
Incorporating Algorithmic Information Theory into Fundamental Concepts of
Computational Creativity

Tiasa Mondol
tiasa.ap.10@gmail.com

Daniel G. Brown
David R. Cheriton School of Computer Science

University of Waterloo
dan.brown@uwaterloo.ca

Abstract

Can we attribute creativity to an artifact by examining its
computational history? What can be said about its value and
novelty if the artifact is computationally laborious and inter-
esting? Can the computation which gave rise to the artifact,
help us interpret its artist? We look at these questions through
the lens of Algorithmic Information Theory. Expanding on
some of the advanced topics in this field: Kolmogorov Com-
plexity and its conditional and resource-bounded versions,
Logical Depth and Sophistication, we show that many of the
standard criteria used in computational creativity follow nat-
urally from these concepts. We also address the question of
whether an artifact is a typical or novel creation of its artist,
by first generating a good description of the artist’s known
works and then examining how fit this explanation is for the
new artifact. Although using Kolmogorov Complexity is not
without its challenges, its incomputability being the obvious
one, we show that by rooting our analysis into the algorithmic
complexity of an artifact we inevitably shed light on some
of the fundamental concepts of creativity: typicality, novelty,
and value of an artifact, the creative process, and the creator.

Introduction
A key question since the rise of computational creativity has
been which criteria characterize an artifact as creative, and
how an algorithm can evaluate these criteria (Lamb, Brown,
and Clarke 2018). In this work, we use the lens of algo-
rithmic information theory (Li and Vitányi 2019) to look for
universal properties that indicate whether a work is of high
quality or value, novel or typical within a domain or a cre-
ator’s oeuvre. These commonly used criteria for creativity
follow smoothly from several advanced concepts in algorith-
mic information theory. Quality is assessed by showing that
there is a high amount of computational effort required by
any short program whose output is a given artifact, while
typicality and novelty are shown by looking for a program
that can generate all members of a class of objects and as-
sessing how random a new object is within that class. An-
other outcome of our work is that we can model the producer
of an artifact by distilling down its core properties. Then
based on the complexity and volume of these properties we
can identify whether the artifact is a magnum opus of its
artist.

Key to our work is a firm computational underpinning to
some of the canonical ideas of creativity and to build it we

carry out a more thorough exploration of Kolmogorov com-
plexity and its adjunct ideas. In previous work, numerous
authors have attempted to use two of the most basic ideas,
the raw Kolmogorov complexity K(x), and the conditional
Kolmogorov complexity K(x|y) of object x given y as a
free input, as measures of the creative value of an object or
of the similarities between two objects (Li and Sleep 2004;
Ens and Pasquier 2018). While these measures are certainly
important, their use in this manner is still potentially of con-
cern: an object with low Kolmogorov complexity might or
might not be trivial, and objects whose Kolmogorov com-
plexity are close to their length (which is the maximum pos-
sible) are typically just random noise. Even looking for an
object of “medium” complexity is insufficient: such an ob-
ject might either be the product of substantial computational
effort (which, in our telling, makes it a high-quality work)
or could be trivial repeated patterns augmented with random
bits to make it seem serious. Only by looking at the ac-
tual computational effort required to produce the object can
we assess its quality; the raw value of K(x) is insufficient.
Similarly, while the conditional complexity K(x|y) is im-
portant, more useful is to look at K(x|M) where M is a
model representing the non-randomness in x. Then a good
model for x will be most successful in compressing x and
classifying it into a category that is most appropriate.

Here, we begin the build out of this theory of creativity
of computationally created objects and how to assess them.
We begin with an introduction to algorithmic information
theory, where we focus on the concept of models that gives
a two-part description for members of a genre or a creator’s
oeuvre and how typicality or novelty can be assessed for an
artifact. The concept of logical depth allows us to assess
the computational effort required to produce an object: if
an object with high compressibility has slow-running short
programs, the most likely explanation for the object is that it
required substantial effort on the creator’s part to produce it,
and it is valuable. Additionally, the concept of sophistication
allows us to identify the inherent challenge of representing
the producer of an object: if the only good models for an
object are of high sophistication then it must have been cre-
ated by a skilled creator. These concepts have not previously
been extended to the domain of computational creativity. At
the end of this paper, we describe the relationship between
these concepts to existing efforts in joining algorithmic in-

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

173

formation theory with computational creativity and aesthet-
ics; we also give, in Table 1, an algorithmic recipe for our
own approach which follows naturally from the theoretical
concepts presented in this paper. Although it is necessary
to navigate the subsequent sections carefully to fully under-
stand the ideas in this table and our critique of existing ap-
proaches, interested readers are encouraged to consult it for
a helpful summary of the topics we present hereafter.

Kolmogorov Complexity and The Artifact
We begin by building a formal description method for a cre-
ative product by associating it with a Turing-computable
function. Although it is difficult to regard an artifact like
“The Mona Lisa” to be an output of something as inanimate
as a function, such formulation provides us with a powerful
theoretical framework to analyse an object computationally.
We work with Turing machines1 that compute partial recur-
sive functions, which are only defined for some inputs and
for which an effective algorithm with step-by-step instruc-
tions exists to compute it. The Turing machine upon receiv-
ing an input, computes the function on that input by manip-
ulating the bits present on its tapes and halts with output x
or runs forever if the input is undefined. Thus a finite binary
program which encodes the Turing machine along with the
input on which it halts with output x completes a description
of the target creative product x. It is important to note here
that when talking about generating a creative product on a
Turing machine’s tape, we are essentially reducing the vi-
brant object to a binary representation which may be a lossy
depiction of the original product. Some creative objects are
also a sum of their spatial and temporal contexts and cannot
be perceived in isolation. For these cases, we assume that the
target output x is a recognizable version of the original prod-
uct which can be recovered from x within reasonable time
bounds: for example, to generate a 2-dimensional m × n
painting, we can imagine a Turing machine outputting the
RGB values of its each pixel. More important for us is to
maintain an objective notion of computability and descrip-
tion, as provided by the Turing machine model.

We can enumerate the programs encoding Turing ma-
chines lexicographically by their increasing length (Li and
Vitányi 2019, pp. 27-33) and such enumeration contains the
shortest program to produce a target object x and will be the
basis for defining its Kolmogorov Complexity. To run these
programs, we employ an additively optimal Universal Tur-
ing machine (UTM) which accepts an optimal encoding of
the Turing machine in the form of a program p, simulates
it using optimal space and time and acts as a formal stan-
dard with which we compute an object’s complexity (Li and
Vitányi 2019, pp. 103-107). Thus, the Kolmogorov or de-
scriptional complexity K(x) of an object x is the length of
the shortest program p that when run on a Universal Turing

1We use Turing machines with a read-only input tape, one or
more (a finite number) work tapes at which the computation takes
place, and a write-only output tape. All tapes are one-way infinite,
divided into squares,and each square can contain a symbol from a
given alphabet {0, 1} or blanks (Li and Vitányi 2019, pp. 27-33)

machine U terminates with the output x.

K(x) = min
p
{|p| : U(p) = x}

It is also desired that the UTM U upon reading exactly p
from its input tape, will read no further and halt with out-
put x. This setup is known as prefix-free coding where no
program is a proper prefix of another. It lets us uniquely de-
code p to only one object and avoids ambiguous situations
where both pq and p are valid programs. It also alludes to
the algorithmic or universal a priori probability of an object:
if the UTM U terminates with output x on |p|-length prefix-
free inputs generated by fair coin toss, the probability of x’s
existence, also known as x’s universal a priori probability is

QU (x) =
∑

p:U(p)=x

2−|p|

By being the shortest, K(x) contributes 2−K(x), larger than
any other program, to QU (x) and thus is regarded to be the
most probable causal source for the creative product x.

The Kolmogorov Complexity along with all its variants
we shall present in this paper are incomputable; there is
no function that computes shortest descriptions for all ob-
jects. A simple paradigm like: “Supply the UTM with inputs
by lexicographically increasing length and the first program
that halts with output x is its shortest program” does not
work as it is not decidable which program halts and the com-
putation can go on forever without any meaningful progress.
While this might be disappointing, the Kolmogorov Com-
plexity can be reasonably approximated (Vitányi 2020) and
its incomputability is perhaps a reminder of the elusive and
enigmatic nature of the creative phenomenon.

Conditional Kolmogorov Complexity, Two-Part
Code and Models
It is often more useful to view one creative product in the
light of another, like learning to describe Vermeer’s “Girl
with the Red Hat” painting while we already know about his
“Girl with a Pearl Earring”. It also illustrates a natural way
of describing objects with a predisposition to prior knowl-
edge or inductive bias. We formalize this notion with the
conditional Kolmogorov Complexity K(x|y), which is the
shortest program to produce x on U when U is pre-furnished
with object y. This generalizes the unconditional definition
as K(x) = K(x|ε) and is more useful in understanding x’s
structure: if K(x|y) ≤ K(x), then x and y share common-
alities and K(x|y) represents the amount of idiosyncratic
information left in x.

If the provided information y encodes nonrandom regu-
larities that we recognise and associate with a class or cate-
gory, then based on the K(x|y) we can deduce whether or
not x belongs to this class. For example, the “Girl with a
Pearl Earring” belongs to a special class of paintings called
“Tronie” which features unidentified subjects displaying ex-
otic facial expressions or garments (Schütz 2019). Then the
idea of a two-part code lets us decompose the painting into
meaningful information- the part that makes it a tronie and
individual randomness- the part that separates it from other
tronies.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

174

Formally, the shortest effective description of x can be
expressed in terms of the length of a two-part code, the first
part K(M) describing an appropriate Model computed by a
Turing machine T and the second part K(x|M) describing
the left-out irregularities or random aspects of x after M
squeezes out its regularities:

K(x) = min
M
{K(M) +K(x|M)}

Here Model is a hypernym used to quantify the regularities
in sets of objects and with which we recognize the regu-
larities in x. The best model M encapsulates the useful or
compressible information in x, while minimizing the total
description length. In relevant research (Vereshchagin and
Vitanyi 2004; Gacs et al. 2001), analysis has been mostly
done with M denoting a finite set of objects. However, a
model can also be a total recursive (Koppel 1995) or prob-
ability density function (Gacs et al. 2001), each formula-
tion having its own properties and relevance. To start, let M
be {x1, x2, . . . , xm}, signifying a history of observed phe-
nomena. The cost of reconstructing an object x from this
M on a UTM U comprises of a short program of length
K(M) to enumerate the set, while another log |M | bits to
locate x in the set. In this setup, the shortest two-part code
K(M)+log |M | can be larger thanK(x), even whenK(M)
is small. Hence, a complexity restriction is imposed on
M : K(M) ≤ α, α ∈ N\{0} soM may no longer describe
a set losslessly and only captures its essence by exploiting
the shared information among the objects. To illustrate this
with an example: let {x1, x2, . . . , xm} be different paintings
of “crowded field”. To transmit one of these through a chan-
nel with limited capacity α, one can transmit the indication
that the painting is of a crowded field and the particular po-
sitions of people may be chosen by the receiver at random.

If we formulate M as a total recursive function, the two-
part code for x becomes K(M) + |d|, where M(d) = x
and K(M) is the shortest program length that computes the
functionM . This is a more intuitive interpretation of models
as M now can mimic a generator of objects which has em-
bedded in them the structure that M signifies. This is also
the foundation of the idea, sophistication which we discuss
in more detail in a later section.

Model-fitness and Randomness Deficiency
The finite models {M1,M2, . . .} that satisfy the constraints
K(Mi) ≤ α and K(x) ≤ K(Mi) + log |Mi| + O(1) are
called algorithmic sufficient statistics (Gacs et al. 2001).
These models allow description of x with only a small in-
crease in complexity, and with a short-to-describe model.
The task still remains to choose the one among the candi-
dates {Mi} that best-fits x and for that we look at the second
element of the two-part code.

Recall that in the event where M denotes a set, it takes
about log |M | bits to locate any x ∈ M . This amount
is called the data-to-model code and is different from
K(x|M). SinceK(x|M) is the smallest program outputting
x givenM , it leveragesM and x in a way that could be much
smaller than just specifying an index. Going back to the
paintings of “crowded field”: if the people in x are ordered

in a specific way, like a “military parade” then K(x|M)
could be much less than log |M |.

(a) (b)

Figure 1: The crowd in figure 1a is more random than 1b

In this circumstance, x is not a typical element of M . If
it were, then any randomly selected painting from M would
be indistinguishable from x except for irrelevant details. The
difference between K(x|M) and log |M | is quantified by
its randomness deficiency δ(x|M) = log |M | − K(x|M).
An object x is typical of M only when we can not signif-
icantly improve the conditional description of x given M
than specifying its index in M , that is δ(x|M) ≈ 0. If M
is a total recursive function which on some input d gener-
ates x, then M ’s fitness for x depends on the number of
bits |d| needed to indicate the input. Mathematically, if
K(M)+ lx(M) ≤ K(x)+O(1) where lx(M) = min{|d| :
M(d) = x}, then the randomness deficiency of x w.r.t. M
is δ(x|M) = lx(M)−K(x|M).

Typicality and Novelty
We shall now apply the notions of Model and Randomness
Deficiency as discussed above to address the “typicality”
and “novelty” of a creative product. Ritchie (2007) included
“novelty” as one of the essential properties for assessing a
product of a computer program exhibiting creativity. But
arguing “novelty” or “originality” has an anthropocentric el-
ement to them, he added the property of “typicality” to mea-
sure the extent to which a produced item is an example of
an artifact class. This section refines Ritchie’s argument and
formalizes a method for estimating “typicality” of an ob-
ject. In addition, we discuss how “novelty” can be recog-
nized with the help of a data-to-model code.

Previously, McGregor (2007) addressed this idea by
defining the novelty of an object by looking at its informa-
tion distance (Bennett et al. 1998) from each of a collection
of objects of the same class, and choosing the minimum of
these distances as the novelty of the new object. In the same
paper, the author critiqued the idea by pointing out that the
observer estimating novelty needs to have a perceptual frame
in which to work. This approach can be fleshed out using the
two-part code we use in this paper, and also by considering
how computational agents update their perceptual model of
the object by interacting with each other and with new arti-
facts; this latter subject is one we are currently exploring.

The question of how typical a creative object x is, with re-
spect to a composer’s oeuvre or a even broader artifact class,
is really understood by its randomness deficiency δ(x|M).
Here M models the apriori regularities or recognized prop-

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

175

erties of a representative set S = {x1, x2, . . . , xn}, which,
following Ritchie (2007) we call the “inspiring set”. We ex-
press M as a total recursive function such that there exist
parameters {di} : M(di) = xi for 1 ≤ i ≤ m. Let lx(M)
denote the length of the first parameter d on which M halts
with the artifact x. Thus as δ(x|M) = lx(M) − K(x|M)
decreases, x becomes more typical for M . Note that based
on S, the typicality that x exhibits can be akin to either
H-creativity (producing an idea/artifact which is wholly
novel within the culture, not just the creator’s oeuvre) or
P-creativity (producing an idea/artifact which is original as
far as the creator is concerned) (Boden 1991). However the
analysis we present here is effective for understanding both,
if S contains members that are consistent with the class that
we are interested in. Then we have the following definition
of typicality.
Definition 1 Let M be a total recursive function and
a minimal sufficient model of the inspiring set S =
{x1, x2, . . . , xm} such that there exist parameters {di} :
M(di) = xi and K(M) + |di| ≤ K(xi) + O(1) for
1 ≤ i ≤ m. Then the typicality of an object x with respect
to this model is as following.

typicality(x|M) = −δ(x|M) = K(x|M)− lx(M)

When x is not in M ’s range, that is ∀d : M(d) 6= x, then
lx(M) = ∞ and we get the lowest typicality −∞. If typ-
icality is close to the maximum value 0, then there are no
simple special properties that single x out from the majority
of elements in S. Otherwise, we can pick a special subset Q
of M , which has only the members with this property (like
ordered positions of people in the “crowded field”), then x
will be much more typical for Q, than it is for M .

Intuitively, a “novel” object with respect to a model
should have high randomness-deficiency. But this prop-
erty alone is not sufficient, as to define “novelty” we need
a notion of unexpected or unique outcome of the corre-
sponding model. The central motivation in our discussion
has been to find the true source M that produced the ob-
ject at hand. But suppose the true source is 100 coin flips
and our data is 111 . . . 1. A model that identifies with flip-
ping a fair coin as the cause of the data, is surely a bad
model. However, in real-world problems, such as model-
ing creative products, the data can be just atypical or ac-
cidental for the model that actually produced it. In this
case, the model might still describe the regularities in the
object, but the extraordinary conditions or the data-to-model
code that caused the model to output it, sets the object apart
from other objects created by the same model. We liken a
novel artifact to such data: it is an unlikely and original out-
come of a model M that is a minimum sufficient statistic for
the inspiring set {x1, . . . , xm} and there exist parameters
di, d :M(di) = xi, K(M)+ |di| ≤ K(xi)+O(1) for 1 ≤
i ≤ m and M(d) = x. The artifact x is still producible from
modelM , but the remaining distinctiveness d in x is an indi-
cator that there are better models to produce x (consider the
model M accidentally getting a set of ordered locations to
place people in the “crowded field” example when location
are being randomly generated). This unfitness is captured by
its reduced kinship with other artifacts {xi} for which M is

a model. Since, these objects are results of inputs {di} and
d to the model M which is the common denominator be-
tween the inspiring set and x, the extent to which x is novel
is determined by how much information in shared between
{di} and d. Novelty of x is then essentially captured by the
mutual information I({di} : d) = K(d) − K(d|{di}) be-
tween d and {di} (Li and Vitányi 2019, p. 249). The less
{di} informs of d, the more novel x is, reaching maximum
at I({di} : d) = 0. This could implicitly mean that the
randomness deficiency δ(x|M) is large. But I({di} : d)
measures the difficulty with which we figure this unfitness
out even with the available information.
Definition 2 Let M be a total recursive function and
a minimal sufficient model of the inspiring set S =
{x1, x2, . . . , xm} such that there exist parameters {di} :
M(di) = xi and K(M) + |di| ≤ K(xi) + O(1) for
1 ≤ i ≤ m. Then the novelty of an artifact x, producible
from M with parameter d :M(d) = x, is

novelty (x|M) = −I({di} : d) = K(d|{di})−K(d)

Novelty thus can be compared to explorations undertaken by
an artist or changes in a genre while not affecting their cre-
ative styles: learning and applying new techniques, exposure
to new environments and influences, can bring about novel
objects that capture the general spirit of the inspiring set but
are difficult to be recognized in their light.
It is important to note here the distinction between a two-
part-code (model and inputs) identified by an observer and
the actual computation process followed by a creator. The
observer may be updating an already-existing model based
on new examples, or may in fact not be capable of build-
ing a computation structure as sophisticated as the one the
creator used; for example, for a logically deep object (de-
fined below as an object needing long computation by a short
program), the observer may not even have time to run all
of the steps the creator used, while updating or building a
two-part code for the object. This takes us to the discussion
of time-bounded complexity analysis and modelling the cre-
ator, which we discuss in detail in the next few sections.

Logical and Computational Depth
We now take into account the difficulty or resource with
which p outputs x or transforms another object y into x. In-
deed, the shortest program pt,s which computes some object
x in a bounded time t and space s can be significantly larger
than the shortest program p that has access to unlimited re-
sources. Note that, programs using restricted time are more
interesting to analyse than programs with restricted (poly-
nomial) space but unlimited time, as they still can solve the
hardest of problems (think about the program that generates
the core ideas in this paper with only 8-pages to work with)
(Li and Vitányi 2019, pp. 37-39), and it also helps quantify
the number of steps taken by the program. Hence, we fo-
cus on programs pt that generate a target object x within a
bounded time t, while not being too inefficient in their use
of space. The time-bounded Kolmogorov complexityKt(x)
is then defined by

Kt(x) = min
p
{|p| : U(p) = x in at most t steps.}

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

176

If t is a shorter time span than the original time taken
by the shortest program for x, then Kt(x) suffers from
Kt(x)−K(x) redundancy or adhocness, that is Kt(x) may
have to store some information about x without meaning-
fully compressing it. This difference is known as the Com-
putational Depth of x (Antunes et al. 2006).

cdeptht(x) = Kt(x)−K(x)

As t grows, excluding the pathological cases (programs do-
ing unnecessary computations), the non-randomness in x
gets disguised by complicated manipulations or computa-
tions by the program. Bennett (1988) thus calls the time
taken by the shortest of programs for producing x its Logi-
cal Depth.

ldepthb = min{time(p) : U(p) = x and |p| ≤ K(x) + b}
The minimum is taken among the available candidates to
avoid selecting programs that despite producing the desired
object, do so inefficiently, whereas other similar-length pro-
grams are faster. The term b, called the significance level of
ldepthb(x), calibrates the added length and assigns an im-
portance or confidence measure to the program: as b gets
smaller, the program that witnesses ldeptht(x) becomes
more likely to be the actual program that generates x. Thus
the number of steps taken by this program is equally prob-
able to be the time needed by x to evolve from its short de-
scription.

Value as Computational Effort
We now make a case for Logical Depth as a formal measure
of value. We propose that what makes a creative object valu-
able is not its information content, but rather the amount of
mathematical or creative work it relieves its receiver from
repeating, which was plausibly done by its originator. A se-
quence that represents the outcomes of n coin tosses, has
high information content but little value. Conversely, a book
on algebra may list a number of difficult theorems, but has
very low Kolmogorov Complexity since all the theorems
are derivable from the initial few definitions and axioms.
However, such derivations can be time-consuming and if we
transmit only a short description containing the theorems of
the book, a receiver has to spend a long time to reconstruct
their proofs. Sending the entire book does not increase the
information content transmitted, but now the receiver has all
the useful information readily available. Thus value of an
object does not depend on its absolutely unpredictable parts
(information content), nor on its obvious redundancy (verba-
tim repetitions, sequence of 1’s), but rather on what might be
called its buried redundancy— parts reproducible only with
difficulty, things the receiver could in principle have figured
out on their own, but only at considerable cost in resources
or computation (Bennett 1988).

This approach to value is obviously only about the ob-
ject itself, not about its cultural significance, its ability to be
understood by viewers, or any other social properties. Yet,
despite this limitation, we are not the first authors to make
this connection between the value of an object and its buried
computational value; Vidal and Delahaye (2019), in partic-
ular, has cited exactly this same quantity in their proposal of

an ethical mandate to protect artifacts that contain computa-
tional significance of the same sort.

A delightful example of a logically deep object is the
characteristic sequence of the diagonal halting problem, χ,
where each bit χ[i] is 1 iff the ith program halts. Despite its
apparent importance, the n-bit prefix χn = χ[0 . . . n− 1] of
χ is highly redundant with K(χn) = log n+O(1). The in-
tuition is we only need to specify the number of indices that
contain 1. Once this log n number is known we can dovetail
all the programs p0, . . . , pn−1 (Li and Vitányi 2019, p. 181)
on an UTM and stop the computation once the desired num-
ber of programs have halted. Yet, this is computationally
very expensive, taking at least as much time as the slowest
program in the above enumeration.

A logically shallow object, on the other hand, has a fast-
running program that is highly probable to be its source.
Note that, defining logical depth as the runtime of the short-
est program x∗ does not constitute a stable definition since
there might be a program of just a few more bits using sub-
stantially less time to generate x. A complex artwork may
have a slow-running short program that is not much shorter
than the print program that outputs the artwork literally.

K(x) ≤ |pprint(x)| ≤ n+O(1)

Here, the object lacks internal redundancy that could be ex-
ploited to encode them concisely and is logically shallow,
as a print program which generates the object quickly, is al-
most as probable to be its origin as the shortest one. In a
contrasting scenario: a painting that appears complex to its
observer may have a short program to generate it. Colton
(2008)’s “Art Exhibition: Dots 2008” describes a similar
case where a painting of some random dots on the can-
vas is given two plausible explanations. One, “the dots
are randomly arranged” and two, “the dots represent some
friends of the artist and the colors and positions convey the
artist’s feelings about them”. To a spectator, who has had
a bounded time t to analyse the painting, the first explana-
tion may seem most plausible in the form of time-bounded
Kolmogorov complexity, Kt(x). But knowing that there is
even a shorter, if slower to execute description of the paint-
ing, partist : K(x) ≤ |partist| + O(1) available, the spec-
tator is more inclined to accept partist as its most probable
origin and assign to it a value as the computational effort
time(partist) suggests. Thus:

Definition 3 The value or quality of a creative product x is
the minimum computational effort or time needed to produce
it from a b-significant shortest description.

valueb(x) = {time(p) : U(p) = x and |p| ≤ K(x) + b}
However, as we write about computation that is constrained
by runtime or space, it is also worth considering certain com-
plex artifacts that may have a short description but the only
way to reproduce them from the description would require
unbounded resources. As such, there is no other way to
specify them than to spell them out bit by bit and if a cre-
ator were to claim the existence of such an artifact, no effec-
tive programmatic verification of this fact would be possible.
The situation for such objects, as with Colton’s Dots 2008

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

177

exhibit, is complicated: a Turing machine that knew about
the personal relationships in Colton’s artist’s life might be
able to much more sharply compress those paintings. But
without the access to one, the observer is burdened with the
verification of the artist’s claim.

The Creative Process and its Non-randomness
We inevitably arrive at the questions of what constitutes an
effective generation process for an artifact and in the pres-
ence of multiple plausible theories, which process is the
most likely to have occurred. A fraudster or charlatan may
claim that a complex-looking creative product is a result of
a slow-running short program, thus artificially inflating its
value. But, if the object has an equal-length fast program
which involves no random steps in generating the object,
then it is equally likely that the latter is the true generative
process for the object; and if the object can be produced by
taking a small number of non-random steps, then it is cer-
tainly possible that the fraudster program takes unnecessary
pathological steps in order to seem serious.

This non-random non-trivial effort to generate an artifact
is also stored in its subjective organization: Beethoven’s
“Für Elise” is aesthetically pleasing because it is organized
in a certain way. If we rearrange its notes randomly to make
different musical pieces, only a handful among the vast ma-
jority of resulting pieces will be deemed musically pleasing
and perhaps only one will be as musically valuable as “Für
Elise”. Similar idea appears in the fiction of Borges (1998),
“The Library of Babel”, which describes a library all possi-
ble 410-page books on a 25-letter alphabet, and the librari-
ans’ attempts to discern which of the books were meaning-
ful. Thus, the inherent organization of these products hold
clue to the non-trivial and laborious processes that resulted
in their existence (Bennett 1988).

Hence, the most plausible creative process is carried out
by a program that is no more than b bits longer than the
shortest and from which the work to reproduce x involves
no unnecessary, ad-hoc assumptions except for the b bit re-
dundancy. This necessary and non-random workflow for the
production of x is what we assign credence to (recall the
preference of the art-lover in Colton 2008’s dots exhibit). If
a short program p has a slow deductive reasoning process, it
is not evidence against the plausibility of this program. In
fact, if the product has no comparably concise programs to
compute it quickly, it is evidence of the non-triviality of the
generative process. A great work of autobiography is one
example of this: if we just consider the written text as its
acceptable representation, then its information content is re-
ally low (Shannon 1951). But the existence of such literature
stands evidence of a profoundly-led life by the author and
the significance of the events that happened in that lifetime.

Definition 4 A b-significant creative process of a product
x is simulated by the UTM upon input p such that |p| ≤
K(x) + b, U(p) = x and p takes the minimal non-random
steps among all b-incompressible programs for x.

Is it possible to convert a shallow object like a random string
to something deep like the Tolstoy’s “War and Peace”? Sat-
isfyingly, this is answered in the negative by the slow growth

property: a fast deterministic process is unable to transform
a shallow object into a deep one, and that fast probabilis-
tic processes can do so only with small probability (Bennett
1988).

Sophistication
We formalize a notion of “structure” or “projectable prop-
erties” in an object. In the previous sections, we have men-
tioned that the complexity and usable information in an ob-
ject do not have a causal relationship; in fact they may very
well be orthogonal properties of an object (Koppel 1995).
We thus try to decouple the part of an object that is an ag-
gregate of shareable properties from its accidental informa-
tion with a two-part code. Earlier, when discussing models,
we introduced total recursive function as a way of describ-
ing a set of objects with respect to which we examined x’s
regularities. Here we use a total recursive function slightly
differently, to capture the structural information in an indi-
vidual object x that shows evidence of some planning that
went into x’s generation. The utility of such formulation
becomes evident through the following example: consider a
total function double(x) that on any input doubles the bits,
double(011) = 001111, double(101) = 110011. Such
properties are difficult to find in general, but work as an
excellent compression scheme for the product. Hence the
sophisticated part of an object is the size of such programs
which stands for the non-random structure of an object.

The c-sophistication of an object is thus defined as follows
(Koppel 1995).

sophc(x) = min{|p| : p is total, a parameterization d
exists for which U(p, d) = x and |p|+ |d| ≤ K(x) + c}

That is, x is sophisticated if the best model for x is a compar-
atively long program, not something as simple as the dou-
ble function. The size of an optimal total recursive func-
tion along with the data may be c longer than x’s shortest
description. But in order to reduce c if we furnish p with
properties that are accidental or exclusive to x, then it might
fail to recognize objects that are similar or generated by the
same source. Mondol (2020) demonstrated an example in
symbolic-music-compression using context-free patterns. In
order to capture core-properties of a music-piece, the au-
thor only considers the patterns that repeat most in the cor-
responding composer’s oeuvre. This way the emphasis is
put more on the inherent composition techniques of the se-
quence rather its distinct embellishments. The significance
parameter c is thus interpreted as a confirmation of the de-
scription (p, d) before regarding extra structure represented
by a longer program p′.

Attributes of the Creator
Sophistication is a natural way to measure how much infor-
mation of an object we can throw away without losing the
ability to query its properties (without false positives). We
propose that such properties are also a measure of the cre-
ator’s attributes embedded into the product’s structure. Sup-
pose that a music generator whose inner mechanism is un-
known to the observer is broadcasting self-composed music.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

178

If the composition obeys some simple rule such as repeat-
ing the same patterns or sounds maximally random, then we
would not attribute craftsmanship to the source. If however,
the composition exhibits complex structure, which is only
possible through rigorous planning and meaningful explo-
ration, we might suspect the existence of a skilled creator.
Hence, sophistication is that quality of an object that sets
apart the artist’s talent from their fanciful impulses.

Definition 5 The style or signature of a creator inherent in
a creative product x is measured by the object’s c-significant
sophistication sophc(x). That is, we can say that the gen-
erator program p of length sophc(x) produced x on input d
leaving out all but c bits of redundancy.

It is worthwhile to note that both logical depth and sophisti-
cation are measures of meaningful complexity in an object;
but while one uses dynamic resources (program time), the
other uses static ones (program size). Thus the two mea-
sures are not necessarily correlated (Antunes and Fortnow
2009): the halting sequence χ is logically deep, but has low
sophistication (O(log n)). Rather, logical depth can be used
as a structure finding mechanism. We formalize this with
the converging hypotheses argument (Koppel 1995): con-
sider the same music generator as above; as we observe
more of its music, more structure becomes apparent, thus
forcing revisions of hypotheses as to the generator’s struc-
ture. Let x denote the complete music and xn its observable
prefix. At step n, we would like to find the hypothesized
generator pn and its parameterization dn : pn(dn) = xn

and |pn| + |dn| ≤ K(xn) + c. If for the previous hy-
pothesis pn−1, we find an input dn−1 : pn−1(dn−1) =
xn, |pn−1| + |dn−1| ≤ K(xn) + c then we move onto a
larger prefix without updating the hypothesis. Otherwise,
we exhaustively search through all programs (not necessar-
ily total) p : |p| ≤ n and data d : |d| ≤ n − |p| in order
of increasing length and let them run for ldepthc(xn) steps.
We choose the shortest p = pn : |p|+ |d| ≤ K(xn) + c that
satisfies these criteria. Thus, in our model, as more com-
posed music is observed, previous hypothesized generators
are abandoned for one of two reasons. The most straightfor-
ward reason is that the subsequent parts of the composition
is inconsistent (do not fall in the generator’s range). In this
case, the program is changed in favor of one which is less
powerful (shorter, using longer data). The other reason for
abandoning a program is that as more parts of the compo-
sition is observed, structure becomes apparent which was
not previously so- that is, use of a more powerful, longer
program results in a shorter description when including the
required input to generate xn. Such procedure might not
give the smallest compression program for the music gen-
erator itself, but it increasingly describes the properties of
initial segments of its generated music x, which can be used
to compress the larger initial segments increasingly better as
n→∞.

Non stochastic Objects (Masterpieces)
Finally, we discuss another remarkable outcome of the no-
tion of sophistication: absolutely non-stochastic objects,
whose complexity is mostly comprised of non-random struc-

ture (high sophistication and useful properties) and show
that creative masterpieces fall into this category.

An absolutely non-stochastic object has neither minimal
nor maximal complexity. Hence they are not typical out-
comes of any total recursive program that exhibits low struc-
ture. Additionally, non-stochastic objects have no optimal
programs that are of relatively small complexity; that is they
exhibit high randomness deficiency or atypicality for a pro-
gram p : K(p) < K(x). Rather, these objects are typi-
cal outputs only of programs p that have complexity close
to their own, K(p) ≥ K(x), indicating high sophistication
(Gacs et al. 2001). The program part p of such an artifact
thus showcases the creator’s elaborate techniques, contents
and creative properties that can be pioneering and replicated.
When a non-stochastic object is an output of a unique highly
sophisticated program, it depicts innovation; similar to the
transformative effects of a masterpiece, it has the ability to
push a medium or genre to new directions. Thus absolute
non-stochasiticity is a pre-cursor to creative masterpieces.
Definition 6 A creative masterpiece x is absolutely non-
stochastic or highly sophisticated, that is, they exhibit low
randomness deficiency (needing small additional data) only
for total recursive programs p that have complexity close to
their own, K(p) ≥ K(x). For programs p with K(p) <
K(x) they will either require large additional data or they
will not be in those programs’ range at all.
If we were to partition a creative masterpiece into mean-
ingful complexity and random noise, we will find that al-
most all of its complexity comes from useful incompressible
properties. Moreover, the amount of such non-randomness
is also significant. Thus non-stochastic artifacts reside in a
Goldilocks complexity zone: Shen (1983) showed that these
objects have complexity at least K(x) ≥ n

2 − O(log n).
Thus a masterpiece, which is a product of its generative pro-
gram p having relatively high complexity while being abso-
lutely non-random, is an extremely rare phenomenon.

Re-examining Computational Aesthetics
With the computational tools we now have available in
our armament, we revisit some of the existing attempts
to incorporate algorithmic information theory into evalu-
ating creativity. Among the more recent papers, Ens and
Pasquier (2018) demonstrated a way to evaluate style imi-
tation systems by comparing their generated artifacts with
the reference artifacts. They analyse the statistical signif-
icance of inter-corpora artifact distance which is approx-
imated with the normalized compression distance (NCD)
K(xy)−min{K(x),K(y)}

max{K(x),K(y)} . The NCD is a very natural approach
to measure how different two artifacts are (the numerator is
the amount of information that x and y differ by), but as we
have seen in the model section: when multiple artifacts are
concerned, a more theoretically correct way is to contem-
plate a model that describes them well. Then two corpora
are maximally different if their individual artifacts exhibit
high randomness deficiency w.r.t. each other’s model.

Another school of thinkers (Birkhoff 1933; Moles 1966)
expresses aesthetic beauty as a ratio of order and complex-
ity O

C . Moles (1966) approximates this ratio with relative

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

179

redundancy |x|−K(x)
|x| equating order with |x| − K(x), the

amount by which x can be compressed. While this might
work for objects that lie at either extreme of randomness
(strings formed by coin-toss or repetitions of bits), it fails
precisely for objects that are in-between: e.g. for a highly
sophisticated object this definition measures exactly the op-
posite of order, as such objects exhibit structure through al-
most all of their complexity. Kosheleva et al. (1998) pro-
pose quite a different way of approximating O

C altogether.
They equate complexity C with the time time(p) a program
takes and order with 2−l(p). While the definition of order is
similar to the former approach (both argue that the smaller
l(p) = K(x), the more order 2−l(p) or x − K(x) is there
in the object), we now know that time(p) is far from being
a measure of complexity of an object; rather it marks the
evolution-time of an object from a short program.

Schmidhuber (1997) has also given a framework for
“beauty”, a concept we are not considering much in our pa-
per. His argument is that for each observer (which in our
frame we treat as a model, of the total function variety), the
most beautiful objects are the highest-probability objects.
This suggests that the most beautiful objects are also the
most typical ones, which is worrisome, since most models
also have low sophistication (and hence, the most “beauti-
ful” objects will be comparatively trivial). Schmidhuber’s
approach also does not allow easily for models to be adapted
in light of new objects, nor in light of new explanations high-
lighting the complexity of existing objects.

A Formal Framework We can reformulate the aesthetic
beauty ratio O

C of an artifact x by defining order withK(M),
where M models the regularities in x leaving out K(x|M)
randomness and K(M)+K(x|M) ≤ K(x)+O(1). Based
on our discussion, M can be built either from a coherent
set of objects with which we want to recognize x or it can
be its sophistication or useful properties that can be used
to generate similar objects. The denominator or complex-
ity is simply the raw Kolmogorov complexity K(x). Then
K(M)
K(x) assigns highest aesthetic beauty to masterpieces and

lowest to objects that exhibit low structure (random strings
or sequences of 1’s have low complexity models: fair coin-
toss generators or printing |x| 1’s). Thus, in general, the
algorithmic recipe presented in Table 1 can be followed for
aesthetic analysis of computational creativity. We note the
relationship between the entities in the first column of the
table and three of the four P’s of creativity (Jordanous 2016;
Rhodes 1961); in a future work, we will integrate the fourth
P (press) through analysis of criticism as a creative task in
its own right.

Conclusion
We looked at some of the fundamental concepts of creativity
through the lens of algorithmic information theory. We saw
how typicality or novelty of a never-before-seen artifact can
be measured against an inspiring set of already observed ob-
jects. Perhaps more importantly, we laid a groundwork for
conceptualizing value and what it means to be an authentic
creative process. We also highlighted a difference between

Creative Entity Attributes Algorithmic Information
Theory Notion

Artifact
Typicality Randomness

Deficiency

Novelty
Mutual Information

between model
parameters

Order and Noise Model and
data-to-model codes

Creative
Process

Non-randomness Effective b-significant
program

Value (also
of artifact)

b-significant
Logical Depth

Creator
Skills and

Style Sophistication

Masterpiece Non-stochasticity

Table 1: An algorithmic recipe for Computational Creativity

an artifact’s actual and apparent complexities: an observer
or critic’s time-bounded explanation Kt(x) of an artwork x
can be influenced by the real creative process of the artist;
while they can also dismiss the fraudulent claims of a char-
latan by seeing through the actual value of an artifact. Al-
though this aspect of creativity will be expanded on more in
a future paper, such interplay between artists and critics has
been often absent from previous computational understand-
ings of creative work. Additionally, the notion of sophisti-
cation lets us illustrate a creator’s virtuosity present in their
creative product. The input d to a generator program p that
we called accidental information, can be thought of as the
inspiration or an encoding of the surrounding environment
that influences a creator program p. A particular delightful
outcome of sophistication is its ability to describe master-
pieces in the form of highly sophisticated artifacts, whose
existence is only possible through a similarly sophisticated
program. Although these concepts are not computable, they
provide a reliable theoretical foundation upon which other
models (e.g. machine learning) can be built and evaluated.

Acknowledgement
The work of Dan Brown is supported by the Natural Sci-
ences and Engineering Research Council of Canada. We are
very grateful to the anonymous reviewers for a number of
helpful suggestions in their thorough reviews.

References
Antunes, L., and Fortnow, L. 2009. Sophistication revisited.
Theor. Comp. Sys. 45(1):150–161.
Antunes, L.; Fortnow, L.; van Melkebeek, D.; and Vinod-
chandran, N. V. 2006. Computational depth: Concept and
applications. Theor. Comput. Sci. 354(3):391–404.
Bennett, C. H.; Gacs, P.; Ming Li; Vitanyi, P. M. B.; and
Zurek, W. H. 1998. Information distance. IEEE Transac-
tions on Information Theory 44(4):1407–1423.
Bennett, C. H. 1988. Logical depth and physical complexity.
In A Half-Century Survey on The Universal Turing Machine,
227–257. USA: Oxford University Press, Inc.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

180

Birkhoff, G. D. 1933. Aesthetic measure,. Cambridge,
Mass.: Harvard University Press.
Boden, M. A. 1991. The Creative Mind: Myths and Mech-
anisms. USA: Basic Books, Inc.
Borges, J. L. 1998. Collected fictions. Penguin Books.
Colton, S. 2008. Creativity versus the perception of creativ-
ity in computational systems. In AAAI Spring Symposium:
Creative Intelligent Systems, 14–20. AAAI.
Ens, J., and Pasquier, P. 2018. CAEMSI : A cross-domain
analytic evaluation methodology for style imitation. In Pro-
ceedings of the Ninth ICCC, Salamanca, Spain, June 25-29,
2018, 64–71.
Gacs, P.; Tromp, J. T.; and Vitanyi, P. M. B. 2001. Algo-
rithmic statistics. IEEE Transactions on Information Theory
47(6):2443–2463.
Jordanous, A. 2016. Four pppperspectives on computa-
tional creativity in theory and in practice. Connection Sci-
ence 28(2):194–216.
Koppel, M. 1995. Structure. In The Universal Turing Ma-
chine (2nd Ed.): A Half-Century Survey, 403–419. Berlin,
Heidelberg: Springer-Verlag.
Kosheleva, M.; Kreinovich, V.; and Yam, Y. 1998. Towards
the Use of Aesthetics in Decision Making: Kolmogorov
Complexity Formalizes Birkhoff’s Idea. Bulletin of The
EATCS 66:166–170.
Lamb, C.; Brown, D. G.; and Clarke, C. L. A. 2018. Evalu-
ating computational creativity: An interdisciplinary tutorial.
ACM Comput. Surv. 51(2).
Li, M., and Sleep, M. R. 2004. Melody classification us-
ing a similarity metric based on Kolmogorov Complexity.
Proceedings of the Sound and Music Computing Conference
(SMC’04) 126–129.
Li, M., and Vitányi, P. M. 2019. An Introduction to Kol-
mogorov Complexity and Its Applications. Springer Pub-
lishing Company, Incorporated, 4th edition.
McGregor, S. 2007. Algorithmic information theory and
novelty generation. In Proceedings of the Fourth Interna-
tional Joint Workshop on Computational Creativity, Gold-
smith College, University of London, London, UK, June 17-
19, 2007, 109–112.
Moles, A. A. 1966. Information theory and esthetic percep-
tion. Translated by Joel E. Cohen. Urbana, Illinois, 1966:
University of Illinois Press.
Mondol, T. 2020. Style recognition in music with context
free grammars and kolmogorov complexity. Master’s thesis,
the University of Waterloo, Waterloo, ON, Canada.
Rhodes, M. 1961. An analysis of creativity. The Phi Delta
Kappan 42(7):305–310.
Ritchie, G. 2007. Some empirical criteria for attributing cre-
ativity to a computer program. Minds Mach. 17(1):67–99.
Schmidhuber, J. 1997. Low-complexity art. Leonardo
30(2):97–103.
Schütz, K. 2019. Vermeer: The Complete Works. Taschen.
Shannon, C. E. 1951. Prediction and entropy of printed
english. Bell System Technical Journal 30(1):50–64.

Shen, A. 1983. The concept of (α,β)-stochasticity in the
Kolmogorov sense, and its properties. Soviet Math. Dokl.
28:295–299.
Vereshchagin, N. K., and Vitanyi, P. M. 2004. Kolmogorov’s
Structure Functions and Model Selection. IEEE Trans. Inf.
Theor. 50(12):3265—-3290.
Vidal, C., and Delahaye, J.-P. 2019. Universal ethics: Orga-
nized complexity as an intrinsic value. In Georgiev, G. Y.;
Smart, J. M.; Flores Martinez, C. L.; and Price, M. E., eds.,
Evolution, Development and Complexity, 135–154. Cham:
Springer International Publishing.
Vitányi, P. M. 2020. How Incomputable is Kolmogorov
Complexity? Entropy 22(4).

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

181

