups. 
The ensuing powers of introspection, though basic, can be 
used to speculate upon the conceptual make-up of a given 
topic, not only in individual metaphors but in rich, 
informative mash-ups of multiple concepts.  
 The web is central to this approach: not only are 
questions harvested from the web (e.g., via Google 
“milking”), but newly-formed hypotheses are validated by 
means of simple web queries. The approach is practical, 
robust and quantifiable, and uses an explicit knowledge 
representation that can be acquired on demand for a given 
topic. Most importantly, the approach makes a virtue of 
blending, and argues that we should view blending not as a 
problem of language but as a tool of creative thinking. 
 The ideas described here have been computationally 
realized in a web application called Metaphor-Eyes. Figure 
5 overleaf provides a snapshot of the system in action. The 
user enters a query – in this case the provocative assertion 
“Google is a cult” – and the system provides an 
interpretation based on a mash-up of its knowledge of the 
source (cults) and of the target (Google). Two kinds of 
knowledge are used to provide the interpretation of Figure 
5. The first is common-sense knowledge of cults, of the 
kind that we expect most adults to possess. This knowledge 
includes widely-held stereotypical beliefs such as that cults 
are lead by gurus, that they worship gods and enforce 
beliefs, and that they recruit new members, especially 
celebrities, which often act as apologists for the cult. The 
system possesses no stereotypical beliefs about Google, but 
using the Google 2-grams (somewhat ironically, in this 
case), it can find linguistic evidence for the notions of a 
Google guru, a Google god and a Google apologist. The 
corresponding stereotypical beliefs about cults are then 
projected into the new blend space of Google-as-a-cult. 
 Metaphor-Eyes derives a certain robustness from its 
somewhat superficial treatment of blends as mash-ups.  In 
essence, the system manipulates conceptual-level objects 
(ideas, blends) by using language-level objects (strings, 
phrases, collocations) as proxies: a combination at the 
concept-level is deemed to make sense if a corresponding 
combination at the language-level can be found in a corpus 
(or in the Google n-grams). As such, any creativity 
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exhibited by the system is often facile or glib. Because the 
system looks for conceptual novelty in the veneer of 
surface language, it follows in the path of humour systems 
that attempt to generate interesting semantic phenomena by 
operating at the punning level of words and their sounds. 
 We have thus delivered on just one half of the promise 
of our title. While conceptual mash-ups are something a 
computer can handle with relative ease, “bad-ass” blends 
of the kind discussed in the introduction still lie far beyond 
our computational reach. Nonetheless, we believe the 
former provides a solid foundation for development of the 
tools and techniques that are needed to achieve the latter. 
Several areas of future research suggest themselves in this 
regard, and one that appears most promising at present is 
the use of mash-ups in the generation of poetry. The tight 
integration of surface-form and meaning that is expected in 
poetry means this is a domain in which a computer can 
serendipitously allow itself to be guided by the possibilities 
of word combination while simultaneously exploring the 
corresponding idea combinations at a deeper level. Indeed, 
the superficiality of mash-ups makes them ideally suited to 
the surface-driven exploration of deeper levels of meaning. 
 Metaphor-Eyes should thus be seen as a community 
resource thru which the basic powers of creative 
introspection (as first described in Veale & Li, 2011)  can 
be made available to a wide variety of third-party 
computational systems. In this regard,  Metaphor-Eyes is a 
single instance of what will hopefully become an 
established trend in the maturing field of computational  
creativity: the commonplace sharing of resources and tools, 
perhaps as a distributed network of web-services, that will 
promote a wider cross-fertilization of ideas in our field. 
The integration of diverse services and components will in 
turn facilitate the construction of systems with an array of 
creative qualities. Only by pooling resources in this way 
can we hope to go beyond single-note systems and produce 
the impressive multi-note “badass blends” of the title.  
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Figure 5. A screen-shot from the computational system Metaphor-Eyes, which implements the model described in 
this paper. Metaphor-Eyes shows how we can use conceptual mash-ups to explore what-ifs and to stimulate 
human creativity. (Note: Because the system has no prior ontological knowledge about Google, each entry above 
shows a default score of 100 and a support/similarity measure of 0). Please visit  http://Afflatus.UCD.ie to 
interact with the Metaphor-Eyes system for yourself, or to find out more about the system’s XML functionality.
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