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Abstract 

This paper furthers the study of creative design by taking 
a situated view of novelty. A set of computational exper-
iments is performed utilizing an agent-based model of a 
design team, and resulting data is used to examine the 
influence of a change in a situation (or a design frame) 
on the perception of a design’s novelty in terms of its 
difference from existing or possible designs. The exper-
iments demonstrate that, over the course of designing, 
solutions which were regarded as novel, can become not 
novel. They also show that a solution which was not seen 
as novel in one situation can be assessed as novel when 
a situation changes. The results, therefore, emphasize the 
importance of studying novelty as a situated measure. 

Introduction 

Design has long been recognized as a situated act (Gero 
1998; Gero and Kannengiesser 2004; Suwa, Gero, and Pur-
cell 2000). Empirical findings (Suwa, Gero, and Purcell, 
2000) suggest that throughout designing, designers use their 
past experiences and expectations to develop interpretations 
of their tasks. To further the studies on creativity, Kelly and 
Gero (2015) developed the notion of situated interpretation 
and used it for studies on framing in creative tasks. Their 
work builds on Boden’s (1996; 2004) theory of creativity 
and emphasizes that to understand the creative aspects of 
design activity it is essential to understand how the concep-
tual space changes. In their later work, Kelly and Gero 
(2017) elaborated the notion of situated interpretation and 
build on it to develop a paradigm of generate and situated 
transformation, where a situated transformation is defined 
as a process that draws on previous experiences to create a 
new design space or to modify the existing one. 
    To further the studies on the relationship between situat-
edness and creativity, this research utilized computational 
experiments to explore how novelty – a key aspect of crea-
tivity - is influenced by the situated changes in the concep-
tual space in which the design occurs. 

Novelty 

Novelty, its definition, assessment or reinforcement, consti-
tutes an inevitable part of every study on creativity. Earlier 
work on creativity (e.g., Besemer 2006; Boden 1996) 
viewed novelty as a term covering aspects of originality and 
surprise. However, recently researchers (e.g., Maher, Brady, 
and Fisher 2013) argued that novelty, as a measure of dif-
ference of a design relative to the set of existing designs, 
does not necessarily imply violation of expectations (i.e., 
surprise) in a space of projected designs. Following this dis-
tinction between surprise and novelty, Maher and Fisher 
(2012) and Grace et al. (2015) proposed measures of novelty 
and surprise based on k-means clustering. Their approach 
includes representing each design with a set of features de-
termining its position within the conceptual space. The 
measure is particularly important for computational studies 
of creativity as it relies on well-known and easy-to-imple-
ment mechanisms. Many additional methods for novelty de-
tection and measurement can be found in, for example, the 
field of signal processing (for a review, see Pimentel et al. 
2014); while for an overview of measures used in design one 
can consult the work of Ranjan, Siddharth, and Chakrabarti 
(2018). 

Hypothesis 

Following this brief theoretical background and empirical 
findings, and building on previous computational studies of 
novelty, this work studies novelty in design through the lens 
of situatedness. The notion that situational change can intro-
duce differences in novelty assessment can be detailed 
through the formulation of two hypotheses: 

H1: Over the time course of designing, (some of) the solu-
tions that were previously recognized as novel, will be-
come not novel. 

H2: Over the time course of designing, (some of) the solu-
tions that were previously not regarded as novel, can be 
recognized as novel. 



These hypotheses are tested through a series of experiments 
conducted by utilizing a computational model of a design 
team. 

Model 

Within a computational model used in this study, a design 
team is represented as a set of cognitively rich, social agents, 
where each agent portrays an individual designer (Perišić et 
al. 2017; 2018; 2019). An agent’s mental model consists of 
three layers: the function layer, the behavior layer, and the 
structure layer. At each layer, the set of nodes (of the corre-
sponding type) represents functions, behaviors or structures 
known to the agent. Links between functions and behaviors, 
and behaviors and structures represent the associative rela-
tionships between elements known to the agent. There are 
no links among nodes of the same type (Gero and Kannen-
giesser 2004).  
    An agent’s reasoning mechanisms are based on cognitive 
theories: dual system theory (Kahneman 2011) and a theory 
distinguishing reflexive, reactive and reflective modes of 
reasoning (Maher and Gero 2002). As described in (Perišić 
et al. 2017; 2018; 2019), each structure node is associated 
with a network, while each behavior node represents a range 
of one network property (e.g. a behavior node may represent 
having a clustering coefficient between 0.1 and 0.2). In this 
manner, one can derive structure’s behavior by calculating 
the respective network’s properties. When an agent is faced 
with a task (a set of requirements – i.e., required functions 
or behaviors), an activation impulse is generated in the func-
tion node which is deemed as relevant and passed through 
the links. If a structure node becomes sufficiently activated, 
the associated network is analyzed (i.e., its properties are 
calculated) and the behaviors obtained are compared to the 
required and expected ones. If a mismatch from the expec-
tations is encountered, an activation impulse is sent to the 
function nodes relevant for the unmet requirements.  
    To enable agents to expand the structure space, two mech-
anisms were implemented: union – which can occur if two 
structures are simultaneously sufficiently active and it con-
sists of overlaying their respective networks; and contrac-
tion - in which two network nodes (i.e., nodes within the 
structure node’s network) can be collapsed into one (thus 
creating a new network node). Additionally, agents can 
learn through communication with others. If a structure 
node is sufficiently active and determined to meet the re-
quirements, an agent can propose it as a solution to other 
agents, which in turn learn it, evaluate it in against their 
mental models, and rate its suitability for the task. Similarly, 
if two nodes are sufficiently active and the link between 
them is of sufficient weight, an agent can decide to com-
municate this link to others which can then learn the link and 
use it in subsequent reasoning. Through structure space ex-
pansion and processes of learning, grounding and forgetting 
of links, the agent’s mental model develops and shapes its 
reasoning. 
    Further details on the model’s implementation and per-
formance can be found in previous work (Perišić et al. 2017; 

2018; 2019). For the present study, however, one modifica-
tion of the prior implementation was made. As initially mod-
eled, a simulation was considered over when the agents 
found and agreed upon a single structure that satisfied the 
requirements. The scope of the present study requires con-
tinuous exploration and extension of the solution space. 
Therefore, the mechanism to avoid team fixation on a single 
feasible structure was implemented as follows: if a unique 
structure has been proposed repeatedly over the course of 10 
simulation steps, and the links from relevant (i.e., required) 
behavior nodes to the structure are well-grounded (i.e., more 
than 98% of maximal link weight) in the mental models of 
every agent, then the structure is inhibited and the weight of 
relevant behavior–structure links is reduced in each of the 
agents’ mental models. Although this results in the structure 
not being used in (at least some) subsequent steps, the acti-
vation level of behaviors connected to the structure remains 
unchanged, therefore influencing the further search. This 
mechanism corresponds to the situation where members of 
a design team all agree upon one solution and “leave it 
aside” to produce additional ideas, while still remembering 
the behavior and properties of the solution.  

Design of the Experiments 

For each simulation run, a task is represented as a set of net-
work properties which a structure (i.e. structure’s respective 
network) has to meet to be considered as a solution (i.e., to 
be found useful). To enable comparison and novelty assess-
ment of structures, each structure is characterized by its re-
spective network’s properties. To avoid high correlations 
among structures’ properties due to task requirements, in the 
present work the tasks pose requirements on the properties 
of the largest connected component of a structure network, 
while the structure’s properties were calculated on the whole 
respective network. Each structure’s characterizations con-
sist of three values: network degree centrality, clustering co-
efficient and hierarchy value, based on the measure for un-
directed networks defined by Mones, Vicsek, and Vicsek 
(2012). Tasks were defined as combinations of requirements 
regarding diameter, closeness and/or betweenness centrali-
ties of the structure network’s largest connected component. 
    Throughout a simulation, details on all of the agent-gen-
erated structures were collected. Further, at each time step, 
a reachable structure space was calculated. Reachable struc-
ture space at a time step t (RSSt) is defined as a space of all 
structures which can be created by agents in a time step t+1. 
In other words, it is a space of all structures derived from the 
structures known to agents at the step t by utilizing union 
and contraction mechanisms described in the previous sec-
tion. A subset of a reachable structure space consists of all 
reachable feasible solutions (RFSSt), i.e., a space of all 
structures meeting the requirements which can be generated 
in the next step. Finally, a subset of all reachable feasible 
solutions can be considered as novel, thus constituting a 
space denoted as RNSSt. To derive RNSSt from its corre-
sponding RFSSt, Mahalanobis distance was used. Ma-
halanobis distance is a measure frequently used for detection 
of outliers in multivariate data and has often been utilized in 



machine learning systems to identify data distinct from the 
samples used for system’s training (Pimentel et al. 2014). 
    Overall, 300 simulation experiments were run, each ter-
minating when the size of the RSS reached 100,000 nodes.  
The average sizes and standard deviations of the size of 
reachable structure space (RSS) and reachable feasible 
structure space (RFSS) over time are shown in Figure 1.  

Figure 1. Average size and standard deviations of RSS and RFSS 

over time  

Results 

    To test for the hypotheses posed in this paper, the number 
of novel structures which, over the course of the simulation, 
turned not novel, was counted. Similarly, the statistics in-
clude the number of structures which were initially (i.e., at 
the time of their first occurrence within reachable structure 
space) not marked as novel, only to be labeled as novel as 
the simulation progressed. The respective average (aggre-
gate) numbers and standard deviations are presented in Ta-
ble 1. Finally, to illustrate the dynamics of the simulated ex-
periments and to provide deeper insights in the obtained re-
sults, a series of snapshots for one simulation experiment are 
extracted and presented in Figure 2. In the figure, feasible 
solutions are shown, and further differentiated based on 
their novelty status. Structures more than two standard de-
viations apart from the sample mean were marked as novel. 
 

Number of 

Novel -> Not Novel 

nodes per simulation 

Number of 

Not Novel -> Novel  

nodes per simulation 

Average 
Standard  

deviation 
Average 

Standard  

deviation 

187 167.06 653 256.88 

Table 1. Statistics on the number of novel solutions turned not 

novel and not novel solutions turned novel 

Discussion 

As shown in Figure 1, the mechanisms which agents use to 
extend the solution space enable them to create new – feasi-
ble or not – structures over time. The number of novel solu-
tions found in each simulation step increases over the course 
of the simulation. However, the percentage of feasible solu-
tions which is recognized as novel slowly declines over 
time. More precisely, at the early stages of simulation (first 

10%) when the number of novel solutions is small (less than 
100), the percentage of novel solutions shows several in-
creases and decreases, and a large standard deviation. This 
reflects the differences between simulation runs. Namely, 
while in some cases agents needed more steps to find novel 
solutions, at other runs some of the structures generated at 
the early stages of simulation were already significantly dif-
ferent from others. As the simulation progresses, the per-
centage stabilizes and starts to decline. 
    Interestingly, significantly more structures turned from 
not novel to novel, than the other way around. To explain 
this, one may take a closer look at the dynamics of the sim-
ulation depicted in Figure 2. At the simulation start, several 
nodes on the left side of the space are marked as novel. How-
ever, as the agents learn and create more structures, the 
space of reachable feasible solutions changes to include 
structures closer to those previously regarded as new. As a 
consequence, the notion of what is novel (i.e., different from 
others) gradually shifts from the left to the far right of the 
space (third subfigure). As the process continues, the RFSS 
grows, and the majority of reachable structures concentrate 
in a cluster on the left of the space. As a consequence, the 
standard deviation of the population decreases, and a (rela-
tively) large number of structures which are outside of the 
cluster but were previously not regarded as novel, now be-
come assessed as such. This example serves to show how 
agent-produced solutions, after some time, start to converge 
to “similar looking” structures satisfying the requirements. 
Such a process is a consequence of two factors: first, the 
novelty detection algorithm was not implemented in the 
agents themselves, therefore restricting them from detecting 
that subsequently generated structures moved the space to-
wards increasingly similar structures. Secondly, the synthe-
sis mechanisms (union and contraction, among which union 
is more frequently applied) led to the generation of larger, 
well-connected networks for which calculated measures dif-
fer to a lesser extent. Due to these characteristics (arguably, 
limitations) of the system, over time, the majority of reach-
able structures “concentrates”. This means that the number 
of structures which will be marked as novel and then 
changed to not novel decreases over time. However, as the 
simulation progresses, the large proportion of the previously 
not novel structures will become assessed as novel. 
    Despite the limitation that agents do not assess novelty, 
the results enable interesting insights. If a task is reframed 
to broaden the solution space, the difference in characteris-
tics between the initial and newly obtained space may cause 
some solutions to no longer be regarded as novel. Perhaps 
more surprisingly, broadening the solution space can also 
cause some (previously uninteresting) solutions to stand out. 
This effect may likewise be discussed through the notion of 
“norms” and development of immutable expectations.  
    Finally, it would be interesting to observe whether the 
similar results would be obtained if the agents were mod-
elled as the robot with real-time novelty-detection mecha-
nism implemented in (Marsland, Nehmzow, and Shapiro 
2000). Marsland et al. (2000)’s robot utilizes habituation 
and recovery mechanisms enabling it to get accustomed to  



Figure 2. An example of the simulation run 

stimuli, develop different value systems and forget, which 
results in it being able to mark the stimuli as novel even 
though the stimuli has already been encountered in previous 
stages of the simulation. 

Conclusion 

This work builds on the notion of situatedness and uses it to 
study creative aspects of design. Relying on empirical find-
ings and computational models of creativity in design, this 
work explores how a vital part of creativity – novelty – 
changes with respect to the situation. A series of computa-
tional experiments demonstrated the importance of a frame 
within which the design occurs in assessing novelty. As a 
design frame (or a situation as defined by Kelly and Gero 
2017) is changing to broaden the solution space, a design 
may turn from appearing as novel to being regarded as not 
different from the majority of others. In contrast, a change 
of a design frame may cause a design previously marked as 

‘typical’ (i.e., not sufficiently differ-
ent from other solutions), to be seen 
as interesting and different from oth-
ers.  
    The simulations utilized the Ma-
halanobis distance to detect struc-
tures distant from the general distri-
bution of designs. In future, experi-
ments using different measures could 
be compared and assessed based on 
their capability to capture the notion 
of novelty, therefore determining 
whether the observed trends are 
emerging from the chosen novelty 
measure. Additionally, one may note 
that the current framework does not 
enable the dynamic introduction of 
new variables along which solutions 
can differ. It is likely that some of the 
subsequently added structures that 
were labeled as not novel would be 
found as novel based on some addi-
tional dimension (i.e., different net-
work characteristic). In the present 
study, difference in designs is mani-
fested through either new values for 
a certain attribute or as a novel com-
bination of attributes. But, as Gero 
(1990) postulated and Maher and 
Fisher (2012) demonstrated with the 
example of Bloom Laptop design, 
new (and surprising) designs can in-
troduce new variables (i.e., dimen-
sions) along which designs can dif-
fer. 
    Nevertheless, this work demon-
strates the importance of regarding 
novelty as a situated measure. Nu-

merous examples from fashion (Bianchi 2002), or even the 
healthcare industry (Janssen, Stoopendaal and Putters 
2015), show how “old” designs can again come under the 
spotlight due to the change in their contextual factors. In fu-
ture studies, an approach similar to the one taken here can 
be applied to study how assessment of another creativity as-
pect – surprise – is influenced by situational changes. 
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