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Abstract

We propose Wölfflin Affective Generative Analysis
(WAGA) as an approach to understand and analyze
the progress of machine-generated artworks in contrast
to real art and their connection to our human artis-
tic heritage, and how they extend the shape of art his-
tory.Specifically, we studied the machine-generated art
after integrating creativity losses in the state-of-the-art
generative models e.g., StyleGAN v1 and v2. We de-
note these models as Style Creative Adversarial Net-
works v1 and v2; in short, StyleCAN v1 and v2.
We contrasted the learned representation between real
and generated artworks through correlation analysis be-
tween constructed emotion (collected through Amazon
MTurk) and Heinrich Wölfflin (1846-1945)’s principles
of art history. Analogous to the recent ArtEmis dataset,
we collected constructed emotions and explanations on
generated art instead of real art to study the contrast.
To enable Wölfflin Affective Generative Analysis, we
collected 45,000 annotations (1800 paintings ×5 prin-
ciples ×5 participants) for each of the five Wölfflin
principles on 1800 artworks; 1000 real and 800 gen-
erated. Our analysis shows a correlation exists between
the Wölfflin principles and the emotions. The collected
dataset, analysis, and code is made publicly available at
https://vision-cair.github.io/WAGA.

Introduction
With the development of computational creativity, machines
are capable of classifying real artworks styles. However,
the machine’s ability to assess and classify its AI-generated
artworks is less understood and requires further scholarly
scrutiny (Colton 2008). The main question we address
in this paper is to quantitatively and qualitatively ana-
lyze the contrast between real and generated artworks from
deep neural representations’ perspectives. We study AI-
generated art in three analysis dimensions: 1) Likeability
evaluated by human ratings, 2) Their learning representa-
tion connection to Wölfflin’s principles (Wölfflin 1915), 3)
emotions constructed by human participants. In contrast
to (Elgammal et al. 2018), which used only real art for
its analysis, our study focuses on the contrast between real
and AI art generated using state-of-the-art GAN models, i.e.,
StyleGAN1 (Karras, Laine, and Aila 2019), and StyleGAN2
(Karras et al. 2020). We add the CAN loss (Elgammal et al. ;

Figure 1: AI art constructing diverse emotional experiences.

Sbai et al. 2018) to these architectures. We denote the cor-
responding models as StyleCAN1 and StyleCAN2. We also
collect data of Wölfflin’s principles on 1000 real art pieces
and 800 generated art pieces from StyleGAN2 and Style-
CAN2. Results of our study provide insights into the emo-
tion of generated artworks. Figure 1 shows examples of
AI-generated artwork with StyleCAN2 that constructs emo-
tional experiences in survey participants.

Contribution: (1) We introduce StyleCAN v1 and v2
by integrating the CAN loss StyleGAN v1 and StyleGAN
v2 models and observe that StyleCAN v1 and v2 have
higher mean average likeability compared to StyleGAN v1
and StyleGAN v2. (2) We present a novel study on how
AI Art generative models learn inherent features of our
art heritage like Wölfflin’s principles. We also study the
ability of these models to constructs our emotional experi-
ences compared to real art. (3) We collect Wölfflin prin-
ciples annotations on real and AI art. We also collect
emotion labels and their explanation on AI art. (4) Us-
ing the collected data, we performed detailed analysis that
contrast real art and AI art based on Wölfflin’s principles,
constructed emotion categories, and corresponding expla-
nations. We also observed connections between Wölfflin’s
principles and the constructed emotional experiences. Since
we study both the Wölfflin’s and the affective perspective
for visual art, we denote our approach to analyse visual art
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Figure 2: The data collection interface of Wölfflin’s princi-
ples showing the examples used to train surveyors to classify
between the two opposing concepts: linearly and painterly.

as Wölfflin’s Affective Generative Analysis (WAGA) and
hope this may encourage future comprehensive analysis of
machine-generated art.

Related Work
Existing literature on AI for the art creation process has
shifted from being emulative to being more creative (El-
gammal et al. ; Hertzmann 2020; Sbai et al. 2018). Al-
though recent creative AI models can produce novel quality
artworks, it is less understood whether these models have all
the characteristics of a creative system. (Colton 2008) de-
fined three main characteristics that creative systems should

Figure 3: GAN architecture (StyleGAN1 or StyleGAN2) af-
ter adding CAN loss.

have: (a)“the ability to produce novel artifacts (imagina-
tion), (b) “the ability to generate quality artifacts”, and (c)
“the ability to assess its creation”. Wölfflin’s Principles
of Art History (Wölfflin 1915) are one of the key method-
ologies in art history that differentiates art styles. They
have five categories to classify the stylistic component of
the painting: 1) Linear and Painterly, 2) Planar and Reces-
sional, 3) Closed Form and Open Form, 4) Multiplicity and
Unity, and 5) Absolute Clarity and Relative Clarity. (El-
gammal et al. 2018) has demonstrated a connection between
Wölfflin’s Principles and machine’s learning representations
of artworks. Specifically, Wölfflin’s Principles were shown
to be implicitly learning that each principle was shown to
have a strong correlation by one or more neurons in their
Neural Network. Our work extends this analysis by collect-
ing performing Wölfflin’s Principles analysis on Machine
generated artworks.

The theory of Constructed Emotions (Barrett 2017) sug-
gested that emotions are constructed rather than triggered.
In line with the theory, (Achlioptas et al. 2021) collected
responses of emotions constructed by Human participants
who gett exposed to real artworks from the WikiArt dataset.
Our work also aims at understanding how people construct
emotions from visual art created by AI and contrast that to
real art. Hence, we collected emotional responses for gener-
ated art as well.

Data Collection
Heinrich Wölfflin proposed five principles for visual
art (Wölfflin 1950):

1. Linearly and Painterly: Linearly paintings depict iso-
lated objects and clear boundaries and have all the figures
illuminated. Painterly depicts blurry outlines and swift
brushstrokes.

2. Planar and Recessional: The composition of objects in
planar are arranged in planes parallel to the plane of the
canvas. In recessional, these objects can be in angle and
focus on spatial depth.

3. Closed-form and Open-form: All figures in closed-form
are balanced within the frame, while in open-form, the
figures are cut off. While the former is mostly self-
contained, the latter indicates space beyond the frame.

4. Multiplicity and Unity: In multiplicity, we have distin-
guished parts, and each part demonstrates independent
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Table 1: Pearson’s correlation coefficients of features of various architectures on real art and generated art computed for all the
Wölfflin principles. The term “vs” is used in the table to compare opposing concepts of each Wölfflin principle.

Architecture Linearly vs Painterly Planar vs Recessional Closed Form vs Open Form Multiplicity vs Unity Absolute Clarity vs Relative Clarity
Real art StyleGAN2 StyleCAN2 Real art StyleGAN2 StyleCAN2 Real art StyleGAN2 StyleCAN2 Real art StyleGAN2 StyleCAN2 Real art StyleGAN2 StyleCAN2

ResNet101 + 2 -0.20 -0.29 -0.27 -0.15 -0.22 0.21 0.13 -0.16 0.14 -0.15 0.15 -0.24 -0.26 0.17 0.14
ResNet101 0.29 -0.39 -0.37 0.26 -0.32 -0.24 -0.33 -0.27 -0.31 0.35 0.21 0.42 0.54 -0.44 0.18

ResNet50 + 2 0.20 -0.41 -0.25 0.10 -0.26 0.15 -0.13 -0.16 -0.16 0.15 0.15 0.26 -0.18 0.29 0.12
ResNet50 0.33 0.36 0.32 0.32 0.28 0.31 -0.33 0.25 0.28 0.36 -0.24 0.42 0.67 0.44 -0.12

VGG16 + 2 -0.20 -0.18 0.25 -0.17 -0.17 0.18 -0.19 -0.16 -0.11 0.18 -0.12 -0.16 -0.10 -0.12 0.13
VGG16 0.41 0.38 -0.44 -0.18 0.21 -0.21 0.35 0.27 -0.19 -0.26 0.17 0.27 0.41 0.22 -0.13

StyleGAN1 Disc -0.19 -0.30 -0.34 -0.22 -0.20 -0.17 -0.42 -0.24 -0.22 -0.26 -0.14 -0.40 -0.38 -0.28 -0.14
StyleCAN1 Disc -0.30 -0.39 -0.47 -0.18 -0.33 -0.24 -0.32 -0.24 -0.21 -0.28 -0.31 0.38 0.41 -0.32 0.19
StyleGAN2 Disc -0.36 -0.47 -0.42 -0.26 -0.28 -0.21 -0.37 -0.26 -0.23 0.31 0.23 0.42 -0.69 0.33 0.20
StyleCAN2 Disc -0.27 0.33 -0.29 0.35 0.26 -0.26 0.43 0.29 -0.26 0.35 0.22 -0.47 0.56 0.35 -0.24

features. In unity, figures weld together, and colors blend
in.

5. Absolute clarity and Relative clarity: While absolute
clarity has realistic representation, relative clarity has rep-
resentations enhanced with visual effects.
We collected Wölfflin’s principles annotations by training

people to learn one of these principles and then ask them to
identify it in a painting. For example, the survey interface
design provides descriptions of Wölfflin’s principles (one at
a time). Figure 2 shows the interface design for identifying
linearly and painterly paintings. Based on the shown expla-
nation of linearly and painterly paintings, the viewer selects
a rating scale from 1 to 5 ( 1: Clear Linearly, 2: Mostly Lin-
early, 3: Borderline, 4: Mostly Painterly, 5: Clear Painterly).
Using this method, we train the survey participants. We av-
erage the five ratings for every artwork and normalize the
resulting score between 0 and 1, where normalized scores
closer to 0 are linear, and scores closer to 1 define painterly
characteristics. This way, an artwork has five floating-point
numbers corresponding to its five Wölfflin principles. We
conduct these experiments for both real and generated arts
for each Wölfflin principle. We release the web interfaces
for collection of the Wölfflin principles here

Methodology
Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014; Radford, Metz, and Chintala 2015; Ha and Eck
2018) is a popular modeling choice. However, the classic
GAN training objective does not promote the generation of
novel content beyond the training data. A GAN trained on
artwork can generate Da Vinci’s “Mona Lisa” again, but it
will not produce a painting of a new style. Recent work has
been able to encourage GANs to produce novel images. In-
spired by (Elgammal et al. ; Sbai et al. 2018), we adapted
GANs to generate novel paintings by encouraging the model
to deviate from existing art styles. We attach a head on the
GAN’s Discriminator D, which predicts the style of an art
piece. The Generator is then encouraged to generate real-
looking examples, which is hard for D to assign a class.

StyleCAN Model (Figure. 3): We train a StyleGAN
model (Karras, Laine, and Aila 2019), (Karras et al. 2020)
using the creativity loss (Sbai et al. 2018) on the WikiArt
dataset. In contrast, (Sbai et al. 2018) experiments it for
fashion dataset. Concretely, our generator loss becomes:

LG = LG StyleGAN + λLG creativity (Sbai et al. 2018) (1)

LD = LD StyleGAN + λLG style classification (2)
We denote the resulting model as StyleCAN. StyleGAN v1
and v2 are then dubbed as StyleCAN v1 and v2.

Experiments
Generated Art Setup: Initially, we generate a set of 10,000
paintings from each trained GAN model. We then select
400 images representing every model and divide them into
four groups containing 100 generated art pieces. (1) Highest
Nearest Neighbour (NN ↑) - We computed the NN on the
WikiArt dataset and selected the top 100 with the highest
NN distance from the closest training image. (2) Lowest
NN (NN ↓)- We selected another 100, which had the lowest
NN distance from the closest training image. (3) Highest
shape entropy (Entropy ↑) - We selected the artworks with
the highest confusion in art style computed from a trained
style classifier. (4) Random - A set of 100 random images.
Real Art Setup: For real art pieces, we selected around
170 art pieces from each century from 1400 to 2000 total-
ing 1000 real artworks. For these 1000 art pieces, we com-
puted features from several different models trained on the
art style classification task. We used ResNet50, ResNet101,
VGG16 base architectures. Following the literature (Elgam-
mal et al. 2018), we also added two additional layers and
fine-tuned it further and we denote them as the +2 versions
of these models. Also, we used the trained discriminators
from StyleGAN models with and without CAN loss.

We conducted the following survey experiments, with 5
responses collected for each example, covering a total 500
participants.
Likeability Experiment: We follow (Elgammal et al. ) for
likeability experiment. We ask participants two questions.
Q1) Rate the art on the scale of 5. Q2) Whether art is created
by an artist or machine (we name this Turing Test).
Emotion Experiment: Follow (Achlioptas et al. 2021)
setup, we ask participants to select one of 9 emotions (
amusement, awe, contentment, excitement, anger, disgust,
fear, sadness, and something else). We also ask them to de-
scribe in text what made them feel so.

Results
In Table 3, we find that participants prefer generations from
models integrated with CAN loss more than the generations
from vanilla versions. The mean likeability of StyleCAN1
is 2.5% more than its vanilla counterpart. For StyleCAN2,
it is 7.0%. We also find that more people think that an artist
creates generations from the model trained with CAN loss
for both StyleGAN1 and StyleGAN2 models. The generated
images achieved a higher likeability score than Art Basel.

Classifier features’ principal components correlation
with Wölfflin’s principles: We find that learning to clas-
sify style makes the model also learn Wölfflin’s principles
inherently. We compute the Pearson’s correlation coeffi-
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Table 2: Weights of the linear classifier when trained on
Wölfflin’s principle to different emotions.The term “vs” is
used in the table to compare opposing concepts of each
Wölfflin principle.

Emotion Linearly vs Painterly Planar vs Recessional Closed Form Multiplicity vs Unity Absolute Clarity
vs Open Form vs Relative Clarity

Amusement -0.512 0.218 0.101 -1.235 -0.684
Anger -0.532 0.043 -0.079 -0.316 0.996
Awe -0.287 0.11 -0.386 -0.108 0.276

Contentment 0.224 -0.92 0.556 0.284 -0.449
Disgust 0.096 0.345 -0.304 -0.001 -0.49

Excitement 0.098 -0.281 0.992 -0.045 0.369
Fear -0.701 0.392 -0.567 0.72 -0.018

Sadness -0.245 -0.062 -0.413 0.39 -0.392
Overall Negative -0.018 0.804 -0.612 0.41 0.164
Overall Positive 0.073 -0.464 0.75 -0.476 -0.232

cient using the principal components of the artwork features.
We compute this coefficient for all the classifiers for both
real and generated art (StyleGAN2 and StyleCAN2 gener-
ated art). Table 1 summarizes the maximum coefficients
we computed in the top 10 principal components. There
was almost no correlation with components after the 10th

component. We also observe that ResNet50 features’ have
significant correlation coefficients for all generations and
Wölfflin’s principles.

Wölfflin’s Principles Correlation to Emotions: We
trained a linear classifier to predict emotions from Wölfflin’s
pair values collected from our human subject experiment.
We used the emotion labels of real art from (Achlioptas et
al. 2021). We trained one linear classifier, one for each emo-
tion, and collected the weights. Table 2 summarizes the re-
sultant classifier weights. From the experiment setup, the av-
eraged floating-point value ranging in 0-1 that we calculate
for a Wölfflin’s pair if its less then its more of the first value
in pair if its more then its more of the second value. For
example, in Linearly vs. Painterly, if an artwork has a value
of 0.1, it means it’s more “Linearly” than “Painterly” and
vice-versa. People feel amused when the painting is more
towards “Multiplicity” than “Unity.” because of the nega-
tive correlation. Similarly, people feel anger when the art-
work has more “Relative Clarity” than “Absolute Clarity.”;
see more correlations in Table 2.

Emotion Distribution: We plot group bar-charts of dis-
tribution of emotions for real and generated art produced by
StyleGAN2 and StyleCAN2 in Figure 4. We observe that
AI-generated art is capable of constructing diverse sets of
emotions that are similar to real ones. However, there are
some differences in the distribution. When compared to real
art bar graph, we find that “Excitement” emotion increased
from 8.3% to 18.1% for StyleCAN2, while maintaining a

Table 3: Human experiments on generated art from Vanilla
GAN and CAN losses. Models trained on CAN loss have
a higher mean likeability in all the groups. More people
believed the generated art to be real for artwork generated
from the model trained on CAN loss.

Likeability Mean Turing Test

Loss Architecture Q1-mean(std) NN ↑ NN ↓ Entropy ↑ Random Q2(% Artist)

CAN (Elgammal
et al. )

DCGAN 3.20(1.50) - - - - 53

Abstract art Human 3.3(0.43) N/A N/A N/A N/A 85
Art Basel Human 2.8(0.6) N/A N/A N/A N/A 41
All Art sets Human 3.1(0.63) N/A N/A N/A N/A 62

GAN (Vanilla) StyleGAN 3.12(0.58) 3.07 3.36 3.00 3.06 55.33
CAN StyleGAN 3.20(0.62) 3.01 3.61 3.05 3.11 56.55
GAN (Vanilla) StyleGAN2 3.02(1.15) 2.89 3.30 2.79 3.09 54.01
CAN StyleGAN2 3.23(1.16) 3.27 3.34 3.11 3.21 57.9

Figure 4: Distribution of emotions by emotion survey exper-
iments on both real and generated art

similar percentage in StyleGAN2 (7.9%). Fear emotion per-
centage increased from 9.1% for real art to 15.8% for Style-
GAN2 and 12.9% for StyleCAN2.

Likeability experiment qualitative analysis: We ob-
serve that AI-generated paintings with high likeability (Q1)
score and high Turing test percentage (Q2) in table 3 were
from NN↑ group. This shows that the generated is both
novel (because of high NN distance) and likeable. We can
see some examples in Figure 5. Artworks with high like-
ability in the NN ↓ group were mostly natural landscapes,
vibrant colors, and distinct brushstrokes. They looked like
Monet’s “Impression Sunrise.” NN ↑ group portrayed ab-
stract figures with contrasting solid colors. Artworks from
the NN ↓ group, which had a low Turing test percentage
were abstract paintings, reminding the viewer of Mondrian’s
“Broadway Boogie Woogie.” The style of these paintings
may have prompted survey participants to assume a machine
did these paintings, whereas artworks from NN ↑ with lower
Turing test numbers looked like images seen under a mi-
croscope. The paintings’ cell-like, scientific feel made the
paintings appear like screenshots of microscopic scans, con-
tributing to a lack of artistic intent.

Emotions experiments qualitative analysis: We de-
rived and analyzed common elements of the AI-generated
artworks that constructed various emotions.
Awe: Artworks that portrayed familiar subject matters like
“brown coat”, “man”, “plant”, and “sky” tend to construct
emotions of awe within the audience. Many participants
referred to the use of complementary colors and soft color
scheme to be the underlying cause that constructed emotions
of awe;example response by our participants: “the play of
colors in the sky of this painting is magnificent”).
Anger: The disorderly arrangement of figures tends to create
a sense of unease and construct anger (e.g., “The painting
looks confusing and shows no representation”). The confu-
sion caused by the abstract subject matter caused discomfort
and points out the participants’ annoyance in understand-
ing the meaning of the painting (e.g., “The color (red) used
seems like a man bleeding with anger”.
Contentment: We observed that floral color schemes con-
structed contentment emotions, as quoted by the partici-
pants:(e.g., “mix of colors between green and yellow re-
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Figure 5: High likeability and high Turing test percentage
artworks from NN ↑ group.

minds the changing of seasons, brings peace and tranquil-
ity”). Participants also underlined the role of depth, layers,
and orderly composition played in constructing their awe
feeling (e.g., “This painting makes me feel relaxed because
the items are well ordered and displayed in a coherent fash-
ion”). Positive past experiences evoked by the artworks con-
tributed to the participant’s selection of awe (e.g., “I liked
the image I felt pleasure because reminder my childhood”).

Amusement: Artworks associated with feelings of
amusement interestingly reminded the audience of animals
(e.g., “The white cat is hiding behind the building”). Par-
ticipants were also amused by depiction of human charac-
ters. The portrayal of human subjects created both a sense
of familiarity and beauty which contributed the construction
of amusement e.g., “there seems to be a pretty girl dancing
across this image”.

Disgust: Dark color schemes and visual effects tend to
construct emotions of disgust, as stated by the participants:
“Too much darkness on the sea”, and “looks like a dark
cloud about to eat a human”. Also, when an artwork didn’t
clearly convey its message or meaning, the audience felt
emotions of disgust. Participants stated that the lack of ex-
pression came from “a lifeless representation”.

Discussions
In our experiments, we notice the following key observa-
tions.

1. From Table 1 we observe that the discriminator of GANs
learn the Wölfflin principles inherently as we observe
stronger correlation values as compared to traditional
classifiers.

2. In Figure 4, we find that the generated art works construct
diverse set of emotions in the viewer.

3. In Table 2, we also find strong correlation between these
emotions and Wölfflin’s principles. We find these princi-
ples can be used to predict the emotion of an art piece.
Hence, being able to compute specific Wölfflin priciple
can predict the emotion that the art piece will construct.

Conclusion
We introduced Wölfflin Affective Generative Analysis as an
approach to understand and analyze machine-generated art-

works in contrast to real art. To perform this analysis, we
collected Wofflin principles annotations on 1000 real paint-
ings and 800 generated artworks. We also collected Affec-
tive responses on artworks produced by state-of-the-art gen-
erative models, including StyleGAN2 and our improved ver-
sion of it StyleCAN2 after applying CAN loss. We show that
models inherently learn the stylistic principles and emotions
during the learning process. We showed that Wölfflin’s prin-
ciple coefficients are similar for generated and real artwork,
showing that the generated art also contains the historical
styles studied in the past. By training a multi-label clas-
sifier to predict emotion from Wölfflin principles, we ob-
served that some Wölfflin principles have solid connections
for constructing certain emotions. We release our models,
analysis, and data on real and generated art to facilitate fu-
ture research.
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