
Full-FACE Poetry Generation
Simon Colton1, Jacob Goodwin1 and Tony Veale2

1Computational Creativity Group, Department of Computing, Imperial College London, UK. ccg.doc.ic.ac.uk
2 School of Computer Science and Informatics, University College Dublin, Ireland. afflatus.ucd.ie

Abstract

We describe a corpus-based poetry generation system which
uses templates to construct poems according to given con-
straints on rhyme, meter, stress, sentiment, word frequency
and word similarity. Moreover, the software constructs a
mood for the day by analysing newspaper articles; uses this
to determine both an article to base a poem on and a tem-
plate for the poem; creates an aesthetic based on relevance
to the article, lyricism, sentiment and flamboyancy; searches
for an instantiation of the template which maximises the aes-
thetic; and provides a commentary for the whole process to
add value to the creative act. We describe the processes be-
hind this approach, present some experimental results which
helped in fine tuning, and provide some illustrative poems and
commentaries. We argue that this is the first poetry system
which generates examples, forms concepts, invents aesthetics
and frames its work, and so can be assessed favourably with
respect to the FACE model for comparing creative systems.

Introduction
Mainstream poetry is a particularly human endeavour: writ-
ten by people, to be read by people, and often about people.
Therefore – while there are some exceptions – audiences
expect the opportunity to connect on an intellectual and/or
emotional level with a person, which is often the author.
Even when the connection is made with characters portrayed
in the poem, the expectation is that the characters have been
written from a human author’s perspective. In the absence of
information about an author, there is a default, often roman-
tic, impression of a poet which can be relied upon to pro-
vide sufficient context to appreciate the humanity behind a
poem. Using such an explicit, default or romantic context to
enhance one’s understanding of a poem is very much part of
the poetry reading experience, and should not be discounted.

Automated poetry generation has been a mainstay of com-
putational creativity research, with dozens of computational
systems written to produce poetry of varying sophistication
over the past fifty years. In the literature review given be-
low, it is clear that the emphasis has been almost entirely
on artefact generation, i.e., producing text to be read as po-
etry, rather than addressing the issues of context mentioned
above. Therefore, without exception, each of these systems
has to be seen as an assistant (with various levels of auton-
omy) for the system’s user and/or programmer, because that
person provides the majority of the context. This is usually
achieved by supplying the background material and tem-
plates; or curating the output; or writing technical papers
to describe the sophistication of the system; or writing mo-
tivational text to enhance audience understanding, etc.

While such poetry assistants are very worthwhile, we aim
instead to build a fully autonomous computer poet, and for

its poems to be taken seriously in full disclosure of the com-
putational setting. The first step towards this aim is to ac-
knowledge that the poems generated will not provide the
usual opportunities to connect with a human author, as men-
tioned above. A second step therefore involves providing a
suitable substitute for the missing aspects of humanity. To
partly address this, we have built a system to construct po-
ems via a corpus-based approach within which existing snip-
pets of human-written text are collated, modified and em-
ployed within the stanzas of poem templates. In particular,
in the Corpus-Based Poetry section below, we describe how
a database of similes mined from the internet, along with
newspaper articles can be used to generate poems.

A third step, which also addresses the missing human el-
ement to some extent, involves providing a context within
which a poem can be read. Software may not be able to
provide an author-centric human context, but it can provide
a context which adds value to a poem via an appeal to as-
pects of humanity, in particular emotions. In the section
below entitled Handing over High-Level Control, we de-
scribe how the software uses a corpus of newspaper articles
to (a) determine a mood for the day in which it is writing
a poem, which it uses to (b) generate an aesthetic and tem-
plates within which to generate poems, then (c) selects and
modifies corpus material to instantiate the templates with,
ultimately producing poems that express the aesthetic as best
as possible. To communicate aspects of the context, a final
step has been to enable it to provide a commentary on its
work, which can be referred to by readers if required.

In the Illustrative Results section, we present some po-
ems along with the commentaries generated alongside them.
Given our aim for the poems to be considered in full disclo-
sure of their computational context, along with various other
arguments given in (Pease and Colton 2011b), we believe it
is not appropriate to use Turing-style tests in the evaluation
of this poetry generation project. Instead, we turn initially
to the FACE descriptive model described in (Colton, Charn-
ley, and Pease 2011) and (Pease and Colton 2011a), which
suggests mechanisms for evaluating software in terms of the
types of generative acts it performs. In the Conclusions and
Future Work section below, we argue that we can reason-
ably claim that our software is the first poetry generator to
achieve ground artefact generation of each of the four types
prescribed in the FACE model, namely: examples, concepts,
aesthetics and framing information. We believe that such
full-FACE generation is the bare minimum required before
we can start to properly assess computer poets in the wider
context of English literature, which is a longer term aim for
this project. We describe how we plan to increase the auton-
omy and sophistication of the software to this end.

International Conference on Computational Creativity 2012 95

Background
Perhaps the first computational poetry generator, the
Stochastische Texte system (Lutz 1959), sought recognisably
Modernist literary affect using a very small lexicon made
from sixteen subjects and sixteen predicates from Kafka’s
Das Schloß. The software randomly fitted Kafka’s words
into a pre-defined grammatical template. Poems by soft-
ware in this genre – where a user-selected input of texts are
processed according to some stochastic algorithm and as-
signed to a pre-defined grammatical and/or formal template
– have been published, as in (Chamberlain and Etter 1984)
and (Hartman 1996), and they remain popular on the inter-
net, as discussed in (Addad 2010). Such constrained poetry
generation follows on from the OULIPO movement, who in-
augurated the poetics of the mathematical sublime with Cent
mille milliards de poèmes (Queneau 1961), an aesthetic ex-
pressed today in digital poems like Sea and Spar Between
(Montfort and Strickland 2010).

Most of the more sophisticated poetry generation software
available on the internet is designed to facilitate digital po-
etry, that is, poetry which employs the new rhetorics offered
by computation. For examples, see (Montfort and Strickland
2010), (Montfort 2009) and (Roque 2011). We distinguish
this from a stronger definition of computationally creative
poetry generation, where an autonomous intelligent system
creates unpredictable yet meaningful poetic artefacts. Re-
cent work has made significant progress towards this goal;
in particular, the seminal evolutionary generator McGONA-
GALL (Manurung 2004) has made a programmatic come-
back, as described in (Rahman and Manurung 2011) and
(Manurung, Ritchie, and Thompson 2012). This work is
based on the maxim that “deviations from the rules and
norms [of syntax and semantics] must have some purpose,
and not be random” and the authors specify that falsifiable
poetry generation software must meet the triple constraints
of grammaticality, meaningfulness and poeticness. McG-
ONAGALL, the most recent incarnation of the WASP sys-
tem described in (Gervás 2010), and the system described in
(Greene, Bodrumlu, and Knight 2010), all produce techni-
cally proficient poems satisfying these criteria.

There are a number of systems which use corpora of
human-generated text as source material for poems. In par-
ticular, (Greene, Bodrumlu, and Knight 2010) and (Gervás
2010) rely on small corpora of already-poetic texts. The
Hiveku system (www.prism.gatech.edu/˜aledoux6/hiveKu/)
uses real-time data from Twitter; (Wong and Chun 2008) use
data from the blogosphere and search engines; and (Elhadad
et al. 2009) have used Project Gutenberg and the Google
n-grams corpus. These approaches all rely on user-provided
keywords to start a search for source material and seed the
poetry generation process. The haikus produced by the sys-
tem described in (Wong and Chun 2008) using Vector Space
manipulation demonstrate basic meaningfulness, grammati-
cality and poeticness, but are tightly constrained by a con-
cept lexicon of just 50 keywords distilled from the most
commonly used words in the haiku genre. The Electronic
Text Composition (ETC) poetry engine (Carpenter 2004) is
one of a few generators to use a very large corpus of every-
day language in the service of meaningful poetry generation.

Its knowledge base is constituted from the 85 million parsed
words of the British National Corpus, which has been turned
into a lexicon of 560,000 words and 49 million tables of
word associations. ETC generates its own poem templates,
and its corporal magnitude encourages surprising, grammat-
ically well-formed output. A dozen of its poems were pub-
lished under a pseudonym (Carpenter 2004).

The creative use of figurative language is essential to po-
etry, and is a notion alluded to, but declared beyond the
scope of (Manurung, Ritchie, and Thompson 2012). One
example of prior research in this direction is the system
of (Elhadad et al. 2009), which generates haiku, based
on a database of 5,000 empirically gathered word associa-
tion norms. It was reported that this cognitive-associative
source principle produced better poems than a WordNet
based search. Other aspects of small-scale linguistic cre-
ativity relevant to poetry generation include the production
and validation of neologisms (Veale 2006), and the elabo-
rations of the Jigsaw Bard system (Veale and Hao 2011),
which works with a database of simple and ironic similes to
produce novel compound similes.

Concerning aspects of computational poetry at a higher
level than example generation, the WASP system can be
considered as performing concept formation, as it em-
ploys a cultural meta-level generation process, whereby
a text is considered and evolved by a group of distinct
expert subsystems “like a cooperative society of read-
ers/critics/editors/writers” (Gervás 2010). However, the re-
sults of the iterative evaluation are not presented with the
final output, and the system does not generate the aesthet-
ics it evaluates, which are “strongly determined by the ac-
cumulated sources used to train the content generator”, in a
similar way to (Greene, Bodrumlu, and Knight 2010) and
(Dı́az-Agudo, Gervás, and González-Calero 2002).

To the best of our knowledge, there are no poetry gener-
ation systems which produce an aesthetic framework within
which to assess the poems they produce. Moreover, none of
the existing systems provide any level of context for their po-
etry. In general, the context within which the poems can be
appreciated is either deliberately obfuscated to attempt to fa-
cilitate an objective evaluation, as per Turing-style tests, or is
provided by the programmer via a technical paper, foreword
to an anthology, or web page. There are a myriad of websites
available which generate poems in unsophisticated ways and
then invite the reader to interpret them. For instance, the
RoboPoem website (www.cutnmix.com/robopoem), states
that: “A great deal of poetry mystifies it’s readers: It may
sound pretty, but it leaves you wondering ‘what the hell
was that supposed to mean?”’ then extols the virtue of ran-
domly generating mysterious-sounding poetry. This misses
the point that poets use their intellect to write poetry which
might need unpicking, in order to better convey a message,
mood or style. A random sequence of words is just that, re-
gardless of how poem-shaped it may be. The RoboPoet (the
smartphone version of which enables you to “generate non-
sensical random poems while waiting at the bus-stop”) and
similar programs only serve to highlight that people have an
amazing capacity to find meaning in texts generated with no
communicative purpose.

International Conference on Computational Creativity 2012 96

Corpus-Based Poetry Generation
As we see above, using human-produced corpora is common
in computational poetry. It has the advantages of (a) help-
ing to avoid text which is utterly un-interpretable (as most
human-written text is not like this), which would likely lead
to a moment where readers remember that they are not read-
ing the output of a fully intelligent agent, and (b) having
an obvious connection to humanity which can increase the
semantic value of the poem text, and can be used in fram-
ing information to add value to the creative act. However
– especially if corpora of existing poems are used – there
is the possibility of accusations of plagiarism, and/or the
damning verdict of producing pastiches inherent with this
approach. Hence, we have chosen initially to work with very
short phrases (similes) mined from the internet, alongside
the phrases of professional writers, namely journalists writ-
ing for the British Guardian newspaper. The former fits into
the long-standing tradition of using the words of the common
man in poetry, and the latter reflects the desire to increase
quality while not appropriating text intended for poems.

The simile corpus comes from the Jigsaw Bard system1

which exploits similes as readymades to drive a “modest
form of linguistic creativity”, as described in (Veale and
Hao 2011). Each simile is provided with an evidence score
that indicates how many times phrases expressing the simile
were seen in the Google n-gram corpus2 from which they
were mined. There are 21,984 similes in total, with 16,579
having evidence 1 and the simile “As happy as a child’s life”
having the most evidence (1,424,184). Each simile can be
described as a tuple of hobject, aspect, descriptioni, for
instance hchild, life, happyi. Our database of Guardian
newspaper articles was produced by using (i) their extensive
API3 to find URLs of articles under headings such as World
and UK on certain days (ii) the Jericho package4 to extract
text from the web pages pointed to by the URLs, and (iii)
the Stanford CoreNLP package5 to extract sentences from
the raw text. As of writing, the database has all 12,820 arti-
cles made available online since 1st January 2012, with the
World section containing the most articles at 1,232.

In addition to the corpora from which we directly use text,
we also employ the following linguistic resources:
[1] The CMU Pronunciation Dictionary6 of 133,000 words.
[2] The DISCO API7 for calculating word similarities, using
a database of distributionally similar words (Kolb 2008).
[3] The Kilgariff database of 208,000 word frequencies (Kil-
garriff 1997), mined from the British National Corpus8. This
database also supplies detailed part-of-speech (POS) tagging
for each word, with major and minor tags given.
[4] An implementation9 of the Porter Stemmer algorithm

1afflatus.ucd.ie/jigsaw 10wordnet.princeton.edu
2books.google.com/ngrams/datasets
3www.guardian.co.uk/open-platform
4jericho.htmlparser.net 11lit.csci.unt.edu
5nlp.stanford.edu/software 12fnielsen.posterous.com/tag/afinn
6www.speech.cs.cmu.edu/cgi-bin/cmudict
7www.linguatools.de/disco/disco en.html
8www.natcorp.ox.ac.uk
9www.tartarus.org/˜martin/PorterStemmer

(Porter 1980) for extracting the linguistic stems of words.
[5] The well known WordNet10 lexical database.
[6] An implementation11 of the Text Rank keyphrase extrac-
tion algorithm (Mihalcea and Tarau 2004).
[7] The Afinn12 sentiment dictionary, containing 2,477
words tagged with an integer from -5 (negative affect) to 5
(positive affect). We expanded this to a dictionary of around
10,000 words by repeatedly adding in synonyms for each
word identified by WordNet.

Poetry generation is driven by a four stage process of:
retrieval, multiplication, combination and instantiation. In
the first stage, similes are retrieved, according to both sen-
timent and evidence. That is, a range of relative evidence
values can be given between 1% (very little evidence) and
100% (the most evidence) along with a sentiment range of
between -5 and 5 (as per [7]). Note that the sentiment value
of the hobject, aspect, descriptioni triple is calculated as
the average of the three words, with a value of zero being
assigned to any word not found in [7]. Constraints on word
frequencies, as per [3], can also be put on the retrieval, as
can constraints on the pronunciation of words in the sim-
ile, as per [1]. In addition, an article from the Guardian can
be retrieved from the database (with details of how the arti-
cle is chosen given later), keyphrases can be extracted using
[6], and these can be further filtered to only contain rela-
tively unusual words (as per [3]), which often contain the
most pertinent information in the article.

Simile Multiplication
In the second stage, variations for each simile are produced
by substituting either an object, aspect or description word,
or any combination thereof. The system is given a value
n for the number of variations of given simile G required,
plus a substitution scheme specifying which parts should be
substituted, and a choice of three substitution methods to
use. Denoting G

o

, G

a

and G

d

for the object, aspect and
description parts of G, the three methods are:
(d) Using DISCO [2] to retrieve the n most similar words to
each word, as determined by that system.
(s) Using the corpus of similes to retrieve the n most simi-
lar words to each word. This is calculated with reference to
G and the whole corpus. For instance, suppose G

d

is to be
substituted. Then all the matching similes, {M1

, . . . ,M

k},
for which M

i

o

= M

i

o

or M i

a

= M

i

a

are retrieved from the
database. The set M i

d

of words for i = 1, . . . , k are collated,
and a repetition score r(M i

d

) for each one is calculated as:
r(M i

d

) = |{j 2 1, . . . , k : M j

d

= M

i

d

}|. Informally, for a
potential substitute, this method calculates how many sim-
iles it appears in with another word from G. The n words
with the highest score are used as substitutes.
(w) Using Wordnet [5] to retrieve the n most frequent syn-
onyms of each word, with frequency assessed by [3].

Each variation, V , of G is checked and pruned if (i) the
simile exists already in the database, (ii) the major POS of
either V

o

, V
a

or V

d

differs from the corresponding part of
G, or (iii) the overall sentiment of V is positive when that
of G is negative (or vice-versa). To determine the yield of
variations each method can produce, we ran the system to

International Conference on Computational Creativity 2012 97

Scheme d s w Average
001 61.68 23.16 0.04 28.29

2.02 1.68 3.22 2.31
010 59.04 25.58 4.50 29.71

2.27 1.99 2.09 2.12
100 37.06 28.38 2.26 22.57

2.08 1.75 1.93 1.92
011 44.50 47.78 0.26 30.85

2.27 2.25 3.35 2.62
101 39.68 41.94 0.10 27.24

2.25 1.89 2.83 2.32
110 37.06 40.54 5.84 27.81

2.21 2.02 2.21 2.15
111 27.84 39.44 0.01 22.43

2.40 2.10 2.67 2.39
Average 43.69 35.26 1.86 26.94

2.21 1.95 2.61 2.26

Table 1: Top lines: the average yield (to 2 d.p) of variations re-
turned by each method and substitution scheme when asked to pro-
duce 100 variations for 100 similes. Bottom lines: the average in-
terpretation level required for similes generated by the method and
scheme. Note that 101 means that the object and description were
substituted but not the aspect in the ho, a, di simile triple, etc.

generate 100 variations – before pruning – of 100 randomly
chosen similes, for each method, with every possible substi-
tution scheme. The results are given in table 1. We see that
the d and s methods yield high numbers of variations, but the
w method delivers very low yields, especially when asked to
find substitutes for G

d

. This is because the number of syn-
onyms for a word is less than the number of similar words,
and the number of synonyms for adjectives is particularly
low. Unexpectedly, replacing more parts of a simile does
not necessarily lead to more similes. On inspection, this is
because the increase in degrees of freedom is balanced by an
increase in likelihood of pruning due to (i), (ii) or (iii) above.

In addition to observing the quantity of variations pro-
duced, we also checked the variations qualitatively. We no-
ticed subjectively that, even out of context, certain variations
were very easy to interpret, others were more challenging,
and for some no suitable interpretation could be derived. For
each of the methods d, s and w, we extracted 1,000 varia-
tions from those produced for table 1, and the first author
subjectively hand-annotated each variation with a value 1 to
4, with 1 representing obvious similes, 2 representing sim-
iles for which an interpretation was more difficult but pos-
sible, 3 representing similes which took some time to form
an interpretation for, and 4 representing similes for which
no interpretation was possible. Some example similes with
annotations are given in table 2. On inspection of the level 4
variations, we noted that often the problem lay in the POS-
tagging of an adjective as a noun. For instance, in table 2,
kind is identified as a noun, hence similes with nouns like
form instead of kind are allowed, producing syntactically
ill-formed sentences. We plan to rule this out using context-
aware POS tagging, available in a number of NLP packages.

The average interpretation level for each of the substitu-
tion methods and schemes is given in table 1. We turned
this analysis into a method enabling the software to con-
trol (to some extent) the level of interpretation required.

Interp. Method Variation
Level Scheme Original

1 d as sad as the groan of a widow
011 as lonely as the moan of a widow

2 s as deadly as the face of a dagger
110 as deadly as the sting of a scorpion

3 d as shallow as the space-time of a fork
110 as shallow as the curve of a spoon

4 w as form as the pump of a dove
011 as kind as the heart of a dove

Table 2: Example simile variations, given with the interpretation
level required and the original versions.

Meth. Bound. Naı̈ve % Best % Best Method
d 1/2 72.00 75.20 RandomForest
s 1/2 60.40 65.80 LogitBoost
w 1/2 68.10 72.00 Bagging
d 2/3 59.20 68.30 OneR
s 2/3 71.20 75.70 RotationForest
w 2/3 63.20 71.10 RandomCommittee

average 65.68 71.35

Table 3: Ten-fold cross-validation results for the best classifier on
the boundary problems for each method.

To do this, given a required interpretation level n for sim-
ile variations, pairings of substitution (method, scheme)
which produce an average interpretation level between n and
n + 1 in table 1 are employed. So, for instance, if simi-
les of interpretation level 1 are required, the software uses
a (s, 001), (s, 010), (s, 100), (s, 101) or (w, 100) pairing to
generate them. To increase the performance of the approach,
we used the WEKA machine learning system (Hall et al.
2009) to train a predictor for the interpretation levels which
could be used to prune any variation predicted to have an
interpretation level different to n. To produce the data to
do so, we recorded 22 attributes of each of the 3,000 anno-
tated similes, namely: the word frequencies [3] of each part
and the minimum, average and maximum of these; the pair-
wise similarity [2] of each pair of parts, and the min/av/max
of these; the pairwise number of collocations of each pair
in the corpus of similes and the min/av/max of these; the
method used for finding substitutions (d, s or w); whether
the object, aspect and/or description parts have been substi-
tuted from the original; and the interpretation level.

Unfortunately, using 30 different machine learning meth-
ods in WEKA (with default settings for each), the best pre-
dictive accuracy we could achieve was 47.3%, using the Ro-
tationForest learning method. We deemed this insufficient
for our purposes. However, for each variation method, we
were able to derive adequate predictors for two associated
binary problems, in particular (i) to predict which side of the
1/2 boundary the level of interpretation an unseen simile will
be on, and (ii) the same for the 2/3 boundary. The best meth-
ods, assessed under 10-fold cross validation, and their pre-
dictive accuracy for the boundary problems for the d, s and
w variation methods are given in table 3. We found that in
each case, a classifier which is significantly better (as tested
by WEKA using a paired T-test) than the naı̈ve classifier had
been learned, and we can expect a predictive accuracy of
around 71% on average. The best learning method was dif-

International Conference on Computational Creativity 2012 98

ferent for each boundary problem, but some methods per-
formed well in general. While not the best for any, the Ran-
domSubspace method was the only one which achieved a
significant classifier for all the problems. The Bagging, Ro-
tationForest, and RandomForest methods all produced sig-
nificant classifiers for five of the six problems.

WEKA enables the learned predictors to be used exter-
nally, so we implemented a process whereby the genera-
tive procedure above produces potential simile variants of
a given level, then the result is tested against both boundary
predictors appropriate to the method. If it is predicted to fall
on the wrong side of either boundary, it is rejected. As a
final validation of the process, we generated 300 new simile
variations, with 100 of level 1, 2 and 3 each. We mixed them
randomly and tagged them by hand as before. Our hand tag-
ging corresponded with what the software expected 82% of
the time, which we believe represents sufficient control.

Combination and Instantiation
The third and fourth phases of poetry generation are more
straightforward. In the combination phase, similes, varia-
tions of them and keyphrases extracted from newspaper ar-
ticles are combined as per user-given templates. The tem-
plates dictate what words in each of a pair of text fragments
must match exactly, what the POS tags of these words and
others in the fragments must be, and how they are to be com-
bined. Templates often simply pair two phrases together ac-
cording to certain constraints, to be used in the instantiation
phase later. Alternatively, they can provide more interesting
ways of producing a compound phrase. The process can be
iterated, so that triples, quadruples, etc., can be generated.

As an example, suppose we have the keyphrase “excess
baggage” from a newspaper article about travel. This can
be matched with the simile “the emotional baggage of a di-
vorce”, and presented in various ways, from simple expres-
sions such as “the emotional excess baggage of a divorce”, to
the more elaborate “Oh divorce! So much emotional excess
baggage”, as determined by the combination template. It
is possible to drop certain words, for instance the keyphrase
“gorgeous history” (about a 1980s pop group) and the simile
“As gorgeous as the nature of a supermodel” could produce
“a supermodel-gorgeous history”, and variations thereof. As
a final example, keyphrases such as “emotional jigsaw puz-
zle” (describing a surreal play in a review) can be elaborated
by combination with the simile “As emotional as the journey
of a pregnancy” to produce: “An emotional jigsaw puzzle,
like the journey of a pregnancy”.

The retrieval, multiplication and combination stages of
the process perform the most important functions, which
leaves the instantiation process able to simply choose from
the sets of elaborated phrases at random, and populate the
fields of a user-given template. Templates allow the extrac-
tion of parts of phrases to be interleaved with user-given text,
and there are also some final constraints that can be applied
to the choice of phrases for the template, in particular to re-
duce repetition by only choosing sets of phrases where the
word stems (constructed by [4]) are different.

In terms of linguistic and semantic constraints, the four
stage process is quite powerful, as highlighted with the ex-

Stealthy swiftness of a leopard,
Happy singing of a bird.

In the morning, I am loyal
Like the comfort of a friend.
But the morning grows more lifeless
Than the fabric of a rag.
And the mid-day makes me nervous
Like the spirit of a bride.

Active frenzy of a beehive,
Dreary blackness of a cave.

In the daytime, I am slimy
Like the motion of a snake.
But the sunlight grows more comfy
Than the confines of a couch.
And the day, it makes me tasty
Like the flavor of a coke.

Shiny luster of a diamond,
Homey feeling of a bed.

In the evening, I am solid
Like the haven of a house.
But the evening grows more fragile
Than the mindset of a child.
And the twilight makes me frozen
Like the bosom of a corpse.

Famous fervor of a poet,
Wily movement of a cat.

In the night-time, I am hollow
Like the body of a drum.
But the moonlight grows more supple
Than the coating of an eel.
And the darkness makes me subtle
Like the color of a gem.

Stealthy swiftness of a leopard,
Happy singing of a bird.

 Circadian No. 39

Figure 1: An example instantiation of a user-given template.

ample poem given in figure 1, produced using a highly con-
strained search for pairs of similes. We used no simile multi-
plication here, in order to highlight the linguistic rather than
inventive abilities. The circadian aspects of the poem are
part of the template, with only the similes provided by the
software. We see that the poem contains only straightfor-
ward words, because during the retrieval stage, only similes
with words having frequencies in the top 5% were retrieved
(as determined by [3]). Moreover, the only direct repetition
is there by design in the template, and no repetition even of
word stems is allowed anywhere else. This was achieved
during the instantiation process, which recorded the similes
used, and avoided using any word where [4] suggested the
same word stem with an existing word in the poem.

The poem also has strictly controlled meter and stress.
For instance, each two-line stanza firstly uses a simile with
hsw, sw, swi pronunciation (where s and w are syllables,
with s being the stressed one), and then uses a simile with
hsw, sw, si pronunciation. This is achieved during the re-
trieval stage, which uses the pronunciation dictionary [1]
to select only similes of the right form, and the combina-
tion process, which puts together appropriate pairs of lines.
There is similar regularity in the six-line stanzas. Possi-
bly less obvious is the subtle rhyming at play, with the
final phonemes of selected pairs of lines being the same
(such as beehive and cave, snake and coke, drum and gem).
Moreover, inadvertent rhyming – which can be jarring – is
ruled out elsewhere, for instance, snake and couch were con-
strained to have no rhyming, as were house and child, drum
and eel, etc. The rhyming constraints come into play during
the combination phase, when sets of lines are collated for
final use in the stanzas. Finally, we notice that the stanzas
alternate in sentiment during the course of the poem, for in-
stance the line “Happy singing of a bird” in the first two-line
stanza, contrasts starkly with the line “Dreary blackness of a
cave” in the second. This is also achieved during the combi-
nation phase, which can be constrained to only put together
similes of certain sentiments, as approximated by [7].

International Conference on Computational Creativity 2012 99

Handing over High-Level Control
We see automated poetry generation as the simultaneous
production of an artefact and a context within which that
artefact can be appreciated. Normally, the context is pro-
vided by the programmer/user/curator, but, as described be-
low, to give more autonomy to the software, we enabled it
to provide its own context, situated in the events of the day
in which it is writing poems. In order to deliver the context
alongside each poem, we also implemented a rudimentary
ability to provide a commentary on the poem, and how it
was produced, as described in the second subsection below.

Context Generation
In overview, the software determines a mood for the day,
then uses this to choose both a Guardian article from which
to extract keyphrases which will be combined with sim-
ile variations and form lines of the poem, and an aesthetic
within which to assess the generated poems. These are then
used to produce a set of templates for the four-stage poem
generation process described above. Finally, the software
instantiates the templates to produce a set of poems, and
chooses to output the one which maximises the aesthetic.

As in the automated collage generation of (Krzeczkowska
et al. 2010), the software appeals to daily newspaper articles
for raw material. We extend that approach by also using the
articles to derive a mood, from which an aesthetic is gen-
erated. In particular, each of the 12,820 articles in the cor-
pus has been assigned a sentiment value between -5 and 5,
as the average of the sentiment of the words in the article,
assessed by [7]. Thus, when a poetry generation session be-
gins, the software is able to check the sentiment of the set N
of newspaper articles posted during the previous 24 hours,
and if it is less than the average, the software determines the
mood as bad, or good otherwise. If the mood is good, then
an article, A, from the happiest five articles from N is cho-
sen, with melancholy articles similarly chosen during a bad
mood. The keyphrases, key(A), are then extracted from the
article, and we denote as words(A) the set of words appear-
ing in key(A). Note that very common words such as “a”,
“the”, “of”, etc., are removed from words(A).

As an example, on 17/01/2012, the mood was assessed as
bad, and a downbeat article about the Costa Concordia dis-
aster was retrieved. In contrast, on 24/01/2012, the mood
was assessed as good, and an article describing the buoy-
ant nature of tourism in Cuba was retrieved, from which
keyphrases such as “beach resorts”, “jam-packed bar”, “sea-
side boulevard” and “recent sunny day” were extracted us-
ing [6]. Note that [6] also returns a relevancy score for each
keyphrase, e.g., “recent sunny day” was given a score of 0.48
for relevance, while “jam-packed bar” only scored 0.31.

The mood is sufficient to derive an aesthetic within which
to create poems, but this will be projected partly through
members of words(A) appearing in the poem, and mood is
only one aspect of the nature of a poem. Letting words(P)
denote the words in poem P , for more variety, the software
can choose from the following four measures:

• Appropriateness: the distance between the average sen-
timent of the words in words(P) from 5 if it is a good

mood day, or from -5 if it is a bad mood day.
• Flamboyance: the average of f(w) over words(P),

where f(w) = 0 if w 2 words(A) and f(w) =
1/frequency(w) if w 62 words(A), where frequency is
calculated by [4].

• Lyricism: the proportion of linguistic constraints adhered
to by P , with the constraints determined by the set of tem-
plates generated for the poem, as described below.

• Relevancy to the Guardian article: the average of rel(w)
over words(P), where rel(w) = 0 if w 62 words(A) and
rel(w) is the relevancy [6] of w, if w 2 words(A).
The choice of which set of measures, M , to use in the aes-

thetic for a poem is determined somewhat by A and key(A).
In particular, if A is assessed as being in the most emo-
tive 10% of articles ever seen (either happy or sad), then M

is chosen as either {Appropriateness} or {Appropriateness,
Relevance} in order to give due consideration to the gravity
or brevity of the article. If not, and the size of key(A) is
less than 20% of the average over the corpus, then it might
be difficult to gain relevancy to A in the poem, hence M is
chosen as {Relevance}. In all other cases, M is chosen ran-
domly to consist of either 1 or 2 of the four measures – we
found that mixing more than 2 diluted their effect, leading
to poems with little discernible style.

The software also generates templates to dictate the struc-
ture of the poem. The number of stanzas, z, is taken
to be between 2 and 10, with the number dictated by
the size of key(A), i.e., larger poems are produced when
key(A) is relatively large, compared to the rest of the cor-
pus. The structure of the poem can be equal, i.e., of the
form A1A2 . . . Az

with each stanza A

i

being of the same
length (chosen randomly between 2 and 6 lines). The
structure can also be chosen to be alternating of the form
A1B2A3 . . . Az

or A1B2A3 . . . Bz

; or bookended of the
form A1B2 . . . Bz�1Az

. The choice of structure is currently
made randomly, and there is no relationship between pairs of
stanzas, except that the templates constrain against the usage
of a new phrase (combined from a keyphrase and simile as
described above) in the template if one of the words has the
same stem as a word in an already-used phrase. As part of
the template generation, the software chooses the number of
times (between 0 and 5) this constraint is allowed to be bro-
ken per phrase, as a level of repetition can add flavour to a
poem. Note that the counts per phrase are reset to zero if the
software runs out of phrases to add to the template.

If M contains the Lyricism measure, then the templates
are also constrained to express some linguistic qualities,
which are added at the stanza level. In particular, the line
structure of all stanzas of type A is chosen to be either equal,
alternating or bookended in the same fashion as the stanza
structure, with stanzas of type B also given a structure. This
structure allows linguistic constraints to be added. For in-
stance, if a stanza has alternating structure abab, the soft-
ware chooses a single linguistic constraint from: syllable-
count, end-rhyme, start-rhyme, and constrains all lines of
type a accordingly. It does the same (with a possibly dif-
ferent linguistic constraint) for lines of type b. Note that
syllable-count means that the two lines should have the same

International Conference on Computational Creativity 2012 100

number of syllables as each other (within a threshold of
two syllables), end-rhyme means that the two lines should
at least end in the same phoneme, with start-rhyme similar.

The random nature of the choices to fill in the final poem
template ensures variety. In each session, the software gen-
erates 1,000 poems, and their scores for each of the measures
in M are calculated. The average rank over the measures
is taken as an overall rank for each poem, and the highest
ranked is presented as the poem for the day. If the templates
over-constrain the problem and no poems are produced, then
a single constraint is chosen to be dropped, and the session
re-started iteratively until poems are produced.

Commentary Generation
In addition to the four stage process of retrieval, multiplica-
tion, combination and instantiation, the software chooses a
Guardian article, performs sentiment analysis, aesthetic in-
vention, template construction and searches for appropriate
poems. While some of these methods are at present rather
rudimentary and perhaps a little arbitrary, it is our hypothe-
sis that a well-formed commentary about how the software
has produced a poem will provide a context for the poem
and add value to the appreciation process, as argued above.

In order for the software to generate the commentary, we
re-use the four stage process, but with the retrieval stage
sampling not from corpora of human produced text, but
rather from a set of recorded statements about how each of
the processes worked, and what they produced. In particu-
lar, the software records details such as (a) the mood of the
day (b) the Guardian article it retrieved and how emotive it
was (c) the keyphrases extracted, which sentences they came
from, and which were used in the final poem (d) the combi-
nations of keyphrase and similes it produced (e) the nature
of the poem structure dictated by the template, (f) the aes-
thetic weightings used, and (g) what successes and failures
it had in instantiating the templates. We have produced by
hand a number of (sets of) commentary templates that can
present the statements in a supportive way. Currently, the
software randomly chooses which set of templates to use to
generate the commentary. The software chooses the title for
each poem as the keyphrase occurring the most often in the
poem, choosing randomly if there is a tie for the most used.

Illustrative Examples
We artificially situated the software in the days from
1/01/2012 to 10/02/2012, and asked it to produce a single
poem for each day, along with a commentary. We added the
constraint that the poem should be exactly four stanzas in
length for presentation purposes in this paper. We curated
three for presentation here, in figure 2 below. The commen-
taries are meant to provide enough context for proper appre-
ciation of each poem, so we will not add detail here to the
commentaries of the individual poems. Viewing the entire
set of generated poem/commentaries subjectively, we were
disappointed by the number of compound sentences avail-
able for the templates. Even with large sets of keyphrases
extracted from an article, and extensive simile multiplica-
tion employed, we found that there were few opportunities

for a simile to be used for embellishment, which meant that
the software had limited choices for the final poem template,
which led to an over-reliance on repeating lines, or using
similar lines. More importantly, the differences in the aes-
thetic evaluations over the 1,000 poems generated for a day
were not great, hence the aesthetic generation was driving
the production of poems less than we would have liked.

Conclusions and Future Work
We agree with (Pease and Colton 2011b) that Turing-style
tests encourage naı̈vety and pastiche in creative systems.
However, eschewing their use leaves a hole regarding proper
evaluation of our poetry generation system. Instead, we can
turn to the FACE descriptive model put forward in (Colton,
Charnley, and Pease 2011) and (Pease and Colton 2011a),
which advocates describing a creative system in terms of the
creative acts it performs, which are in turn tuples of genera-
tive acts. The generative acts produce outputs of four types:
examples of concepts, concepts themselves, aesthetic mea-
sures which can evaluate concept/example pairs, and fram-
ing information. Looking at the literature review above, the
WASP and Electronic Text Composition systems can be con-
sidered as generating concepts, as can any system which
generates and employs a statistical model of written or ver-
bal language (such as in Markovian approaches). It does not
appear that any system invents aesthetic measures or pro-
duces framing information such as a commentary which can
be used as a context for the poem. Hence, according to the
FACE model, our approach can be considered favourably,
as it has processes producing examples (instantiation), con-
cepts (template generation), aesthetics (choosing measures)
and framing information (producing commentaries), within
the creative act of poem generation. This represents an ad-
vance in the state of the art of automatic poetry generation.

It is clear that many aspects of the process presented here
are fairly rudimentary, often with random choice substitut-
ing a reasoned approach. Our main contribution has been
to implement a rounded system which can function on the
majority of levels required to be taken seriously as a poet,
albeit in a simplistic manner. We plan further enhancements
to all of the processes described above, including (i) imple-
menting improved ways to generate phrases for templates,
as the yield is currently too low to enable the software to use
its more advanced linguistic constraining features (ii) work-
ing with other corpora (iii) enabling the software to auto-
matically add higher level structures to poems via the kinds
of narratives seen in the circadian poem given above, and
(iv) turn the commentary generation processes into full-story
telling, which may include the introduction of fictions. Af-
ter the enhancements, we will work with a poet and explore
gaining critical feedback via the publication of anthologies.

While the imitation-game aspect of Turing-style tests are
not conducive for creativity, we do applaud the usage of di-
alogue they prescribe. Indeed, in the future, we imagine all
creative systems being enhanced with a story generator able
to produce both static framing information, and to reply with
a story to any question asked of it in a dialogue situation. We
believe that only with such abilities will software systems be
taken seriously as creative entities in the cultural world.

International Conference on Computational Creativity 2012 101

It was generally a bad news day. I read an article in
the Guardian entitled: “Police investigate alleged race
hate crime in Rochdale”. Apparently, “Stringer-Prince,
17, has undergone surgery following the attack on
Saturday in which his skull, eye sockets and
cheekbone were fractured” and “This was a
completely unprovoked and relentless attack that has
left both victims shocked by their ordeal”. I decided to
focus on mood and lyricism, with an emphasis on
syllables and matching line lengths, with very
occasional rhyming. I like how words like attack and
snake sound together. I wrote this poem.

Relentless attack
a glacier-relentless attack
the wild unprovoked attack of a snake

the wild relentless attack of a snake
a relentless attack, like a glacier
the high-level function of eye sockets

a relentless attack, like a machine
the low-level role of eye sockets
a relentless attack, like the tick of a machine

the high-level role of eye sockets
a relentless attack, like a bloodhound

It was generally a good news day. I read a story in the
Guardian culture section entitled: “South Africa's ANC
celebrates centenary with moment in the sun”. It talked of
south africans, interfaith prayers and monochrome photos.
Apparently, “The heroic struggle against a racist regime was
remembered: those thousands who sacrificed their lives in a
quest for human rights and democracy that took more than
eight decades” and “At midnight he watched with amusement
as Zuma lit the centenary flame, at the second attempt, with
some help from a man in blue overalls marked ʻExplosivesʼ”.
I wanted to write something highly relevant to the original
article. I wrote this poem.

Blue overalls

the repetitive attention of some traditional african chants
a heroic struggle, like the personality of a soldier

an unbearable symbolic timing, like a scream
blue overalls, each like a blueberry
some presidential many selfless leaders

oh! such influential presidents
such great presidents
blueberry-blue overalls

lark-blue overalls
a knight-heroic struggle

It was generally a bad news day. I read a story in the
Guardian entitled: “Thai police hunt second bomb plot
suspect in Bangkok”. It talked of suspected bomb plotters,
lebanese men and travel alerts. Apparently, “Sketches
released late on Friday night by Thai police showed the
suspect as a white Middle-Eastern man with short hair and
stubble, around 1.8m (5ft 9in) tall”. Itʼs a serious story, but I
have concentrated on flourishes today. I wrote this poem.

Foreign embassies

the wiry militant arm of a doorman
a white middle-eastern man, like a snowball
spaceship-foreign embassies
foreign embassies, each like a stranger

an impersonal suvarnabhumi international airport
a white middle-eastern man, like the surface of a porcelain
the sturdy design of a bangkok post

foreign embassies, each like a spaceship
an impersonal suvarnabhumi international airport
stranger-foreign embassies
the stout engineering of a bangkok post

a white middle-eastern man, like the skin of an earthenware
foreign embassies, each like a stranger
spaceship-foreign embassies

Figure 2: Illustrative poems and commentaries. For the Guardian articles on which these poems are based, please see: www.guardian.co.uk,
followed by: /uk/2012/feb/09/police-race-hate-crime-rochdale /world/2012/jan/08/south-africa-anc-centenary /world/2012/jan/15/thai-second-bomb-suspect-bangkok

Acknowledgements
This work has been funded by EPSRC grant EP/J004049.
Many thanks to the reviewers for their insightful comments.

References
Addad, E. 2010. Interactive poetry generation systems: an
illustrated overview. netpoetic.com/2010/10/interactive-poetry-
generation-systems-an-illustrated-overview/.
Carpenter, J. 2004. Electronic text composition project.
http://slought.org/content/11199.
Chamberlain, W., and Etter, T. 1984. The Policeman’s Beard is
Half-Constructed: Computer Prose and Poetry. Warner Books.
Colton, S.; Charnley, J.; and Pease, A. 2011. Computational cre-
ativity theory: the FACE and IDEA models. In Proceedings of the
2nd International Conference on Computational Creativity.
Dı́az-Agudo, B.; Gervás, P.; and González-Calero, P. 2002. Poetry
generation in COLIBRI. Advances in Case-Based Reasoning 2416.
Elhadad, M.; Gabay, D.; Goldberg, Y.; and Netzer, Y. 2009. Gaiku:
Generating haiku with word associations norms. In Proc. of the
Workshop on Computational Approaches to Linguistic Creativity.
Gervás, P. 2010. Engineering linguistic creativity: Bird flight and
jet planes. In Proceedings of the Workshop on Computational Ap-
proaches to Linguistic Creativity.
Greene, E.; Bodrumlu, T.; and Knight, K. 2010. Automatic anal-
ysis of rhythmic poetry with applications to generation and trans-
lation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. 2009. The WEKA data mining software: An update.
SIGKDD Explorations 11(1).
Hartman, C. 1996. Virtual Muse: Experiments in Computer Poetry.
Wesleyan University Press.
Kilgarriff, A. 1997. Putting frequencies in the dictionary. Interna-
tional Journal of Lexicography 10 (2).
Kolb, P. 2008. DISCO: A multilingual database of distributionally
similar words. In Proceedings of KONVENS.

Krzeczkowska, A.; El-Hage, J.; Colton, S.; and Clark, S. 2010.
Automated collage generation – with intent. In Proceedings of the
1st International Conference on Computational Creativity.
Lutz, T. 1959. Stochastische texte. Augenblick 4(1).
Manurung, R.; Ritchie, G.; and Thompson, H. 2012. Using genetic
algorithms to create meaningful poetic text. JETAI 24(1):43–64.
Manurung, H. 2004. An evolutionary algorithm approach to poetry
generation. PhD. Thesis, University of Edinburgh.
Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order into
texts. In Proc. of the Conference on Empirical Methods in NLP.
Montfort, N., and Strickland, S. 2010. Sea and spar
between. http://blogs.saic.edu/dearnavigator/winter2010/nick-
montfort-stephanie-strickland-sea-and-spar-between/.
Montfort, N. 2009. The ppg256 series of minimal poetry genera-
tors. In Proceedings of Digital Arts and Culture 2009.
Pease, A., and Colton, S. 2011a. Computational creativity theory:
Inspirations behind the FACE and IDEA models. In Proceedings
of the 2nd International Conference on Computational Creativity.
Pease, A., and Colton, S. 2011b. On impact and evaluation in
computational creativity: A discussion of the Turing test and an
alternative proposal. In Proc. AISB symp. on AI and Philosophy.
Porter, M. 1980. An algorithm for suffix stripping. Program 14 (3).
Queneau, R. 1961. Cent mille milliards de poèmes. Gallimard.
Rahman, F., and Manurung, R. 2011. Multiobjective optimization
for meaningful metrical poetry. In Proceedings of the 2nd Interna-
tional Conference on Computational Creativity.
Roque, A. 2011. Language technology enables a poetics of inter-
active generation. The Journal of Electronic Publishing 14.
Veale, T., and Hao, Y. 2011. Exploiting readymades in linguistic
creativity: A system demonstration of the jigsaw bard. In Proc. of
the 49th Annual Meeting of the ACL.
Veale, T. 2006. Tracking the lexical Zeitgeist with Wordnet and
Wikipedia. In Proceedings of the 17th European Conference on
Artificial Intelligence.
Wong, M., and Chun, A. 2008. Automatic haiku generation using
VSM. In Proceedings of ACACOS.

International Conference on Computational Creativity 2012 102

