
Performing Structured Improvisations with Pre-trained Deep Learning Models

Pablo Samuel Castro
Google Brain

psc@google.com

Abstract

The quality of outputs produced by deep generative models
for music have seen a dramatic improvement in the last few
years. However, most deep learning models perform in “of-
fline” mode, with few restrictions on the processing time. In-
tegrating these types of models into a live structured perfor-
mance poses a challenge because of the necessity to respect
the beat and harmony. Further, these deep models tend to
be agnostic to the style of a performer, which often renders
them impractical for live performance. In this paper we pro-
pose a system which enables the integration of out-of-the-box
generative models by leveraging the musician’s creativity and
expertise.

Introduction
The popularity and quality of machine learning models has
seen a tremendous growth over the last few years. Genera-
tive models, which are trained to produce outputs resembling
a pre-specified data distribution, have attracted much atten-
tion from both the scientific and artistic community in large
part due to the realism of the outputs produced.

In the musical domain, recent works produce music that
is both realistic and interpolatable (Roberts et al., 2018),
closely resembles human performance (Huang et al., 2019),
and can aid in automatic composition1. The increased re-
alism of these models is typically accompanied with an in-
crease in the amount of processing time required to generate
outputs. Unfortunately, long processing times generally ren-
ders these models inadequate for live performance. This is-
sue is particularly stark in structured improvisation, such as
in traditional jazz, where the music produced must respect
the beat and harmony of the piece.

In this paper we introduce a software system that enables
the incorporation of generative musical models into musical
improvisation. This can be used as both a solo-performance
or in an ensemble. Our system produces a performance
that is a hybrid of human improvisation with melodies and
rhythms generated by deep learning models. Our hybrid
approach enables us to address real-time compatibility and
stylistic personalization.

1https://www.ampermusic.com/

Background
We use Recurrent Neural Networks (RNNs) (Rumelhart,
Hinton, and Williams, 1986) as the machine learning models
for generating drum beats and melodies. Recurrent Neural
Networks are a special type of neural network which process
a sequence of tokenized inputs one token at a time, updating
an internal state after processing each input. A trained RNN
can be used for generation: after processing a sequence of
tokens t1:n, sample from the resulting internal distribution
over the token dictionary. When using these models for gen-
eration, we will refer to the initial sequence t1:n fed into the
model as the primer sequence.

We will make use of two LSTM-models from Google Ma-
genta. The first is MelodyRNN (Magenta, 2016b). It pro-
cesses note events as tokens, where a note event contains
a note’s pitch and its duration. The model assumes mono-
phonic melodies (i.e. only one note played at a time) and is
instrument agnostic. Thousands of MIDI files were used for
training. These MIDI files were quantized into 16th notes:
that is, the minimum allowable time between two notes are
one 16th note2. When using this model to generate new
melodies, the melodies produced tend to match the key sig-
nature and note density of the primer melody sequence fed
into it, which is a desirable property for our use case. The
second is DrumsRNN (Magenta, 2016a). The model is sim-
ilar to MelodyRNN, but here there is polyphony as multiple
drums can be hit simultaneously. As for MelodyRNN, this
model was trained on thousands of MIDI files, quantized
into 16th notes.

Related Work
There have been a number of works proposing new types
of digital instruments which make use of machine learning
models. The Wekinator (Fiebrink, 2009) enables users to
train new models in a supervised fashion by providing pairs
of inputs and expected outputs; inputs can be provided in
many forms including using computer controllers and phys-
ical gestures, while outputs can be sent to any musical, dig-
ital or physical actuator. This contrasts with our proposed
framework, which does not require retraining a model, but
rather adapt the outputs of a pre-trained deep learning model
to a performer’s style.

2There are sixteen 16th notes in one bar of 4/4 time.



Thom (2000) and Thom (2001) build probabilistic models
to emulate an improviser’s tonal and melodic trends. John-
son, Keller, and Weintraut (2017) makes use of two LSTMs:
one for intervals between notes and the other for note in-
tervals relative to the underlying chord progression; these
trained models are then combined to generate melodies in
a recurrent note-by-note fashion. In (Weinberg et al., 2009)
the authors introduce shimon, a robot marimba player capa-
ble of interacting with human players. The robot has human-
like movements (such as head-bobbing, “gazing” to pass on
the solo to another player, etc.) which make it natural to
interact with. Closely related to our use of ‘continuations’
are The Continuator of Pachet (2003), where the authors use
Markov models to adapt to a user’s style. In contrast to our
work, however, the continuator is agnostic to the underlying
beat of a performance, which is essential to jazz improvi-
sation. Bretan et al. (2017) propose training a deep autoen-
coder to encode melodies played by a performer into a latent
space that has been trained to capture musical consistency;
the closest melody from a library that has been embedded
into the same latent space is returned, allowing their system
to respond in near real-time. Roberts et al. (2018) propose a
deep autoencoder model for encoding melodies into a latent
space, combined with a deep decoder for converting points
from that latent space into cohesive melodies. Huang et al.
(2019) trained a transformer model (Vaswani et al., 2017)
on a dataset of virtuoso piano performances, resulting in a
model that can produce highly realistic and novel musical
snippets.

System setup
Our setup assumes a piano keyboard connected to a com-
puter via MIDI used for input, along with an additional con-
troller for enabling more MIDI control messages; in our case
we are using the Korg Nanokontrol2 MIDI controller but the
system can be used with any MIDI controller. We use Super-
Collider3 to detect all incoming MIDI events and pipe them
as OSC4 messages to a Python backend running on the same
machine. The Python backend processes the notes and may
then send an OSC message containing notes to be played to
SuperCollider, which either generates the sound or forwards
them to an external MIDI controller for producing the sound.

The SuperCollider component acts mostly as a bridge be-
tween the MIDI controllers and the Python backend. It de-
fines a set of handlers for routing MIDI input messages to
the backend via OSC messages, and handles OSC messages
from the backend. When a note on/off message is received
from the backend, it can either redirect to an external MIDI
controller or produce the sound itself. For the latter, the Su-
perCollider code loads a set of WAV files as well as a few
synthetic instruments for playback.

Backend design
At its core, the Python backend is running a continuous loop
over a customizable number of bars, each with a customiz-
able number of beats. Each is discretized it into 16th note

3https://supercollider.github.io/
4http://opensoundcontrol.org/

segments (so one bar in 4/4 time signature will have 16 in-
tervals). Multi-threading is used to allow for real-time re-
sponse, and we maintain a set of global variables that are
shared across the different threads, the most important of
which are listed below:

• time signature: An object containing a pair of integers
denoting the numerator (4, 6, 7, etc.) and denominator
(4, 8, or 16) of the time signature.

• qpm: A float indicating the speed (quarters-per-minute)
of playback. One quarter note is equal to four 16th notes,
so this value indicates the time needed to process four
16th note events.

• playable notes: A SortedList where we store each
playable note event. Each element contains the type of
playback event (click track, bass, drums, etc.), the note
pitch, the instrument itself (bass, keyboard, hi-hat, bass
drum, crash, etc.), and the 16th note in the bar where the
event occurs.

• bass line: Similar to playable notes but containing
only the current bassline.

• accumulated primer melody: A list which will ac-
cumulate the note pitches played by the human impro-
viser. Once enough notes have been accumulated they
will be sent as a ‘primer’ melody to MelodyRNN. This is
discussed in more detail in the Improvisation section.

• generated melody: A list containing the note pitches
produced by MelodyRNN. When full, the note pitches
played by the human will be replaced by the pitches in
this buffer.

The open source-code can be accessed at
https://github.com/psc-g/Psc2.

Click-track generation
The first step is setting the number of bars, time signature,
and tempo (qpm). The user may change the number of bars,
time signature numerator, and time signature denominator
via a set of buttons on the Nanokontrol2. The qpm may
be adjusted via a knob or by tapping the beat on a button.
These define the length and structure of the sequence, which
the system will loop over. Once these are set the user may
start playback by hitting the ‘play’ button on the Nanokon-
trol2. This will start a click-track which will make use of 3
different click sounds:

1. The first will play on the first beat of the first bar, to in-
dicate the start of the sequence. This is important for the
user to known the start of the sequence when recording a
bassline or chords.

2. The second will play on the first beat of the remaining
bars in the sequence (if at least two bars were selected)

3. The third will play within each bar at a frequency marked
by the time signature denominator: if the denominator is
4, it will play a click every four 16th notes; if it is 8, it
will play every two 16th notes; if it is 16 it will play a
click every 16th note.



Once the click-track has been started, the user can place
the system in one of four modes via buttons on the Nanokon-
trol2. When SuperCollider is in charge of producing sounds,
ach mode uses a different instrument for playback.
• bass: The user can record a bassline which will be looped

over. After entering this mode, recording begins as soon
as a note is pressed and proceeds until the end of the se-
quence is reached.

• chords: The user can play a set of chords to include in
the loop playback. As in bass mode, recording begins as
soon as a note is pressed and proceeds until the end of the
sequence is reached.

• improv: Used for improvising over the loop playback in
a call-and-response between the human and the machine
learning model. This mechanism is discussed in more de-
tail in the Improvisation section.

• free: Free-play mode, where the human can improvise
freely over the loop playback.

Drums generation
Our system generates two types of drum beats: a determin-
istic one and and another which is generated by a machine
learning model. The deterministic one is built off of the
bassline as follows:

1. A bass drum note is added at the first beat of every bar.
2. A snare note is added at each bass note onset.
3. Hi-hat notes are added at each 8th note (so every two 16th

notes).
By pressing one of the Nanokontrol2 buttons, this determin-
istic drum beat is fed into DrumsRNN as a ‘primer’ to pro-
duce a new beat. Figure 1 illustrates this process in musical
notation.

Improvisation
The improvisational part of our system is inspired on the
call-and-response improvisations that are common in tradi-
tional jazz. In these sections two or more musicians take
turns improvising over the same piece, and each musician
usually incorporates melodies and/or rhythms played by pre-
vious musicians into their improvisations.

There are two main components to an improvisation: the
pitches chosen and the rhythm of the notes. In our experi-
ence playing with generative models, such as MelodyRNN,
we found that the rhythm of the melodies produced is not
very reflective of the types of rhythms observed from pro-
fessional improvisers. This may be due in large part to the
16th note quantization that is necessary for training the mod-
els. To overcome this issue, we propose a hybrid approach:
the machine learning models provide the pitches, while the
human provides the rhythm.

The way this is achieved is as follows:
1. Collect the pitches played by the human improviser in the

accumulated primer melody global buffer.
2. Once the number of notes in the buffer is above a pre-

specified threshold, the buffer is fed into MelodyRNN as
a primer melody in a separate thread.

Add bass drum

Add snare drum

Add hi-hat

DrumsRNN

Figure 1: Building the drum beats. From top-to bottom:
starting from a specified bassline, bass drum notes are added
on the first beat of each bar, snare drum notes are added for
each bass-note onset, and finally hi-hat notes are added at
each 8th note. This deterministic drum beat can then be sent
as a ‘primer’ to DrumsRNN which will generate a new beat.

3. When the MelodyRNN thread has finished generating
a new melody, it will store only the pitches in the
generated melody buffer (the rhythmic information is
dropped).

4. When the main looper thread detects that the
generated melody buffer has been filled, it will inter-
cept incoming notes played by the user and replace their
pitches with the pitches stored in generated melody
(and removing said pitch from the buffer). Figure 2
illustrates this process.

5. Once generated melody is empty, return to step 1.

Our hybrid approach to machine-learning based improvi-
sation allows us to mitigate the two problems mentioned in
the introduction: real-time compatibility and stylistic per-
sonalization. The former is handled by performing the in-
ference in a separate thread and only using it when it is
available. The latter is handled by maintaining the rhyth-
mic inputs from the human performer. It has been found
that rhythm can significantly aid in facilitating melody de-
tection (Jones, 1987), which we believe also carries over to
enhancing the personalized style of performance. Further,
by leveraging the human’s rhythmic input, we are able to
avoid having the limitation of the 16th-note quantization that
the RNN models require.

We provide some videos demonstrating the
use of this system at https://github.com/psc-
g/Psc2/tree/master/research/nips2018.



Human

Improviser

MelodyRNN

[G, F, Bb, A, G, C, E, D]

Figure 2: Building the hybrid improvisation. 1. The melody from the human improviser (top-left) is fed into MelodyRNN.
2. MelodyRNN produces a new melody (top-right). 3. The human improviser plays a new melody (bottom-left). 4. A new
hybrid melody is created by combining the pitches from the MelodyRNN model with the rhythm from the most recent human
improvisation (bottom-right).

Evaluation
Our proposed system has been used for live jazz perfor-
mance in a piano-drums duet. The songs performed were
some that the duo regularly plays, and our system was
engaged during the improvisation sections of these songs.
Since there was a human drummer performing, only the im-
provisation (MelodyRNN) part of our system was used. We
report the feedback received from these performances.

Strengths
• The system was able to respond in real-time.
• The audience (many of which are familiarized with the

pianist’s style) reported not noticing that there was an ex-
ternal system affecting the improvisations (they were only
made aware of it after the show).

• The pianist felt creatively challenged when improvising
with the system engaged, which led to a different way of
playing.

Weaknesses
• The system did not work well on songs with many har-

monic changes.
• The system would sometimes break up the pianist’s lines

before they were done.
• The system would sometimes jump octaves when engag-

ing.

Conclusion and Future Work
In this paper we have introduced a system that enables the
integration of out-of-the-box deep learning models for live
improvisation. We have designed it in a way that it does not
require machine learning expertise to use, and can be ex-
tended to other types of musical generative models with little
effort. Our hybrid approach for generating machine-learning
based improvisations maintains the style of the human im-
proviser while producing novel improvised melodies.

Although our system was built with MelodyRNN and
DrumsRNN, the setup can be used with any musical genera-
tive model with relatively little effort. Along these lines, one
avenue we would like to explore in the future is the incorpo-
ration of models which do not require quantization, such as
PerformanceRNN (Simon and Oore, 2017); one challenge is

to ensure that the personal style of the human improviser is
maintained.

Expert musicians are able to produce high-quality im-
provisations consistently from having honed their craft over
many years of practice. A common frustration with these
artists, however, is that they often find their improvisations
too predictable, and struggle escaping their “pocket”. Our
hope is that systems like the one we are proposing here can
push expert musicians, and artists in general, out of their
comfort zone and in new directions they may not have cho-
sen to go to on their own. The experience of the pianist we
reported in the previous section perfectly showcases this.

We hope to improve the system by allowing the performer
to have more control over when the system begins recording,
and when the system replaces the notes. We have already
begun experimenting with this extra modality using a MIDI
footpedal. Initial experiments suggest this added level of
control mitigates for many of the issues raised by the hu-
man performer regarding the timing of when the system is
engaged, while maintaining the novelty of the melodies pro-
duced.

References
Bretan, M.; Oore, S.; Engel, J.; Eck, D.; and Heck, L. 2017.

Deep Music: Towards Musical Dialogue. In AAAI, 5081–
5082.

Fiebrink, R. 2009. Wekinator. http://www.
wekinator.org/.

Huang, C. A.; Vaswani, A.; Uszkoreit, J.; Shazeer, N.;
Hawthorne, C.; Dai, A. M.; Hoffman, M. D.; and Eck, D.
2019. An Improved Relative Self-Attention Mechanism
for Transformer with Application to Music Generation.

Johnson, D. D.; Keller, R. M.; and Weintraut, N. 2017.
Learning to Create Jazz Melodies Using a Product of Ex-
perts. In Proceedings of the The Eighth International
Conference on Computational Creativity.

Jones, M. R. 1987. Dynamic pattern structure in music:
Recent theory and research. Perception & Psychophysics
41(6):621–634.

Magenta, G. 2016a. Drumsrnn. https:
//github.com/tensorflow/magenta/tree/
master/magenta/models/drums_rnn.

http://www.wekinator.org/
http://www.wekinator.org/
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/drums_rnn


Magenta, G. 2016b. Melodyrnn. https:
//github.com/tensorflow/magenta/tree/
master/magenta/models/melody_rnn.

Pachet, F. 2003. The continuator: Musical interaction with
style. Journal of New Music Research 32(3):333–341.

Roberts, A.; Engel, J.; Raffel, C.; Hawthorne, C.; and Eck,
D. 2018. A Hierarchical Latent Vector Model for Learn-
ing Long-Term Structure in Music. In Proceedings of the
International Conference on Machine Learning.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. Na-
ture 323:533–.

Simon, I., and Oore, S. 2017. Performance rnn:
Generating music with expressive timing and dy-
namics. https://magenta.tensorflow.org/
performance-rnn.

Thom, B. 2000. Unsupervised Learning and Interactive
Jazz/Blues Improvisation. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence
(AAAI-2000).

Thom, B. 2001. Machine learning techniques for real-time
improvisational solo trading. In Proceedings of the 2001
International Computer Music Conference.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. 5998–6008.

Weinberg, G.; Malikarjuna, T.; ; and Raman, A. 2009. Inter-
active jamming with shimon: A social robotic musician.
In Proceedings of the ACM/IEEE International Confer-
ence on Human Robot Interaction, 233–234.

https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://github.com/tensorflow/magenta/tree/master/magenta/models/melody_rnn
https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn

	Introduction
	Background
	Related Work
	System setup
	Backend design
	Click-track generation
	Drums generation
	Improvisation

	Evaluation
	Strengths
	Weaknesses

	Conclusion and Future Work

