
Software Design Patterns of Computational Creativity: A Systematic Mapping
Study

Porter Glines, Isaac Griffith, and Paul M. Bodily
Department of Computer Science

Idaho State University
921 S. 8th Ave, Pocatello, ID 83209 USA

glinport@isu.edu, grifisaa@isu.edu, bodipaul@isu.edu

Abstract

Software design patterns can be helpful in describing the ar-
chitecture of a system. Our objective is to obtain a broad
overview of the current state-of-the-art of software design
patterns used in Computational Creative (CC) systems. We
conducted a systematic mapping study using manual and
snowballing search techniques. Only 7 primary studies are
identified in the CC community that explicitly mention the
use of design patterns. Within these primary studies, 14 de-
sign patterns are mentioned, 12 of which are user-interaction
design patterns rather than software design patterns describ-
ing the architecture of the system. The small number of pri-
mary studies indicates a gap in CC literature regarding the use
of software design patterns in CC systems and motivates the
need for research to identify software design patterns specific
to CC systems.

Introduction
As computationally creative (CC) systems strive to become
more creative, they tend to require an increasing number of
behaviors. CC systems strive to have behaviors such as self-
evaluation, a knowledge-base, and ultimately an understand-
ing of the world — all of which are added to push creative
systems further along in the spectrum of creative systems
(Ventura 2016; 2017; Glines, Biggs, and Bodily 2020).

Each desired system behavior adds another design chal-
lenge when creating a CC system. Each design challenge
comes with an opportunity to introduce elements into the
system that are not easily maintainable, reusable, or un-
derstandable. To avoid common design challenges, system
builders can use software design patterns to implement com-
mon system behaviors.

Software design patterns, which we will refer to as “de-
sign patterns”, are general, reusable solutions to commonly
occurring problems in software development. In 1994, a
team of researchers referred to as the “Gang of Four” iden-
tified the foundational 23 design patterns in their work “De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware” that has since become a standard part of collegiate
computer science curriculum (Gamma et al. 1994). Since
then, many more design patterns have been identified like
model-view-controller, delegation, blackboard, etc. Practi-
tioners use design patterns with the goal of improving main-
tainability, scalability, reusability, understandability, among

other quality attributes (Zhu 2009). However, there is debate
as to the effectiveness of design patterns. Some studies have
shown that design patterns can negatively affect quality at-
tributes, but conclude that more research is needed (Khomh
and Gueheneuc 2008). Though design patterns may nega-
tively affect quality, they have shown to improve maintain-
ability (Zhang and Budgen 2012). Overall, it appears that
design patterns should be applied to the problem they solve
while considering the consequences they can bring.

The potential benefits of design patterns motivates the de-
sire to identify design patterns for CC systems. Ventura
(2017) identifies a general architectural pattern for building
a CC system for any arbitrary domain — see Figure 1. In
the architectural pattern, a system builder first chooses a do-
main in which the system operates. Then internal and ex-
ternal representations of artifacts are designed, a knowledge
base of the domain is collected, a conceptualization or model
is chosen to generate artifacts, an aesthetic is chosen to in-
fluence how the system learns, and finally an evaluator for
artifacts is designed. Note that the architectural pattern for
CC systems describes easily separated components that feed
into an overarching architecture: a knowledge base, genera-
tor (model), aesthetic, and evaluator. Ventura argues that it
is worth spending “significant” time searching for existing
implementations for these components rather than building
them from scratch. This argument for more reuse in CC sys-
tems further motivates the desire for maintainable and easily
communicable code underlying these systems.

The goal of this paper is to provide a broad overview to re-
searchers and practitioners of the state-of-the-art in CC sys-
tems with regards to the software design patterns used to
build them. To provide this broad overview, a systematic
mapping study will be performed as described by Peterson
et al. (2008; 2015). Our systematic mapping study consoli-
dates the use of software design patterns from 30 papers that
present CC systems. This paper aims to provide insights to
researchers and practitioners regarding how and when de-
sign patterns are used in CC systems to facilitate building
systems that are easier to maintain, reuse, and understand.

There are currently no studies providing an overview of
design patterns used in CC systems. This paper aims to fill
this gap in the literature.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

218



Table 1: Research questions along with their rationale.
Research Question Rationale

RQ1 What design patterns are mentioned in CC literature? The aim is to explore works published in the field of CC,
identify what design patterns are commonly used, and in-
form researchers what those patterns are.

RQ2 Are there software design patterns devised specifically for
CC systems?

The aim is to inform researchers, especially those new to
the field, of field-specific design patterns.

RQ3 Of the CC literature that mentions design patterns, what
conferences and journals are represented?

The aim is to inform researchers when and where these
papers are being published to better direct research re-
sources.

Table 2: Inclusion and exclusion criteria for selection of pri-
mary studies.

Inclusion criteria
• English language articles.
• Peer-reviewed conferences or journals articles.
• Articles published between January 2010 and Septem-

ber 2020.
• Studies that relate to the field of CC.
• Studies that mention a keyword identified as relating to

design patterns, whether high level or otherwise.

Exclusion criteria
• Studies that do not mention a design pattern of any

kind.
• Articles that present frameworks for building CC sys-

tems but do not identify or name a design pattern.

Methods
Systematic mapping studies are used to provide a broad but
rigorous review of the literature with the goal of revealing
gaps in the literature. The systematic mapping study in this
paper is conducted as described by Peterson et al. (2008;
2015). Planning of the mapping study is described, includ-
ing identified research questions and search procedures. The
process by which papers are screened is described in the in-
clusion/exclusion criteria. Then, data extraction procedures
are described. Extracted data is kept in a database to be
queried for later analysis.

Planning Stage
Identified research questions and their motivations are
shown in Table 1. For clarity, we define CC literature as
any literature containing concepts related to CC as defined
by Colton and Wiggins (2012):

[CC is] the philosophy, science and engineering of
computational systems which, by taking on particular
responsibilities, exhibit behaviours that unbiased ob-
servers would deem to be creative.

Figure 1: A diagram from Ventura’s (2017) paper: “How to
build a CC system”. The paper describes a general approach
to constructing a CC system; components described in the
approach could have design patterns associated with them.

Search Strategy The CC community has yet to estab-
lish a formal database of published literature facilitating ad-
vanced keyword search. Therefore, a manual search using
the search term “design pattern” was performed on the pro-
ceedings of the International Conference on Computational
Creativity (ICCC). The search term was changed to just
“pattern” after an initial search yielded few papers. Once
a starting set of primary studies was selected, a forward
snowballing search was performed as described in Wohlin’s
(2014) guidelines.

Selection of Primary Studies Identified papers are then
systematically marked to be included or excluded from the
study. The criteria for including or excluding a paper is
shown in Table 2. This criteria is first applied to study ti-
tles and abstracts; then to the introduction, conclusion, and
methods sections; and finally, full papers are read to evaluate
whether the study should be included as a primary study.

Identified Keywords To address RQ1 and RQ2, we use
additional keywords to help detect the mention of design
patterns. The 23 design patterns presented by the Gang of
Four are included as keywords, e.g., “factory”, “flyweight”,
and “mediator”, as well as the three categories “creational

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

219



design pattern”, “structural design pattern”, and “behavioral
design pattern”. Additionally, a keyword is included for the
“blackboard” design pattern. Generic keywords “pattern”,
“design pattern”, and “software design pattern” are included.

Data Extraction
Papers identified as primary studies have the following in-
formation extracted from them: title, year published, confer-
ence or journal, and pattern(s) mentioned. This information
is extracted and stored in a spread sheet1 for later analysis.

Results
There are a total of 458 papers within the eleven ICCC
conference proceedings from 2010 to 2020. Within the
conference proceedings, a pilot search was performed with
the search term: “design pattern”. This preliminary search
yielded only four results. Thus the search was expanded by
using the more generic term: “pattern”. This new search
yielded 195 papers. Of these resulting studies, six satisfied
the inclusion/exclusion criteria and were identified as pri-
mary studies and as a starting set to perform a snowballing
search.

The forward snowballing search yielded an additional 86
new papers from the starting set of six studies. Of the newly
found papers, one satisfied the inclusion/exclusion criteria.

The combined search results yield the following seven
primary studies: (Compton and Mateas 2015; Concepción,
Gervás, and Méndez 2019; Goel 2015; Kreminski et al.
2020; Petrovskaya, Deterding, and Colton 2020; Abdellahi,
Maher, and Siddique 2020; Chang and Ackerman 2020).

Findings Regarding Research Questions
RQ1: What design patterns are mentioned in CC liter-
ature? There are 14 design patterns mentioned in the pri-
mary studies:

1. Strategy design pattern

2. Instant feedback design pattern

3. Mutant shopping design pattern

4. Chorus line design pattern

5. Simulation and approximating feedback design pattern

6. Entertaining evaluations design pattern

7. No blank canvas design pattern

8. Limiting actions to encourage exploration design pattern

9. Modifying the meaningful design pattern

10. Saving and sharing design pattern

11. Hosted communities design pattern

12. Modding, hacking, teaching design patterns

13. Turn-taking pattern

14. Biologically inspired design patterns

1Link to data: https://tinyurl.com/y4w7najp

Figure 2: Number of primary studies published per year that
mention design patterns and are related to CC. We can see
that 2020 sees the most studies published; however, there are
only seven CC studies mentioning design patterns. With so
little data, it is impossible to state whether there is a trend.

Only one design pattern mentioned is a traditional “Gang
of Four” design pattern, namely the strategy pattern. The
strategy pattern is used in a story generation system to select
and apply heuristics used to weave generated story plot-lines
together (Concepción, Gervás, and Méndez 2019). Design
patterns 2 to 13 are user-interaction design patterns, e.g.,
the instant feedback pattern where users observe an arti-
fact, make a change, and observe the result of the change
at a glance. We note that user-interaction design patterns in-
form system architects of how users will interact with the
system. However, they do not inform system architects of
how objects and classes interact within a codebase, i.e., how
a codebase itself is designed, like a software design pat-
tern would. Biologically inspired design patterns describe
generic patterns by which biology is used as inspiration to
solve a problem. Like user-interaction design patterns, bio-
logically inspired design patterns do not inform system ar-
chitects of how objects and classes interact.

RQ2: Are there software design patterns devised specif-
ically for CC systems? The 11 user-interaction design
patterns identified by Compton and Mateas (2015) are pre-
sented in the context of CC but are not specific to CC. Out
of the seven primary studies, there are no identified design
patterns that are specific to CC.

RQ3: Of the CC literature that mentions design pat-
terns, what conferences and journals are represented?
The one primary study found during the snowballing search
came from the 2020 AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE). The
remaining six primary studies come from various years of
the ICCC. As shown in Figure 2, five out of the seven pri-
mary studies were published within the last two years (2019
and 2020).

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

220



Discussion
With only seven primary studies, the results indicate that de-
sign patterns are not often mentioned in CC studies. In other
words, the results indicate a gap in CC literature in regards
to the use of design patterns in CC systems.

Perhaps unsurprisingly, the design patterns most men-
tioned in CC literature are user-interaction design patterns.
These patterns are particularly relevant to the CC commu-
nity in helping design co-creative systems. While user-
interaction design patterns do not describe how to design
the system codebase, like a more traditional “Gang of Four”
design pattern would, they do provide guidance for build-
ing the overarching system architecture. Only three papers
(Chang and Ackerman 2020; Abdellahi, Maher, and Sid-
dique 2020; Kreminski et al. 2020) present systems where a
user-interaction design pattern is used, indicating that many
papers presenting co-creative systems do not disclose the use
of a user-interaction design pattern.

The lack of results could indicate that the CC community
is unaware that they are using design patterns. In this case,
CC researchers would be less likely to mention them. Ulti-
mately, our results indicate that we cannot gain a true under-
standing of the pervasiveness of design patterns in CC with-
out reviewing the actual CC systems. This suggests the need
for an empirical study on CC systems as future work. An ad-
ditional avenue of research would be the evaluation of Ven-
tura’s architectural pattern for building a CC system — iden-
tifying common approaches (or patterns) for implementing
each of the components. The suggested future work would
achieve an understanding of the patterns used in building
CC systems and furthers the idea that Ventura identified an
architectural pattern.

We see design patterns in the CC community as an op-
portunity for pedagogical benefit — a way to bring in new
CC community members and programmers by facilitating
systems that are easier to reuse and understand.

Conclusion
This systematic mapping study aimed to provide a broad
overview of the use of design patterns in papers presenting
CC systems. However, the results show that there is a lack of
discussion in CC literature regarding design patterns. This
motivates future work to identify design patterns in CC sys-
tems to gain a full understanding of how design patterns are
used in building CC systems. The results also motivates the
need to open a conversation on design patterns in the CC
community to create CC systems that are easier to main-
tain, reuse, and understand, facilitating more collaborative
research.

References
Abdellahi, S.; Maher, M. L.; and Siddique, S. 2020. Arny: A
co-creative system design based on emotional feedback. In
11th International Conference on Computational Creativity.
Chang, J., and Ackerman, M. 2020. A climate change edu-
cational creator. In 11th International Conference on Com-
putational Creativity.

Colton, S.; Wiggins, G. A.; et al. 2012. Computational
creativity: The final frontier? In 20th European Conference
on Artificial Intelligence, volume 12, 21–26.
Compton, K., and Mateas, M. 2015. Casual creators. In
Proceedings of the Sixth International Conference on Com-
putational Creativity, 228–235.
Concepción, E.; Gervás, P.; and Méndez, G. 2019. Evolv-
ing the ines story generation system: From single to multiple
plot lines. In Proceedings of the 10th International Confer-
ence on Computational Creativity, 220–227.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. M.
1994. Design Patterns: Elements of Reusable Object-
Oriented Software.
Glines, P.; Biggs, B.; and Bodily, P. M. 2020. A leap of
creativity: From systems that generalize to systems that fil-
ter. In Proceedings of the 11th International Conference on
Computational Creativity, 297–302.
Goel, A. K. 2015. Is biologically inspired invention differ-
ent? In Proceedings of the Sixth International Conference
on Computational Creativity, 47–54.
Khomh, F., and Gueheneuc, Y. 2008. Do design patterns
impact software quality positively? In 2008 12th European
Conference on Software Maintenance and Reengineering,
274–278.
Kreminski, M.; Dickinson, M.; Osborn, J.; Summerville, A.;
Mateas, M.; and Wardrip-Fruin, N. 2020. Germinate: A
mixed-initiative casual creator for rhetorical games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, 102–108.
Petersen, K.; Feldt, R.; Mujtaba, S.; and Mattsson, M. 2008.
Systematic mapping studies in software engineering.
Petersen, K.; Vakkalanka, S.; and Kuzniarz, L. 2015. Guide-
lines for conducting systematic mapping studies in software
engineering: An update. Information and Software Technol-
ogy 64:1–18.
Petrovskaya, E.; Deterding, C. S.; and Colton, S. 2020. Ca-
sual creators in the wild: A typology of commercial gener-
ative creativity support tools. In 11th International Confer-
ence on Computational Creativity.
Ventura, D. 2016. Mere generation: Essential barometer or
dated concept? In Proceedings of the Seventh International
Conference on Computational Creativity, 17–24.
Ventura, D. 2017. How to Build a CC System. In Eighth In-
ternational Conference on Computational Creativity, 253–
260.
Wohlin, C. 2014. Guidelines for snowballing in systematic
literature studies and a replication in software engineering.
In Proceedings of the 18th international conference on eval-
uation and assessment in software engineering, 1–10.
Zhang, C., and Budgen, D. 2012. What do we know about
the effectiveness of software design patterns? IEEE Trans-
actions on Software Engineering 38(5):1213–1231.
Zhu, Z. 2009. Study and application of patterns in software
reuse. In International Conference on Control, Automation
and Systems Engineering, 550–553.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

221


