Department of Electrical and Electronic Engineering

Syllable Neural Language Models for English Poem Generation

Danielle Lewis

City, University of London
London, UK EC1V OHB
Danielle.Lewis @city.ac.uk

Abstract

Automatic Poem Generation is an ambitious Natural Lan-
guage Generation (NLG) problem. Models have to replicate a
poem’s structure, thyme and meter, while producing creative
and emotional verses. The lack of abundant poetic corpora,
especially for archaic poetry, is a serious limitation for the
development of strong poem generators. In this paper, we
propose a syllable neural language model for the English lan-
guage, focusing on the generation of verses with the style of
a target author: William Wordsworth. To alleviate the prob-
lem of limited available data, we exploit transfer learning.
Furthermore, we bias the generation of verses according to
a combination of different scoring functions based on meter,
style and grammar in order to select lines more compliant
with the author’s characteristics. The results of both quan-
titative and human evaluations show the effectiveness of our
approach. In particular, human judges struggle to recognize
real verses from the generated ones.

Introduction

Automatic poetry generation is an evolving area at the cross-
roads of computational creativity and NLG (Gatt and Krah-
mer 2018). NLG is a well-established sub-field of Artifi-
cial Intelligence (AI), with the goal of “generating under-
standable texts in a human language based on non-linguistic
communication” (Ehud and Robert 2000). NLG is a chal-
lenging problem which has seen huge advances and contri-
butions to Natural Language Processing (NLP) over the last
20 years: producing various types of texts, from biographies
(Kim et al. 2002) to weather and financial forecasts (Re-
iter et al. 2005; Plachouras et al. 2016), as well as cre-
ative texts such as story narratives (Gervas et al. 20006),
jokes (Ritchie et al. 2007) and poetry (Zugarini, Melacci,
and Maggini 2019). Automatic poetry generation is an in-
credibly interesting topic for artificial intelligence and espe-
cially challenging due to the complex language features in-
volved; like syntax, semantics, phonetics and lexical choice
(Oliveira 2009).

Poem generation requires consideration to both content
and form. Not only is poetry an expression of language, but
an expression of the artist themselves. Automatically gen-
erated poetry must capture the linguistic features that can
characterize a poet; the rational and semantic qualities of
the poet’s works, naturally influenced by their personal ex-
periences, beliefs, and literary background.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

Andrea Zugarini
DINFO
University of Florence
Via di S. Marta, 3 - 50139 Florence, Italy
andrea.zugarini @unifi.it

350

Eduardo Alonso

City, University of London
London, UK EC1V OHB
E.Alonso@city.ac.uk

Modern techniques for poetry generation have largely uti-
lized neural architectures with a post-processing stage to
generate well-formed verses. More often this research has
used the poetical works of several authors, as opposed to a
target poet, to tackle the need for large quantities of data.

(Zugarini, Melacci, and Maggini 2019) proposed a sim-
ple neural network model to generate verse in the Italian
language, explicitly from the poet Dante Alighieri. What
distinguished this approach from previous language models
was the use of syllables as input tokens. This intuition for
using sub-word information was based on the dependency
of poetry using syllables to regulate form; meter and rhyme.
The syllable-based approach proved successful for the Ital-
ian language, which has a rich morphology. However, it
is unknown if the technique could be applied to other lan-
guages, specifically to a less phonetic language like English.

In this paper, we extend the syllable-based language
model proposed in (Zugarini, Melacci, and Maggini 2019)
to the case of English language for a target author, namely
the romantic poet William Wordsworth. The model con-
sists of a Recurrent Neural Network that outputs one syl-
lable at each time step, conditioned to the previously gener-
ated text. The model is trained using William Wordsworth’s
work: The Prelude, composed in blank verse, i.e. unrhymed
lines of iambic pentameters. By virtue of the syllable-based
approach, the proposed model can learn several properties of
the input and has large flexibility in its potential generation.
To account for this, generations which resemble The Pre-
lude and Wordsworth’s style are favoured. Neural networks
trained on a single author can lead to low generalization due
to small training data. To combat this, a multi-transfer learn-
ing system is proposed. A transfer of information is learnt by
the language model, using Wordsworth’s non-poetic prose,
a selection of his production of poems and lastly, the autobi-
ographical epic, The Prelude.

Experimentation demonstrates that exploiting
Wordsworth’s production improves the perplexity of
the language model, suggesting that the model’s ability
to capture the language and contents of The Prelude is
enhanced. A qualitative analysis of the generated verses
using human evaluation in a Turing style test was carried
out. It was found that the generated verses were consid-
ered to be real by the judges, even more frequently than
the genuine Wordsworth verses. To encourage further

Department of Electrical and Electronic Engineering

research and the reproduction of the syllable poetry gener-
ation model, the open-source code can be downloaded at
https://gitlab.com/danielle.evalewisl/
poetrygeneration_william_syl-worth.

The paper is structured as follows. The next Section gives
an overview of advances and state-of-art approaches to po-
etry generation. Then, we describe the proposed model and
the generation mechanism, we report the results of the ex-
periments, and finally we draw the conclusions.

Related work

According to the literature, the problem of poetry genera-
tion has been tackled often using machines which are pro-
grammed to generate poetry or approaches which utilize ma-
chine learning. Earlier methods relied on rule-based solu-
tions, while more recent state-of-art techniques have em-
ployed learnable language models to tackle flaws of pre-
vious systems and go beyond template filling. Language
Modelling predicts which word comes next, given a se-
quence of previous words. Neural language models have
been the dominant class of algorithms applied to NLG in
the last few years. Neural networks learn representations
at increasing levels of abstraction through backpropagation
(LeCun, Bengio, and Hinton 2015; Goodfellow et al. 2016).
These representations are dense, low-dimensional and dis-
tributed, which complements the task of natural language
processing by capturing grammatical and semantic general-
izations (Gatt and Krahmer 2018). Whilst a feed-forward
neural network has been found to be successful to address
language modelling (Bengio et al. 2003), recurrent neural
networks (RNN) are the much-preferred approach (Mikolov
et al. 2010).

RNNs were designed to improve sequence modelling and
retain information from sequences of text by introducing
memory loops within the network. (Hochreiter and Schmid-
huber 1997) developed a more sophisticated RNN architec-
ture called the LSTM (Long Short-Term Memory), designed
to retain information for an extended number of timesteps
and as a solution to the vanishing gradient problem. Com-
pared to other language models, LSTMs can handle vari-
ous sequence lengths and avoid data sparseness as well as
the explosion of the number of parameters. Several re-
searchers have used LSTMs to produce state-of-art genera-
tion systems to generate sonnets from topics (Ghazvinine-
jad et al. 2016), automatic rap lyrics (Potash, Romanov,
and Rumshisky 2015), and target author-stylized poetry
(Tikhonov and Yamshchikov 2018; Zugarini, Melacci, and
Maggini 2019)).

There are many different approaches to poetry generation
and the use of language models. (Lau et al. 2018) used a
joint architecture consisting of a word-level language model
with both word and character representations, where gener-
ations of quatrains are selected based on a pre-processing
step. Another combinatory architecture using a language
model and topic modelling was proposed by (Van de Cruys
2020) in which the system was exclusively trained on non-
poetic text, with a post-processing step to constrain poetic
verse. Word-based language models usually involve large
vocabularies, storing all the most frequent words in a large

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

351

textual corpus. They also cannot generalize to never-seen-
before words. To overcome these issues, some approaches
have exploited sub-word information: (Hwang and Sung
2017) proposed a character-level solution and (Miyamoto
and Cho 2016) combined word embeddings with character-
level representations. Exploiting sub-word knowledge is
crucial to regulate and capture the poem’s form. It has been
shown in (Marra et al. 2018) that character-based mod-
els can produce powerful word and context representations,
capturing both morphology and semantics. However, all of
these solutions learned language models from large corpora,
based on the works of multiple authors or texts. (Zugarini,
Melacci, and Maggini 2019) took the intuition of sub-word
information and chose syllables to tokenize text, and trained
a syllable-based language model from a single Italian au-
thor. Syllables are naturally well suited for poetry, since they
govern several aspects of the poem’s form. As the poetical
production of a single target author is commonly insufficient
to train a deep neural network, they proposed a multi-stage
transfer learning solution with other artist’s production and a
publicly available modern Italian corpora to capture syntax
and grammar.

We follow this approach and extend the syllable-based
language model to the English language. Whilst there are
partial sets of English syllabification rules, there is no defini-
tive set of rules to follow. Automatically splitting words
into syllables is a challenging task, especially because the
syllable is difficult to define. Even so, most people agree
they can count how many syllables there are in each word or
sentence. (Marchand, Adsett, and Damper 2007) state there
is a general consensus that a syllable comprises of a ‘nu-
cleus’ which is nearly always a vowel combined with zero or
more preceding consonants (known as the onset) and zero or
more proceeding consonants (known as the coda). However,
for multisyllabic words it is difficult to define which con-
sonants belong to which syllable. A modern alternative to
English syllabification is a data-driven or corpus-based ap-
proach which tries to deduce syllabifications from previous
syllabified words, using a dictionary or lexicon (Marchand,
Adsett, and Damper 2007). Since (Liang 1983) formulated
his TEX hyphenation algorithm, it has been a standard in the
field (Adsett and Marchand 2009).

We show in the Experiments that a syllable solution can
indeed be applied to the English language by generating
verses with correct form, and share characteristics in the
style of the target author.

The Model

The proposed model consists of two blocks: a hyphenation
module and a syllable-based Language Model, which pro-
cesses an input sequence of syllables.

Hyphenation Module

The hyphenation module is responsible for splitting the text
into a sequence of syllables. This module is language de-
pendent, because each language has its own rules. As dis-
cussed earlier, as opposed to Italian, English does not have
a precise set of hyphenation rules. Therefore, we were un-
able to implement a module similar to (Zugarini, Melacci,

and Maggini 2019), and we relied instead on an implemen-
tation of (Liang 1983) algorithm using the python package
hyphenate', that exploits a TeX approach for finding legiti-
mate hyphenation points. Each verse in the text is converted
into a sequence of syllable tokens x := zj,...,zp which
belong to the syllable dictionary V,,. A word-separator
is inserted between words in each sequence, to distinguish
breaks between words <sep>, begin-of-verse <go> and
end-of-verse <eov>.

Language Model

The syllable-based language model learns to estimate the
conditional probability of a token given the previous tokens.
At each time step ¢, it outputs the token in the vocabulary
Vsy with highest probability:

ey

where 6 are the network’s weights and ¢, indicates the syl-
lable associated with highest probability. Each element of
Vsy 1s encoded into a one-hot representation of size |V5y\.
The model learns a latent dense d-dimensional representa-
tion of each token, called syllable embedding. The sequence
of syllable embeddings is provided as input to the RNN, col-
lected row-wise in the embedding matrix, one element at
each time step. As V;, is the set of all syllables and spe-
cial tokens, its cardinality is smaller than traditional word-
based vocabularies, which means the embedding matrix has
significantly less trainable parameters than word-level rep-
resentations. The internal state of the RNN at time step ¢ is
indicated with h, and computed as follows:

h; = T(etyht—l)v

e = p9($t|5317 .- ~,33t—1)

@)

computed by updating the previous state h;_; combining it
with the current syllable embedding e; through the recurrent
cell 7. In our language model, 7 is an LSTM cell. The hidden
state is further projected with a non-linear layer, into a d-
dimensional vector z;:

z; = o(Wh; + b), 3)

and finally a dense layer back-projects z into the syllables
vocabulary space (RIV=v1), that followed by the softmax ac-
tivation function yield the probability distribution of Equa-
tion 1:

Oy = VVS/th, @

&)

The language model is trained by minimizing the cross-
entropy loss function between y; and the ground truth, i.e.
the actual tokens retrieved from Wordsworth’s poetry. It
encourages the model to assign high probability to the ob-
served data, pushing toward 1 the element of ¢, associated
to the ¢-th syllable of the current line in observed data. Fig-
ure 1 visualizes the structure of the language model through
an example.

¥, = softmax(oy).

'https://pypi.org/project/hyphenate/

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

352

Multi-stage Transfer learning

Neural language models are usually trained on large textual
corpora. When focusing on a single author’s work, such as
in the case of The Prelude: Growth of a Poet’s Mind of
William Wordsworth, a language model struggles to learn,
leading to poor generalization capabilities. To alleviate the
lack of resources, we adopt a multi-stage transfer learn-
ing technique to pre-train the model on additional data and
then fine-tuning it on The Prelude. We choose this transfer
learning approach to mimic the approach used in (Zugarini,
Melacci, and Maggini 2019), in generating poetic text in the
style of Dante’s The Divine Comedy. Highlighting the abil-
ity to produce desirable results from a relatively small cor-
pus of a single author’s work by exploiting syllables. In par-
ticular, we consider a large selection of Wordsworth’s poetry
production (excluding The Prelude) and The Guide through
the District of the Lakes in the North of England, a book
written in prose. For simplicity, in the rest of the paper the 3
corpora are referred to as The Prelude, Production and The
Guide, respectively. We choose Wordsworth’s non-poetic
text (The Guide) to grasp the syntax and grammar of the En-
glish language as well as the author’s style. The 30 poems
from Wordsworth’s production were selected from a bibli-

ography.

Poem Generation Mechanism

Once the language model has been trained, we can exploit it
at inference time to generate verses.

Decoding. After training, new verses can be generated
directly from the model. We start with hy set to zeros,
and we feed the system with the start symbol, then we
auto-regressively feed the network by sampling the next
token at each step. Sampling has proven to be essential
for the generation of diverse, creative and free generations
(Holtzman et al. 2019). There are several different sam-
pling strategies. We explored two popular sampling tech-
niques: multinomial sampling with temperature (Ackley,
Hinton, and Sejnowski 1985; Ficler and Goldberg 2017;
Fan, Lewis, and Dauphin 2018) and top-p (Holtzman et
al. 2019) sampling.Sampling with temperature regulates the
crispness of the probability distribution p through a parame-
ter ¢, namely temperature:

exp(h;/t)

vl (6)
> =1 exp(h;/t)

p(z1|z<,) =

Setting ¢ € [0,1] skews the distribution towards high
probability events, which implicitly lowers the mass of the
tail distribution. Top-p sampling, also known as Nucleus
Sampling, was instead proposed in (Holtzman et al. 2019).
Such stochastic decoding technique achieved higher quality
text from neural language models than greedy search and
temperature sampling. The approach avoids sampling from
the tail of the probability distribution by truncating it dy-
namically, such that the remaining tokens contain most of
the probability mass, at least more than a value P. Formally:

reg rets <SEP>

vex all <EOV>

LSTM 5 LSTM -y LSTM 5 LSTM -—» ..—» LSTM 5 LSTM

1 1 1
! ! f

<GO> reg rets

1+

Hyphenation
Module

1+

Regrets, vexations, lassitudes, that all

1 f f
o !

<SEP> <SEP> all

Figure 1: Sketch of the syllable-based Language Model. The hyphenation module is responsible for the tokenization of text
in syllables (enriched by some special tokens that account for word separation, end of verse etc..). Green rectangles represent
syllables’ embeddings, yellow ones the LSTM cell unfolded through time, and the light blue blocks the computations of

equations 3 and 4.

p(@i|r<s)
ije\,;p p(zjlr<;)’

. P
B ifz; € Vs(y)

(N

pl($i|33<i))
0, otherwise,

where Vs(f) is the set of tokens constituting the nucleus
that as mass probability greater or equal to P.

We keep sampling and generating tokens until the <eov>
symbol is generated, or the number of syllables reaches a
fixed maximum limit. Numerous different sequences can be
generated by sampling from the model’s distribution learned
from the training data.

Poem Selection. We generate 100 verses for each sam-
pling strategy and we assign a score S(x) to each generated
verse. S is an averaging of three different scoring functions:
namely S;(x), Sa(x), S3(x), based on meter, style and
grammar, respectively. To promote verses with an iambic
pentameter meter, S; counts the number of syllables (ex-
cluding special tokens) in a verse, as follows:

S =abs | — —

1(x) = abs (10

where |x| indicates the number of syllables in the verse x
and abs(+) is the absolute value function. In this way, verses
differing from the 10 syllable target are penalized. To mon-
itor the generation of words in the author’s style, we con-
sidered the subset Vs(?f) of top-k (kK = 2000) most frequent
words (stop words excluded) used by the author in The Pre-
lude. In the attempt to better mimic the artist’s style, we

®)

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

353

measured with Sy the proportion of tokens in the verse that
belongs to Vs(f):

Sa(x) €))

where | - | is the counting function.

Score S3 was used to account for grammar, in the hope of
highlighting non-sensical words and repetitions within the
line. Python’s LanguageTool> was used to count the number
of “mistakes” which appear per line, with all generations re-
ceiving at least 1 count. LanguageTool is a popular open
source proofreading software developed by (Naber and oth-
ers 2003) checking for grammar, style and spelling. The
scores were normalized, resulting in values between 0 and 1
— with 0 being the ideal score.

1
Sa(x) = 17 > fl@), (10)
z; €X
0, ifz; €V
flas) = {1, otherwise 1D

where V' is the vocabulary of words accepted by Language-
Tool. For all three scoring functions, better performance is
demonstrated with a value closer to zero. An average of
the three scores was calculated for the 100 generations. The
verses from the top 20 highest scores were selected for the
human evaluation.

https://pypi.org/project/language-check/

Train Test Textstyle Syllables Datasets Val PPLL. Test PPL
The Prelude 7,134 793 poetry 5083 Prelude 25.36 26.27
Production 17,469 1,941 poetry 6990 Production— Prelude* 11.92 11.80
The Guide 948 106 prose 3958 Guide — Production — Prelude* 17.04 18.09

Table 1: Number of verses/sentences and syllables for each
corpus.

Experiments

In the following section we report our quantitative analy-
sis of the syllable language model generations using scor-
ing functions, showing also the benefits of transfer learning.
Further, we outline the results of the model’s generations us-
ing a human evaluation in a Turing like test.

Datasets. The syllable-based language model was trained
with three different corpora: The Prelude, Production and
The Guide. Corpora statistics are outlined in Table 1.. The
number of syllables are large in comparison to (Zugarini,
Melacci, and Maggini 2019) which highlights the differ-
ences in the English and Italian languages. Perplexity (PPL)
was measured to choose the best hyper-parameters for the
neural network from numerous configurations using valida-
tion and test sets from Production. The Hyper-parameter
tuning explored different learning rates (with and without
decay), batch size, gradient clipping, dropout probabilities
and different network sizes.

Training Details. The best performing size d for the syl-
lable embeddings was 300 and the size of the LSTM state
was 1,024. Neurons were dropped out with probability 0.3
and the gradient was clipped at norm equal to 4. The size
of Vs, was set to 8,000, including all the syllables in the
three datasets and the special tokens. Regarding the learn-
ing, the best results were obtained with batch size 32 and
learning rate 0.002. The best parameters were used for pre-
training on the Guide and Production and then fine-tuned on
The Prelude. Learning rate was tuned to 0.0002 to achieve
the best perplexity scores on The Prelude. After a qualitative
examination of the best generated verses (i.e. the ones hav-
ing the highest score S) with both multinomial temperature
sampling and top-p using different ¢ and p parameters, we
chose multinomial temperature sampling (t=0.7) to produce
the verses for the human evaluation.

Transfer Learning Results. Table 2 reports the PPL re-
sults for validation and test sets from the transfer learning
procedure for each dataset.

As anticipated, the language model trained on The Pre-
lude benefits from pre-training on additional datasets. The
most significant improvement in PPL is given when pre-
training on Production, showing a positive transfer of infor-
mation from Wordsworth’s poetry production, reducing per-
plexity by ~ 53% and ~ 54% relative improvement in vali-
dation and test sets, respectively. The additional pre-training
stage on The Guide, was instead not beneficial, probably be-
cause of its limited size.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

354

Table 2: Validation and Test PPL for multi-transfer learning.
A — B means that we train on data A first, and then we
train on data B. * indicates that the Prelude was fine-tuned
using 0.0002 as learning rate.

Author | Real-Mark
LM 56%
Poet 52%

Table 3: Percentage of participants who judged the genera-
tions to be real.

Human Evaluation. The standard evaluation metric for
automatic poetry generation uses human evaluation. Human
judgement was enrolled to further assess the generations.
Judges were recruited in a Turing style test to judge the lan-
guage model’s generations compared to the author’s real ex-
amples. We recruited 15 graduate students, with a mixed
background. We refer to them as “non-expert” judges, since
they were not specialized in Wordsworth’s production, but
had heard of William Wordsworth. They were asked to
judge if a given verse was authored by William Wordsworth
or not (i.e., generated by our language model). Each judge
evaluated 10 verses, 5 of which were from Wordsworth and
5 from our model, as shown in Table 4. The example verses
from Wordsworth were from The Prelude. The poem was
split into verses, with 5 verses randomly chosen by an al-
gorithm. The 5 verses representing the syllable language
model were manually chosen from the top 20 scoring verses
from the combined scoring functions. The same ten verses
were shown to all evaluators.

Table 3 reports the number of times (percentages) that
verses were judged to be authored by Wordsworth. Gener-
ated verses from the language model are considered as real
56% of the time, more so than the real examples authored by
Wordsworth, with a relative difference of 7.4%.n These re-
sults match the work from (Van de Cruys 2020) where about
half of the generated poems were judged to be written by
a human and (Zugarini, Melacci, and Maggini 2019) who
achieve a similar 56.25

Conclusion

In this paper, we extended the syllable-based approach pro-
posed in (Zugarini, Melacci, and Maggini 2019) to the En-
glish Language. We focused on the generation of verses
written in blank verse with the style of the poet William
Wordsworth. Regardless of differences between the pho-
netic Italian language and English, the results show the
method can be generalized to English, thus proving its po-
tential applicability to other languages, even those with
loose hyphenation rules. The adoption of a transfer-learning
approach was crucial for alleviating the lack of textual re-
sources necessary to train the neural language model to learn

Example Source Real Mark %
and when the shadow of the gentler sleep LM 80
the intellect of men and hope was theirs LM 73
endowed by nature in the midst of airs LM 60
beneath the mountain clouds of our two cheeks LM 47
for thy own life the errors of the first LM 20
and sallying forth we journeyed side by side Poet 80
if mid indifference and apathy Poet 60
and from his work this moment had been stolen ~ Poet 53
and in our dawn of being constitute Poet 40
even files of strangers merely seen but once Poet 27

Table 4: Examples of verses submitted to judges, some real (Poet), some generated by our model (LM). We also report the
percentage of participants who marked each verse as “real”. Marks of the best and worse generated lines are highlighted in

bold.

the poetry of one author. Despite its simplicity and the ab-
sence of large-scale collections of data from the target au-
thor, our model produced verses that were marked as “real”
by human judges over 56% of the time. Apart from trans-
fer learning, such performances were achieved thanks to
the poem selection mechanism, which evaluated the genera-
tions for meter, style and grammar, and also due to a multi-
transfer learning procedure which improves the quality of
the model, exploiting a large collection of the poet’s produc-
tion and prose.

However, the generations produced were small in length
and the quality of the generations were not evaluated fur-
ther for emotion and content. Future work would plan to
increase the size of generations and engage expert judges
to compare results based on emotion and content qualities,
beyond a Turing-style test.

References

Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985.
A learning algorithm for boltzmann machines. Cognitive
science 9(1):147-169.

Adsett, C. R., and Marchand, Y. 2009. A comparison of
data-driven automatic syllabification methods. In Interna-
tional Symposium on String Processing and Information Re-
trieval, 174-181. Springer.

Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of machine
learning research 3(Feb):1137-1155.

Ehud, R., and Robert, D. 2000. Building natural language
generation systems.

Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical
neural story generation. arXiv preprint arXiv:1805.04833.

Ficler, J., and Goldberg, Y. 2017. Controlling linguistic
style aspects in neural language generation. arXiv preprint
arXiv:1707.02633.

Gatt, A., and Krahmer, E. 2018. Survey of the state of the
art in natural language generation: Core tasks, applications
and evaluation. Journal of Artificial Intelligence Research
61:65-170.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

355

Gervas, P.; Lonneker-Rodman, B.; Meister, J. C.; and
Peinado, F. 2006. Narrative models: Narratology meets
artificial intelligence. In International Conference on Lan-
guage Resources and Evaluation. Satellite Workshop: To-
ward Computational Models of Literary Analysis, 44-51.
Ghazvininejad, M.; Shi, X.; Choi, Y.; and Knight, K. 2016.
Generating topical poetry. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, 1183-1191.

Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y.
2016. Deep learning, volume 1. MIT press Cambridge.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi, Y.
2019. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751.

Hwang, K., and Sung, W. 2017. Character-level language
modeling with hierarchical recurrent neural networks. In
2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 5720-5724. 1EEE.

Kim, S.; Alani, H.; Hall, W.; Lewis, P.; Millard, D.; Shad-
bolt, N.; and Weal, M. 2002. Artequakt: Generating tai-
lored biographies from automatically annotated fragments
from the web.

Lau, J. H.; Cohn, T.; Baldwin, T.; Brooke, J.; and Hammond,
A. 2018. Deep-speare: A joint neural model of poetic lan-
guage, meter and rhyme. arXiv preprint arXiv:1807.03491.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature (2015). May; 521 (7553): 436 10.1038/nature14539.
Liang, F. M. 1983. Word hy-phen-a-tion by com-put-er.
Technical report, Calif. Univ. Stanford. Comput. Sci. Dept.
Marchand, Y.; Adsett, C. R.; and Damper, R. I. 2007. Eval-
uating automatic syllabification algorithms for english.
Marra, G.; Zugarini, A.; Melacci, S.; and Maggini, M. 2018.
An unsupervised character-aware neural approach to word
and context representation learning. In International Con-
ference on Artificial Neural Networks, 126—136. Springer.
Mikolov, T.; Karafidt, M.; Burget, L.; éernocky, J.; and
Khudanpur, S. 2010. Recurrent neural network based lan-

guage model. In Eleventh annual conference of the interna-
tional speech communication association.

Miyamoto, Y., and Cho, K. 2016. Gated word-character re-
current language model. arXiv preprint arXiv:1606.01700.

Naber, D., et al. 2003. A rule-based style and grammar
checker.

Oliveira, H. 2009. Automatic generation of poetry: an
overview. Universidade de Coimbra.

Plachouras, V.; Smiley, C.; Bretz, H.; Taylor, O.; Leidner,
J. L.; Song, D.; and Schilder, F. 2016. Interacting with
financial data using natural language. In Proceedings of the
39th International ACM SIGIR conference on Research and
Development in Information Retrieval, 1121-1124.

Potash, P.; Romanov, A.; and Rumshisky, A. 2015. Ghost-
writer: Using an Istm for automatic rap lyric generation. In
Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 1919-1924.

Reiter, E.; Sripada, S.; Hunter, J.; Yu, J.; and Davy, 1. 2005.
Choosing words in computer-generated weather forecasts.
Artificial Intelligence 167(1-2):137-169.

Ritchie, G.; Manurung, R.; Pain, H.; Waller, A.; Black, R;;
and O’Mara, D. 2007. A practical application of computa-
tional humour. In Proceedings of the 4th International Joint
Conference on Computational Creativity, 91-98.

Tikhonov, A., and Yamshchikov, I. P. 2018. Guess
who? multilingual approach for the automated generation
of author-stylized poetry. In 2018 IEEE Spoken Language
Technology Workshop (SLT), 787-794. 1EEE.

Van de Cruys, T. 2020. Automatic poetry generation from
prosaic text. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2471-2480.

Zugarini, A.; Melacci, S.; and Maggini, M. 2019. Neural
poetry: Learning to generate poems using syllables. In In-
ternational Conference on Artificial Neural Networks, 313—
325. Springer.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

356

