“She Offered No Argument”: Constrained Probabilistic Modeling
for Mnemonic Device Generation

Paul M. Bodily, Porter Glines, and Brandon Biggs
Department of Computer Science
Idaho State University
921 S. 8th Ave, Pocatello, ID 83209 USA
bodipaul @isu.edu, glinport@isu.edu, biggbran @isu.edu

Abstract

A common aspect to creativity as described by creative
theorists is the juxtaposition and balance of two op-
posing qualities, namely novelty and typicality. Prac-
tical models of computational creativity are needed that
effectively leverage the contributions of each of these
qualities in a synchronous manner. We discuss the ef-
fectiveness of constrained probabilistic models in rep-
resenting this duality in generative models of creativity.
We illustrate constrained Markov models as an example
of a constrained probabilistic model and demonstrate
its application to computational creativity in the elab-
oration of a system called NhMMonic for generating
mnemonic devices. We demonstrate the effectiveness of
the system' using a qualitative survey. Our findings sug-
gest that the constrained Markov model is particularly
effective at generating mnemonics that exhibit novelty
and typicality in grammatical and semantic flow with
the overall result of more effective mnemonics for the
purpose of memorization. Source code as well as our
mnemonic device generator are both freely accessible
online.

Introduction

Computational creativity (CC) has been defined as “the phi-
losophy, science and engineering of computational systems
which, by taking on particular responsibilities, exhibit be-
haviours that unbiased observers would deem to be creative”
(Colton and Wiggins 2012). The plural focus on the philos-
ophy, science and engineering of computational systems has
yielded valuable theoretical contributions as well as a num-
ber of functional creative systems. Emergent from this plu-
ral focus is the challenge of maintaining harmony between
theory and practice. To be sure the abstract philosophy and
concrete engineering can and should work to challenge one
another in their mutual growth and evolution; however, the
goal ultimately is to develop systems that accurately reflect
the philosophical moorings and to advance theories whose
tenets agree with what is observed about creativity in prac-
tice. Thus the role of practical models of creativity becomes
significant—models that, by virtue of their ability to imple-
ment principles deriving from the philosophy, can be gener-

'An interactive demo can be viewed at https://ccil.cs.
isu.edu/projects/mnemonic/

alized beyond any single creative system with great effect,
while maintaining ready applicability and implementability.
As described by Jordanous (2016), these models define the
creative process of a system, namely “what the creative in-
dividual does to be creative.”

Several examples of practical models of creativity have
been demonstrated. Evolutionary models represent a prac-
tical implementation of the widely-accepted theory that cre-
ativity is a self-evaluative, iterative process as discussed by
Csikszentmihalyi (1996) (e.g., see Morris et al. (2012)). Re-
lated is the model of a dynamic knowledge base (Pérez y
Pérez and Sharples 2004) in which novel artefacts that have
been evaluated as belonging to the domain are added to a
system’s set of exemplars, possibly altering the definition
of the domain itself (e.g., as discussed by Boden (2003)).
Generate-and-check is another model that has been sug-
gested as being representative of the creative process (Pease,
Guhe, and Smaill 2010).

In considering the modeling of theoretical aspects of cre-
ativity, one particularly intriguing aspect that is often dis-
cussed is the tenuous balance that a creative system must
maintain between novelty and typicality—the adherence
to structural domain-defining rules combined with an ex-
ploratory discovery of new, valuable artefacts. These two
characteristics can sometimes seem at odds with one an-
other; a creative system must both obey norms at some level
and break them entirely at other levels. It is the juxtaposition
of these qualities that evokes the perception of creativity: the
observer recognizes and appreciates an artefact relative to its
contextual domain while at the same time being challenged
and surprised as a result of the artefact’s unique traits and
value. Csikszentmihdlyi (1996) emphasizes that creativity
stems from a person learning the rules of and basic proce-
dures of a domain and then channeling thinking based on
those rules in new directions. Saunders and Gero (2001)
puts novelty and typicality on a spectrum called the Wundt
curve or “hedonic function” and frames successful creativity
in terms of finding the correct balance of typicality and nov-
elty (see Figure 1). Margaret Boden (2003), in her seminal
work The Creative Mind: Myths and Mechanisms, compares
(exploratory) creativity to navigating a “structured concep-
tual space” to find “things you’d never noticed before.” Wig-
gins (2006) elaborates a formal mechanism of Boden’s con-
cept of creativity by defining two rule sets, # and 7. Of

HEDONIC VALUE
o

Figure 1: The Wundt curve models value as the sum of
two nonlinear functions: H, which rewards novelty, and N,
which punishes novelty beyond some threshold of typicality,
from Saunders and Gero (2001).

these two sets Z is a set of rules which “constrain the space”
to a representation of “the agreed nature of what the arte-
fact is, in the abstract”; .7, by contrast, is a set of traversal
rules which, when constructed effectively, is designed to find
concepts that have not been previously discovered. Ritchie
(2007), in defining empirical criteria for attributing creativ-
ity to a computer program, defines three essential properties,
two of which are novelty and typicality (the third is quality,
which Boden also emphasizes and which we will discuss be-
low).

Many existing abstract frameworks for building creative
systems have been described, several of which explicitly
model the components of novelty and typicality (e.g., (Ven-
tura 2017)). Our purpose is not to present a new framework
or pattern for creative systems; rather our purpose is to dis-
cuss from an implementation standpoint how typicality and
novelty can be modeled so as to explicitly leverage their
unique contributions and simultaneously ensure that both
are effectively achieved. In what follows we examine the
suitability of a previously unexplored model in CC—a con-
strained probabilistic model—for this purpose. We describe
how the dual nature of this model mirrors the dual prop-
erties of typicality and novelty and how the model strikes
an appropriate balance between them. As a concrete ex-
ample of the effective application of these models to gen-
erate novelty and typicality, we describe an implementation
of a constrained Markov model, NhMMonic, for generating
mnemonic devices. We show using evaluative surveys that
the system generates mnemonics that demonstrate typicality,
novelty, and value (as measured by how well the mnemonic
facilitates memorization and learning).

Parallels Between Computational Creativity
and Constrained Probabilistic Modeling

Computational creativity can be thought of as a generative
act in which, for some particular domain, the set of possi-
ble artefacts D = {x1,...,x,} is represented as a random

variable X that with probability P(x;) takes on the value
z;. The primary strength of probabilistic models is that they
generalize well from a set of training examples to be able
to generate novel artefacts. Inasmuch as this generaliza-
tion is accomplished independent of the biases of the sys-
tem designer, it lends strength to the argument that proba-
bilistic systems possess some degree of autonomy beyond
manually-crafted rule-based systems. In practice, imple-
menting a creative system in this manner presents two chal-
lenges.

One challenge is determining the probability distribution
P(X): with what probability should the model generate a
particular z;? This challenge can be solved explicitly—as
in the case of systems that manually encode a generative
process—or implicitly—as in the case of systems that at-
tempt to learn abstract statistical properties from a set of
training examples.

Prior to or in the course of resolving the first challenge, we
face a second, more formidable challenge: defining the do-
main D itself. Decisions about whether a particular artefact
x; belongs or does not belong to D can vary from one indi-
vidual to the next (Koren 2010). For now let us assume that
D exists as a “fuzzy” subset of some larger domain, which
we shall call Up and which represents the universal set of
all artefacts that can be represented using the same language
with which artefacts in D are represented. For example, the
domain of haiku exists as a subdomain of natural language
generally. The domain of musical chorales exists as a sub-
domain of musical compositions generally. The fuzziness of
the set D can derive from a variety of issues such as the dif-
ficulty in precisely defining D or the willingness of domain
experts to accept artefacts that (to varying extents) break the
rules typical of an artefact in D.

Any particular creative system defines a set that more or
less approximates D and possibly includes some artefacts
that are less commonly agreed upon as belonging to D (see
Figure 2). How this set is implemented is important in de-
signing creative systems that efficiently generate artefacts in
D. For rule-based systems, the rules by which an artefact
belongs within the set are hard-coded; logic is designed to
prevent consideration of artefacts that break rules of the do-
main beyond some threshold. For evolutionary models, this
set can be defined by designing a fitness function that pe-
nalizes artefacts outside of this domain. The set can also be
defined as a set of constraints given as input to a constraint
satisfaction solver, but with limited sense of how good one
solution is with respect to another (Onarheim and Biskjaer
2017).

In the process of generalization, probabilistic models
trained with artefacts from D are typically capable of gener-
ating artefacts that do not belong in D. Increased expressive
power in these models (i.e., the ability to generalize novel
solutions) derives from maximizing independence relation-
ships between elements of an artefact (e.g., being able to
model rhythm and pitch separately in a music composition).
This process can, however, lead to the generation of arte-
facts whose combined elements produce artefacts that most
would agree do not belong in D.

Suboptimal solutions exist to ensure that a probabilistic

Artificial boundary for D

Figure 2: In many forms of creativity, the set of domain arte-
facts D exists as a structured subset of a larger domain Up of
all artefacts that can be represented using the same language
as is used to describe artefacts in D. Due to the inherent
difficulty of defining belonging to a particular domain for a
general audience, the set of artefacts included in D is in re-
ality somewhat vague. In practice creative systems define a
set that approximates D which defines the expressive range
of the model. The extent to which this set includes or ex-
cludes artefacts that are commonly accepted as belonging to
D controls how conservative or liberal the model will be in
judging whether or not an artefact is representative of the
domain.

model generates artefacts within the domain D of interest.
Probabilistic models could ensure their output by minimiz-
ing independence assumptions (i.e., forcing the model to
generate solutions more similar to the training data). This
solution significantly decreases the model’s ability to dis-
cover novelty from the training data. This solution also re-
quires training on data that is more precisely representative
of D. A second suboptimal solution is the generate-and-
check or rejection sampling model: probabilistically gener-
ate artefacts using the over-generalized model and then fil-
ter results to those within the D (Pease, Guhe, and Smaill
2010). This solution not only creates inefficiencies, but of-
ten assigns low probability to artefacts belonging to D (Ven-
tura 2017). In such cases it becomes improbable that the
system generates valid artefacts in reasonable time (Pachet,
Roy, and Barbieri 2011).

A better solution to the problem of enforcing the model’s
domain of artefacts is the incorporation of constraints into
a model that maintains probabilistic reasoning. The “funda-
mental entwinement of constraints and creativity” has been
noted as an area of recent interest for creativity research,
“with skillful and innovative handling of constraints seen as
a prerequisite for apt creative performance” (Onarheim and
Biskjaer 2017).

A constrained probabilistic model defines a set of rules for
belonging in D as a set of constraints C. Given C and a prob-
ability distribution Py, () for all artefacts in z; € Up,
a constrained probabilistic model defines the probability of
generating an artefact x; as

Py, (x;) if z; satisfies C
P(x; P)
() o {0 otherwise

By defining constraints explicitly, the model can be trained
on artefacts from Up generally, maintain independence as-
sumptions that maximize expressivity, and ensure probabil-
ity within the generative model is only assigned to artefacts
which belong to D.

There are several types of constrained probabilistic mod-
els including multi-valued decision diagrams (MDDs) for
sequential domains (Perez and Régin 2017); MDDs that
enforce constraints on non-discretized temporal sequences
(Roy et al. 2016); factor graphs for imposing constraints
represented as regular languages Papadopoulos et al.; and
non-homogeneous Markov models (Pachet, Roy, and Barbi-
eri 2011). Each model incorporates a probabilistic element
designed to imitate statistical properties of a corpus—with
model parameters (e.g., Markov order or context length)
that control the degree of similarity to the corpus—and con-
straints to guarantee specifiable characteristics of the appli-
cation domain. Previous work has also shown how con-
straints can be used avoid plagiarism (i.e., limit the model’s
output domain to D less the artefacts used for training) (Pa-
padopoulos and Roy 2014). It is of interest to note that
much of the language used to describe the implementation
of these models mirrors closely the language used to by cre-
ative theorists to describe the relationship between novelty
and typicality. For example, Perez and Régin (2017) de-
scribe the process by which the model generates new phrases
as a “sampling of the solution set while respecting probabil-
ities,” specifying that the solution set “incorporate[s] some
side constraints defining the type of phrases we would like
to obtain.”

Quality Assurance

We have discussed how constrained probabilistic models are
well-suited for explicitly modeling typicality and novelty,
but what about quality? As Boden (2003) puts it, “a com-
puter could merrily produce novel combinations till king-
dom come. But would they be of any interest?” How well
are constrained probabilistic models able to produce or eval-
uate quality?

To the extent that quality can be represented in either
the system’s probabilistic model and/or the system’s con-
straint set, a constrained probabilistic model is naturally en-
dowed with a function for evaluating the quality of the arte-
facts. By structuring the system’s probabilistic model such
that high quality artefacts (by some definition of quality)
are assigned higher probability, the system will naturally
gravitate towards stochastically generating artefacts of value
(as will be shown in our demonstrative example). In cases
where quality is a function of the presence or absence of cer-
tain characteristics (consider, for example, assessing quality
based on the presence of satisfactory rhymes), the system’s
constraints can ensure that only artefacts of some minimum
quality threshold are generated.

A constrained probabilistic model thus does not define
its own function for evaluating quality, but does inherently
encode one in the forms of probabilistic models and sets
of constraints (both of which could be explicitly defined
or themselves learned from some training data, as demon-
strated in (Bodily, Bay, and Ventura 2017)).

Non-Homogeneous Markov Models

We describe a computational creative system for generat-
ing mnemonic devices using a non-homogeneous Markov
model (NHMM), a constrained probabilistic model that is
also called a constrained Markov model (Pachet, Roy, and
Barbieri 2011).

A Markov model M is a stochastic, probabilistic model
defined over a finite state space that strictly adheres to the
Markov property, meaning M is memory-less beyond a fi-
nite window. The set of all sequences s = s1,...,s, of
length n generated by M is represented by S (in our current
example this can be thought of as being equivalent to Up
from above). Every sequence s € S has a non-zero proba-
bility equivalent to

Pr(s) = Pum(s1) - Prm(s2ls1) -+ Pu(silsn—1)

M is constructed by computing the probability matrix Py
from training examples.

A non-homogeneous Markov model N is constructed
from a Markov model M, a sequence length [, and a finite
sequence of unary constraints {C, ..., C;}. The set of so-
lutions for A\ is represented by S¢ (equivalent to bounded
D from above). With the constraints applied to V, the prob-
abilities of sequences generated by N must equal the prob-
ability of the same sequence generated by M:

Pp(s) ifse Se
P -
w(s) { 0 otherwise

N finitially constructs [— 1 probability matrices identical
to Py in M, one for each transition in the sequence to be
generated. States or transitions that violate a constraint are
removed. Arc consistency is then enforced on the probabil-
ity matrices, meaning that states or transitions that do not
lead to a solution s € S¢ are removed (see Figure 3b). Be-
cause the probability matrices in the NHMM are arc con-
sistent and therefore non-zero probabilities are guaranteed
to lead to a solution s € S¢. This guarantee of solutions
avoids the inefficiency generate-and-check where nearly all
samples are rejected when the probability of a solution is
small. Finally, the model is re-normalized such that proba-
bilities Ppr(s) = Pum(s|s € S¢) (Pachet, Roy, and Barbieri
2011).

NHMMs have been applied to model music generation,
generating melodies constrained to begin and end on the
same note (Pachet, Roy, and Barbieri 2011). Barbieri et al.
(2012) apply NHMMs to generate lyrics matching rhyme,
syllable stress, part-of-speech, and semantic constraints.

NhMMonic

Here we demonstrate the application of constrained proba-
bilistic modeling to computational creativity through non-
homogeneous Markov modeling of mnemonics (abbreviated
as NhMMonic). We define a mnemonic task as a sequence
of words s = s1,...,; to be memorized. A mnemonic de-
vice then is a sequence of words m = mg,...,my; of the
same length generated such that for all 1 < ¢ < [the first
letters in the words s; and m; are constrained to be the same
(see Figure 3). The primary purpose of a mnemonic device

is to aid in memorization of the order and/or identity of a s
by finding a more memorable sequence m that through its
constrained similarity to s can serve as a reminder of s. The
value of an artefact in this domain is heavily predicated on
its effectiveness in facilitating memory.

To our knowledge no mnemonic device generation mod-
els have been formally presented. We find that most avail-
able Mnemonic generation tools online use what we will call
a template method. The template method for mnemonic gen-
eration first determines a sequence of part of speech con-
straints as a function of the length [of the sequence to be
generated. Words matching these constraints and the afore-
mentioned first-letter constraints are randomly selected from
a word bank to fit into the specific sentence structure. The
shortcoming to most template-based methods is that they do
not model transitions between words, resulting in phrases
that exhibit grammatical cohesion, but not semantic cohe-
sion.

Because NHMMs explicitly model transitions between
words while allowing for constraints, we consider this model
a good candidate for the mnemonic problem. Although
NHMMs can and have been used to impose part-of-speech
constraints or templates, we chose not to include these
constraints in our NHMM implementations preferring to
demonstrate that even a relatively simple NHMM can pro-
vide good results. While we expect both models to be
capable of generating novelty (or uniqueness as it is la-
beled in our survey), we expect NHMMs to outperform
other mnemonic device models when it comes to the aspects
of typicality relating to grammatical/semantic cohesion and
ease of memorization.

Methods

In assessing the NhMMonic system we applied two vari-
ants of NHMMs. NHMM-1 has a Markov order of 1 and
NHMM-2 has a Markov order of 2 (essentially treating each
pair of words as a single state token). A higher Markov or-
der allows the mnemonic output to more closely resemble
the sample text, increasing the model’s cohesion and typi-
cality. A drawback of having a higher Markov order is that
fewer solutions s € S¢ are found and in some cases no so-
lutions are found given finite training sentences. NHMM-1,
with its lower Markov order, allows our system to find solu-
tions when NHMM-2 does not.

For a mnemonic task s = sj,...,s;, we derive a unary
constraint oat position ¢ to ensure that the first character of
the sequence variable m; matches the first given letter of
s;. For the purposes of improved readability of generated
mnemonics we impose a few additional constraints. For
NHMM-1, we constrain each sequence variables m; to be
at least 4 letters long and the last variable m; to have ended
a sentence in the training set. For NHMM-2 the only added
constraint is to ensure that the last variable m; is not a pro-
noun, preposition, conjunction, or determiner.

The code for the NHMMs used by the NhMMonic sys-
tem are available in both a C++ implementation” (used for

https://github.com/po-gl/
ConstrainedMarkovModel

Stream-enterer, Once-returner, Non-returner, Arahant
(a) A Mnemonic Task

Must start with S
(b) Constrained Probabilistic Model (NHMM)

Must start with O

Must start with N Must start with A

“She offered no argument”

(c) Mnemonic Device Generation

Figure 3: The NhMMonic model. (a) A mnemonic task
(i.e., the four stages of enlightenment) to be memorized.
(b) A non-homogeneous Markov model built to solve the
mnemonic task. Mj, M, and M3 represent Markov con-
straints; C7, Cy, C3, and Cy denote unary constraints de-
rived from the task. Nodes marked with white X’s are re-
moved due to violation of unary constraints while the node
marked with a grey X is removed to keep the model arc con-
sistent. Edge labels indicate transition probabilities. (c) A
possible mnemonic generated by the model.

NHMM-1) and a Java implementation3 (used for NHMM-2)
online

Results

To evaluate the use of constrained Markov models for gen-
erating mnemonic devices, we devised an online survey to
compare four different mnemonic device generation mod-
els:

o Template—a third-party model* that selects a part-of-
speech template to match the desired sequence length and
then randomly selects words matching part of speech and
initial letter constraints from a hand-crafted word bank.

o NHMM-0—a model which randomly selects words
matching initial letter constraints with probability derived
from word frequencies in the training corpus.

o NHMM-1—a first-order NHMM as described above.
o NHMM-2—a second-order NHMM as described above.

The latter three models were trained on the COCA dataset
(Davies 2009). NHMM-0 and NHMM-1 were trained on 6.8
million sentences from fictional works written between the

*https://github.com/norkish/downbythebay/
tree/master/DownByTheBay/src/dbtb/markov
4 Available via https: //spacefem. com/mnemonics

years 1995 and 2015 while NHMM-2 trained on 3 million
sentences from the same works.

Each model was used to generate 4 mnemonic devices
for each of 19 different memorization tasks® (Figure 6
shows some examples of tasks included in the experiment).
NHMM-2 was able to find satisfying solutions to 12 of the
tasks.

To evaluate the generated mnemonics, we designed a sur-
vey in which each evaluation consisted of four parts:

1. The respondent was shown one of the 19 memorization
tasks for 10 seconds.

2. The respondent was then shown a mnemonic device for
the memorization task for 10 seconds (selected randomly
from those generated by the four models).

3. The respondent was then given the (unordered) words
from the original memorization task and asked to put them
in the correct order based on his/her memory of the task
and the mnemonic.

4. Lastly the respondent was asked to evaluate the
mnemonic device (using Likert scales from 1 to 5) for

(a) memory—ease of memorization

(b) flow—grammatical/semantic coherence
(c) creativity—overall creative value

(d) uniqueness—degree of novelty

Each respondent completed four evaluations in this manner.

A total of 80 individuals completed the survey for a to-
tal of 320 mnemonic device evaluations. The survey was
distributed to different social media websites, such as Red-
dit, Facebook, and Twitter. No personal information was
gathered before or after the survey was taken. Figure 4
shows average scores for the four evaluated characteris-
tics by model. The NHMM-2 model made notable im-
provements over other models in the categories of ease of
memorization (memory) and grammatical/semantic cohe-
sion (flow). Although the NHMM-0 model performed rel-
atively poorly on memory, flow, and creativity, this model
was considered equally capable of generating novelty (i.e.,
uniqueness).

Figure 5 shows the impact of task length on ease of mem-
orization, showing generally that the longer a mnemonic
task is, the more difficult mnemonics generated for the task
are to remember. The graph also shows, however, that the
NHMMs and NHMM-2 in particular, is able to generate
mnemonics that maintain ease of memorization even for
longer tasks.

Figure 6 shows seven mnemonic device tasks together
with the highest-rated mnemonic devices (as per average
memory score) generated by NhMMonic for the task.

Discussion

Survey results demonstrate that increased grammati-
cal/semantic cohesion afforded by probabilistic Markov
models are associated with gains in ease of memorization.

SMnemonics for all models can be seen at https://
tinyurl.com/yxczxjh7

4

3=} w

Average Survey Rating

Ili uidli

Memory Flow Creativity Uniqueness
NHMM-0 B NHMM-1 B NHMM-2

[=]

B Template

Figure 4: Survey Results. Average ratings from 320 evalua-
tions across four metrics for four different mnemonic device
generation algorithms. Error bars are standard deviation.
The ease of memorization of mnemonics from the NHMM-
2 model appears to be associated with improved flow with
respect to other models.

] 5
3
2 4
.
g 3
g
L5
2 2
%)
on
= 1
5
< 0
4 5 6 7 8 9 10
Length of Mnemonic
—=— Template NHMM-0 —=— NHMM-1 —— NHMM-2

Figure 5: Impact of Task Length. As the length of the mem-
orization task increases, the effectiveness of mnemonic de-
vices decreases across all models, but at a much lesser rate
for the NHMM-1 and NHMM-2 models. We hypothesize
that this is owing to the sustained grammatical and semantic
flow that these models achieve from the constrained Markov
model.

The fact that increasing the Markov order leads to further
gains in both flow and memory is further evidence of this
correlation. These gains from increasing the Markov order
were also mirrored in increased creativity scores, suggesting
that in the domain of mnemonic device generation, there is
an association between the creative success of a mnemonic
device and how easily it can be remembered.

This association between the success or popularity of an
artefact and the ease with which the brain is able to pro-
cess and remember it has been observed in creative domains
that do not deal directly with memorization tasks. A no-
table example is the study by Nunes, Ordanini, and Valsesia
(2014) that demonstrates an association between the popu-
larity of music and the degree of repetition in the song. Re-
searchers observed that increased repetitiveness contributed
to higher “processing fluency”’, meaning the ease with which
the brain is able to grasp a new concept or artefact. A
constrained Markov model, through its probabilistic transi-
tion model, naturally assigns higher probability to frequent
word transitions (which we might assume have higher pro-
cessing fluency) while using constraints to ensure that gen-
erated mnemonics also satisfy the basic requirements of a
mnemonic device.

As is typical of Markov-based models, increasing the
Markov order can also have negative consequences. The
higher the order the more similarity exists between gener-
ated artefacts and the training data. Increasing the order also
increases the likelihood of the model not being able to find a
solution that satisfies both the (now more stringent) Markov
constraints and non-Markovian constraints. Both of these
problems can be overcome by training on more training data,
but the amount of training data needed to sufficiently erad-
icate the problem increases exponentially with the Markov
order.

Independent of the model training, some mnemonic tasks
are inherently more difficult owing to the low frequency of
words and word beginning with certain letters (this is, of
course, language-specific). Consider for example trying to
devise a mnemonic device in the English language for the
first five dynasties of China, “Neolithic, Xia, Shang, Zhou,
Qin”. Solutions certainly exist, but unless the model sees
examples in training of word pairs that would be suitable for
each word pair in the task (less likely for infrequent collo-
cates), the model will not be able to find them. On these
types of tasks we might expect the non-Markovian models
to perform better.

We considered other variations of constraints that might
have further improved the results of our model. One im-
provement considered was to constrain more than just the
first letter of each word in the mnemonic to match the task.
We thought this might further increase the ease of memo-
rization. However, it is generally the case that as constraints
become more strict, the model is able to find fewer solutions,
often leading to the model being unable to find satisfying
solutions. Another improvement we considered was com-
bining the Template and NHMM approaches through part of
speech constraints in the NHMM model. We also considered
ways to impose semantic themes within mnemonic devices
either through unary semantic constraints or through vary-

Four Stages of Enlightenment: Stream-enterer, Once-returner, Non-returner, Arahant

“She offered no argument”

(NHMM-2, 5.0)

Dantes 9 Circles of Hell: Limbo, Lust, Gluttony, Greed, Anger, Heresy, Violence, Fraud, Treachery

“Lovely little girl giggles as his voice for them”

(NHMM-1, 5.0)

Last 10 Winners of the FIFA World Cup: France, Germany, Spain, Italy, Brazil, France, Brazil, West Germany, Argentina, Italy
“Four-year-old grandson she is bumped from behind with an inflection” (NHMM-2, 4.0)

First 9 ICCC Locations: Lisbon, Mexico City, Dublin, Sydney, Ljubljana, Park City, Paris, Atlanta, Salamanca

“Like most days she looked pretty puny and sickly”

Stages of Grief: Denial, Anger, Bargaining, Depression, Acceptance

“Dreams about being dragged against”

(NHMM-2, 4.5)

(NHMM-1, 5.0)

Levels of Biological Organization: Biosphere, Ecosystem, Community, Population, Organism, Organ System, Organ, Tissue, Cell, Molecule

“Blue eyes could pick out one of those clownish men”

(NHMM-2, 4.5)

Cell Mitosis Cycle: Interphase, Prophase, Prometaphase, Metaphase, Anaphase, Telophase, Cytokinesis

“I pushed past me and the career”

(NHMM-2, 5.0)

Figure 6: Top-rated mnemonics generated by NhMMonic. Seven mnemonic device tasks are shown. Each task consists of a
description (bold and underlined) followed by a list of words requiring a mnemonic device. Below each task is the NnMMonic-
generated mnemonic device that received the highest memorization score (with the exact model and score given in parentheses).

ing the training data. We leave these as exploratory ideas for
future work.

Many forms of creativity have relational structure (e.g.,
rhyme schemes, repeated motifs, etc.). Unlike the example
we have shown here which uses solely unary constraints, re-
lational structure is most effectively realized using binary
constraints. Sampling from constrained Markov models
with binary constraints is known to be a much harder prob-
lem (see (Rivaud and Pachet 2017)), however recent work
has been done towards providing reasonable solutions (Pa-
padopoulos et al. 2015; Roy et al. 2016). This has relevance
for imposing semantic constraints in models of mnemonic
device generation because binary constraints can effectively
be used to impose floating constraints (i.e., constraints that
can be satisfied at variable positions) rather than specifying
a specific word position where semantic constraints must be
satisfied.

NHMM doesn’t directly model all aspects of creativity.
For example intention, explicit self-evaluation, others? Con-
straints themselves can be learned or imitated. One ramifi-
cation of learned constraints is that in addition to whatever
constraints are required to define typicality, additional con-
straints could themselves be probabilistically applied in gen-
erating artefacts. This would allow constraints to be “bro-
ken” (or rather never applied) with some degree of probabil-
ity, demonstrating a method by which rules can be “intelli-
gently” broken.

In this work we have discussed aspects of constrained
probabilistic modeling that are well-suited for consistently
generating novelty and typicality in computational creative
artefacts. As an example, we have demonstrated the ap-
plication of non-homogeneous Markov models to the prob-
lem of mnemonic device generation. Our results suggest
that the constrained Markov model approach is able to ef-
fectively generate mnemonic devices that satisfy basic re-
quirements of mnemonic devices while exhibiting elevated

levels of grammatical/semantic flow, ease of memorization,
and creative value.

Acknowledgements

Many thanks to the team at spacefem.com for their assis-
tance using the spacefem mnemonic device generator.

References

Barbieri, G.; Pachet, F.; Roy, P.; and Esposti, M. D. 2012.
Markov constraints for generating lyrics with style. In Pro-
ceedings of the Twentieth European Conference on Artificial
Intelligence, 115-120.

Boden, M. A. 2003. The Creative Mind: Myths and Mech-
anisms, Second Edition. Routledge.

Bodily, P.; Bay, B.; and Ventura, D. 2017. Computational
creativity via human-level concept learning. In Proceedings
of the Eighth International Conference on Computational
Creativity, 57-64.

Colton, S., and Wiggins, G. A. 2012. Computational cre-
ativity: The final frontier? In Proceedings of the Twentieth
European Conference on Artificial Intelligence, 21-26. 10S
Press.

Csikszentmihdlyi, M. 1996. Flow and the Psychology of
Discovery and Invention. Harper Perennial.

Davies, M. 2009. The 385+ million word Corpus of Con-
temporary American English (1990-2008+): Design, archi-
tecture, and linguistic insights. International Journal of Cor-
pus Linguistics 14(2):159-190.

Jordanous, A. 2016. Four PPPPerspectives on computa-

tional creativity in theory and in practice. Connection Sci-
ence 28(2):194-216.

Koren, L. 2010. Which "aesthetics” do you mean? : Ten
definitions. Point Reyes, California: Imperfect Publishing.

Morris, R. G.; Burton, S. H.; Bodily, P. M.; and Ventura, D.
2012. Soup Over Bean of Pure Joy : Culinary ruminations of
an artificial chef. In Proceedings of the Third International
Conference on Computational Creativity, 119—125.

Nunes, J. C.; Ordanini, A.; and Valsesia, F. 2014. The power
of repetition: Repetitive lyrics in a song increase processing
fluency and drive market success. Journal of Consumer Psy-
chology 25(2):187-199.

Onarheim, B., and Biskjaer, M. M. 2017. Balancing con-
straints and the sweet spot as coming topics for creativity
research. In Creativity in design: Understanding, capturing,
supporting. APA.

Pachet, F.; Roy, P.; and Barbieri, G. 2011. Finite-length
Markov processes with constraints. In Proceedings of the
Twenty-Second International Joint Conference on Artificial
Intelligence.

Papadopoulos, A., and Roy, P. 2014. Avoiding plagiarism in
Markov sequence generation. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2731—
2737.

Papadopoulos, A.; Pachet, F.; Roy, P.; and Sakellariou, J.
2015. Exact sampling for regular and Markov constraints
with belief propagation. In Proceedings of the International
Conference on Principles and Practice of Constraint Pro-
gramming, 341-350. Springer.

Pease, A.; Guhe, M.; and Smaill, A. 2010. Some aspects of
analogical reasoning in mathematical creativity. In Proceed-
ings of the First International Conference on Computational
Creativity, 60—64.

Perez, G., and Régin, J.-C. 2017. MDDs: Sampling
and probability constraints. In Proceedings of the Twenty-
Third International Conference on Principles and Practice
of Constraint Programming., 226-242. Springer, Cham.

Pérez y Pérez, R., and Sharples, M. 2004. Three computer-
based models of storytelling: BRUTUS, MINSTREL and
MEXICA. Knowledge-Based Systems.

Ritchie, G. 2007. Some empirical criteria for attributing
creativity to a computer program. Minds and Machines
17(1):67-99.

Rivaud, S., and Pachet, F. 2017. Sampling Markov models
under constraints: Complexity results for binary equalities
and grammar membership. arXiv preprint.

Roy, P.; Perez, G.; Régin, J.-C.; Papadopoulos, A.; Pachet,
F.; and Marchini, M. 2016. Enforcing Structure on Tem-
poral Sequences: The Allen Constraint. In Proceedings of
the International Conference on Principles and Practice of
Constraint Programming, 786—801. Springer.

Saunders, R., and Gero, J. S. 2001. The Digital Clockwork
Muse: A Computational Model of Aesthetic Evolution. In
Proceedings of the Artificial Intelligence and Simulation of
Behavior Convention, 12-21.

Ventura, D. 2017. How to Build a CC System. In Pro-
ceedings of the Eighth International Conference on Compu-
tational Creativity, 253-260.

Wiggins, G. A. 2006. A preliminary framework for

description, analysis and comparison of creative systems.
Knowledge-Based Systems 19(7):449-458.

