Meta-Evaluating Quantitative Internal Evaluation:
a Practical Approach for Developers

Filippo Carnovalini !, Nicholas Harley?, Steven T. Homer?,
Antonio Roda!, and Geraint A. Wiggins®?
1University of Padova, via Gradenigo 6, Padova, Italy
2Vrijf: Universiteit Brussel, Pleinlaan 9, 1050 Brussel, Belgium
3Queen Mary University of London, Mile End Road, London E1 4NS, UK
filippo.carnovalini @dei.unipd.it

Abstract

Within the field of Computational Creativity, evaluation
is one of the most important and more difficult tasks.
Sometimes evaluation is part of the creative systems
themselves, becoming an internal evaluation. Being a
module of a creative system, it is useful to evaluate how
effective this internal evaluation is.

In this paper, we propose a procedure for the (meta-)
evaluation of internal evaluation modules, that allows
for incremental development of both the evaluation
module and the creative system, which are considered
fully independent of each other. The procedure works
by statistically comparing the evaluation of the aver-
age output of the generation system with the best re-
sults from the same, to see if the evaluation procedure
can statistically distinguish the two. We then show how
to apply the procedure giving one example evaluating
a module we designed to assess structural coherence in
generated folk music.

Introduction

Evaluation is one of the most important aspects of Compu-
tational Creativity, but this widely used term describes more
than one issue that CC practitioners need to face. The most
obvious evaluation problem that anyone who ventures into
the field soon encounters, is that of evaluating the results of a
creative system, and whether the system can be defined cre-
ative in its own (Jordanous, 2012). The difficulty of this task
called for more precise definitions of what it means to be
creative, and, more importantly, what it takes to be creative.
This led to the realization that another evaluation problem
arises: according to Margaret Boden and other prominent
researchers, for a system to be called creative, it needs to
be able to explore a conceptual space on its own, and to
be able to evaluate what it encounters in non-previously ex-
plored areas of said space to find the better results and to
guide the exploration (Boden, 2004; Ventura, 2017). This
is the problem of what we will call Internal Evaluation —
sometimes referred to as self-assessment (Lamb, Brown, and
Clarke, 2018), reflection (Pérez y Pérez and Sharples, 2004),
or appreciation (Colton, 2008): while generating something
is trivial, being able to tell apart good and bad results is what
can make a creative system of interest to the community
(Agres, Forth, and Wiggins, 2016). This paper addresses
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both of these problems, by analyzing how an internal eval-
uation method can be assessed in itself (in what effectively
becomes a meta-evaluation: Jordanous, 2014), to tell if the
internal evaluation does indeed help in generating better re-
sults or if it only becomes another layer of unnecessary com-
plexity.

The approach we propose has the advantage of being rel-
atively simple to implement while developing the internal
evaluation module, and is general enough to apply to any
kind of generated artefact. Using an existing generation sys-
tem, the developers must select some results that are con-
sidered better than average, and some results that are not
cherry-picked at all and can be considered average results
from the system. The internal evaluation is not applied to
any of these results, meaning that the development of the
evaluation module is independent and incremental to the one
of the existing generation system, allowing for more flexible
development. The artefacts that are thus selected constitute
a dataset for the development of the evaluation method. The
evaluation can then be applied to the artefacts in the two
groups, and a statistical analysis is run on the results. If
the two groups show a significant difference in results, the
evaluation module can be considered satisfactory and can be
implemented within the generation system. Otherwise, fur-
ther development can be applied to the evaluation method
without the need to change the system.

We exemplify this approach by applying a method for the
evaluation of musical structural coherence to an algorithm
for melody generation developed by other researchers: in
doing that we do not evaluate the generation system in it-
self but only our own module for internal evaluation, show-
ing how the two can be completely separate for this meta-
evaluation procedure.

Procedure and Examples

In this section we will explain our procedure for meta-
evaluation, giving a practical example of how we applied
it to a realistic case-scenario, and also giving some indica-
tions on how this can be implemented within an incremental
development cycle.

Requirements

The proposed procedure, while being general enough to
adapt to a wide variety of algorithms and approaches, has



some requirements that need to be addressed before explain-
ing how the procedure works.

The very first requirement is that the system in which the
evaluation module needs to be implemented must already be
functional. This means that the system must be capable of
generating the desired artefact, although the quality of these
artefacts might still be in general unsatisfactory (and thus
calling for internal evaluation). This also means that the sys-
tem should not depend in any way on the evaluation module,
and the vice versa should be preferred. While this require-
ment might seem stringent to some, this will also allow for
a modular implementation of evaluation modules as well as
a facilitated incremental development. In some cases, one
might be only interested in the internal evaluation rather than
the generation of artefacts. In this cases, it can be appropri-
ate to use a system developed by others that generates sim-
ilar artefacts as those that are under exam. For this paper,
that is what we did: instead of implementing a novel mu-
sic generation algorithm, we used FolkRNN (Sturm et al.,
2019), a readily available system for the generation of folk
music. This shows the complete independence of the evalu-
ation from the inner workings of the system, that we used as
a black box in this work.

The second requirement is the evaluation module itself.
Here we will not focus on the development of the evaluation
module, which can be viewed in this procedure as another
black box. The only condition is that it must accept the kind
of artefacts that need to be evaluated as input, and output a
quantitative evaluation, i.e., a number. Sometimes the evalu-
ation needs to consider aspects that are “deeper” than the fi-
nal artefact. In this case, either the evaluation module should
be able to analyze them itself to keep the full detachment
from the system, or the system must be modified to output
those specialized information as well as the final output.

Procedure

Step Zero: Feature Definition. The developer should be
completely clear about what feature of the artefact the eval-
uation module should evaluate: saying that it should find the
“better” results might be too vague and lead to more biased
and less informative results. While this step is more of a
premise than an actual step, its importance justifies the in-
clusion in this section: this step drives the selection of sam-
ples for the dataset, as explained below, and not being clear
about what is being evaluated will hinder the entire process
(Pearce, Meredith, and Wiggins, 2002; Jordanous, 2012). It
is also important to choose at this step if the meta-evaluation
will be an Holistic Evaluation or a Specialized Evaluation,
as explained below.

Step One: Dataset Creation. For this procedure to func-
tion, it is necessary to create an ad-hoc dataset of output
artefacts. This should not be confused with the dataset that
was used to train the generation system nor the one that
was used to train the evaluation module (if there are such
datasets): these are usually human-generated artefacts that
are used to define a style or an objective for the system. In
this case, the dataset should only be comprised of artefacts
that were generated by the system itself. These must be di-
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vided into two groups: the “average” results and the “cherry-
picked” ones. For the first group, a set of any N valid results
created by the system selected at random (i.e., without any
form of selection: ideally, the first IV successive valid prod-
ucts of the system could be used) should be used, with N
big enough to allow statistical analyses to be performed.

The second group must instead be only comprised of re-
sults generated by the system that are deemed good. This
is an intentionally imprecise term, because it can depend on
the objective of the evaluation, and we can distinguish two
main types of evaluation, in this sense. An Holistic Evalua-
tion will see how the evaluated feature impacts the results in
term of general metrics such as creativity, value, style, nov-
elty. A Specialized Evaluation will instead only evaluate
the same feature as the one considered by the internal eval-
uation module as defined in step zero. These two kinds of
evaluation are complementary: the first one is most useful
when evaluating the effect of the internal evaluation module
on the system in general, while the second is most useful
when the internal evaluation module is being evaluated on
its own. In both cases, the pieces that will form the second
group must be selected by humans with knowledge about
the generated artefacts, possibly the author of the system or
a group of experts or via controlled questionnaires or crowd-
sourcing. The method for the selection can depend on the
kind of evaluation and the evaluated feature: for example, if
an Holistic Evaluation is being performed to find the effect
on creativity, the selection could be based on the Consen-
sual Assessment Technique (Amabile, 1983). Vice versa,
if a Specialized Evaluation is being performed the author
of the system might want to analyze the results on its own
to check if they fit his idea of what the evaluation system
is supposed to select. Regardless of what method is used,
the system authors should be very clear on how the selec-
tion was performed both while designing the evaluation and
while reporting its results.

Depending on the method used, creating this second
group as large as the first group can be extremely time-
consuming. Even if it is not possible to include N ele-
ments in the second group, the selection process should start
from NN elements, from which the selected results can be ex-
tracted. In this way, the numeric disparity between the two
groups will reflect the distribution of good results in the av-
erage results.

Step Two: Evaluation This central step is rather self-
explanatory. Each of the pieces selected in the the dataset
must be evaluated through the evaluation module, and the re-
sults must be collected. As already explained, this procedure
requires a full separation of the evaluation from the system,
as is clear from the fact that the evaluation happens (long)
after the generation is complete. This also allows for some
final modifications of the evaluation module at this point,
if the process points out some flaws in the software. Yet,
the developer should restrain the urge to modify the code to
fine-tune it to get better results. While this is feasible and
sometimes useful, if the developer chooses to do so step one
should be repeated and a new dataset created, otherwise the
final evaluation results would be biased.



Step Three: Statistical Analysis The final step represents
the actual assessment of the evaluation module. The results
collected on the evaluation dataset represent two different
populations, and are expected to be the result of two dif-
ferent probability distributions: if they originated from the
same distribution, then it would be the case that there is no
difference between the two groups seen from the eye of the
evaluation module. Otherwise, if the evaluation module sees
a difference between the two groups, there should be a sta-
tistically significant difference between the two. To evaluate
this, we propose to use the Shapiro-Wilk test to check if the
two distributions are not normal. In that case, a non para-
metric test like a Mann-Whitney U-test can be used to tell
if the two distributions differ. If the Shapiro-Wilk test does
not strongly indicate that the distributions are not normal,
and there is enough evidence suggesting that the two distri-
butions are indeed normal, the more powerful two-sample
unpaired t-test (Welch’s t-test) is to be preferred (Dodge,
2008). These suggestion outlines some of the more common
two-sample tests, but other tests may be appropriate depend-
ing on the data. All these tests indicate, through the p-value,
if the two distributions are statistically different. In general,
a p-value lower than 0.05 can be considered a good result,
but since we are dealing with artistic features, depending on
the applications the developer can be satisfied with a p-value
higher than 0.05, if for example there are other features to
be considered in the final system or if the developer wants to
leave room for “happy accidents” and allow for pieces that
do not comply with the stricter definitions of the evaluation
metrics, but could be considered good nonetheless and pos-
sibly more creative because of how they escape some rules.
For this reason, the researchers might aim for less restrictive
values (such as p < 0.1) or use the p-value as a continuous
metric rather than a boolean one to compare the results of
different iterations of a system or different systems. Once
again, regardless of the chosen objective, it is important to
establish clear goals for this value beforehand to establish if
the evaluation can be considered satisfactory or not.

Example

In this section, we review the above procedure by applying
it to a specific example to further discuss problems that can
arise and other caveats. In doing this, we will meta-evaluate
an evaluation method for music generation.

Step Zero: Feature Definition. Our evaluation module
tries to evaluate how structurally coherent a piece of gen-
erated music is. While it is not important to know the in-
ner workings of the evaluation to apply this procedure, we
will briefly discuss how the algorithm works for complete-
ness. This module accepts as input a monophonic music
piece with chord annotations, and segments it into fragments
that last two measures. The algorithm then recursively sim-
plifies each segment in a manner inspired by Schenkerian
Analysis (Simonetta et al., 2018), and then operates pair-
wise comparisons between the trees constructed from each
segment. From all the comparisons operated on a corpus of
folk reels from the Nottingham Dataset (Foxley, 2011), some
probability distributions that show how those comparisons
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typically develop are constructed. The new pieces that need
to be evaluated are similarly analyzed, constructing trees to
describe the new pieces. The evaluation of the piece uses
these trees, but instead of constructing probability distribu-
tions, we compute the Information Content of the piece’s
trees when compared to the learned distributions’ trees. The
Mean Information Content, the metric we use in this exam-
ple, thus serves as an indication of how unexpected (and thus
non-typical) the structure of the new piece is when compared
to the learned corpus since it compares how common these
trees (that represent structure) are with respect to the ana-
lyzed corpus. More information about the specifics of this
system is available in previous publications (Carnovalini et
al., 2021b,a). It is worth noting that the choice of the dataset
for the learning of the evaluation module is also to be con-
sidered within this point: in this example, it is reasonable to
evaluate the output of FolkRNN with the typical structures
of traditional Reels, but in other cases having the constraints
imposed by a certain corpus could be too limiting.

For this example, since we developed the evluation mod-
ule but we used FolkRNN, a system developed by others, for
generation, we chose to perform a Holistic Evaluation, try-
ing to assess if our evaluation module that evaluates struc-
tural coherence is able to impact the general value of the
generated output as assessed by FolkRNN’s own commu-
nity (see next paragraph).

Step One: Dataset Creation. In our case the dataset was
created via the FOIkRNN web application. For the “aver-
age” group, we created ten melodies in the key of C major
and 4/4 meter. For the other group, in order to simulate the
choice of the system’s creator, we decided not to select the
songs ourselves but instead to select those pieces in binary
time from the “Tune of the Month” section of the FolkRNN
website, that contains pieces deemed most interesting by the
developers and users’ community. If we wanted to do a Spe-
cialized Evaluation on instead, we should have generated 10
songs and manually select (possibly with the help of expert
musicians) the ones that show a good structural coherence.

Step Two: Evaluation Our evaluation system requires the
harmony to be annotated on the generated melody, which is
not present on FolkRNN generated pieces, so it was man-
ually annotated. This is not ideal, but since we decided to
use FolkRNN as a black box we could not modify it to auto-
matically add harmonic annotations as we would have done
on a system of our own. Moreover, our system evaluated
structural coherence at a fixed length of eight bars, which
is the typical length of a period in folk music. FolkRNN
outputs pieces that are generally sixteen measures long (not
considering repetitions) so each piece gave two samples for
the evaluation.

Step Three: Statistical Analysis The “freshly generated”
group includes 20 samples, while the “Tune of the Month”
has 6 samples, due to the scarcity of songs in the homony-
mous section of the FolkRNN website. The two distribu-
tions of Information Contents seem non normal, according
to the Shapiro-Wilk test and the inspection of the Q-Q plot,
therefore we used the Mann-Whitney U-test to tell if the two
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Figure 1: The boxplot comparing the Mean Information
Content, i.e., the result of our evaluation module, of the sam-
ples that were generated specifically for this evaluation as
average results and those that were selected by the commu-
nity as ‘Tune of the Month’ in the past.

distributions are statistically different. The p-value result-
ing from the test is 0.053, a rounding error away from the
95% confidence interval that we aimed for. This is reflected
in the boxplot of the two distributions (see Figure 1), that
shows how the distributions have different means but also
have a rather large overlap. In doing this evaluation, we
found out that FolkRNN does a good job at giving a good
structure to the pieces it generates, so it is not surprising that
our metric is having a relatively hard time distinguishing the
selected pieces from the non-selected ones. Figure 1 also
highlights one outlier in the non-selected group. It is impor-
tant at this point to also inspect such samples, as they could
give more insights on possible hidden mechanisms and flaws
of the evaluation method. In this case, the outlier has a repe-
tition in the middle of the period, repeating the beginning of
the two sub-phrases, which would be considered good struc-
ture, but fails to give good phrase endings. This tells us that
our evaluation module sometimes gives more importance to
phrase endings rather than phrase beginnings, an aspect that
can be considered in future development.

Comments and Conclusions

In this contribution, we introduced a procedure for the meta-
evaluation of quantitative evaluation methods meant to be
implemented as internal evaluation modules within a com-
putationally creative system. This procedure is based on sta-
tistical methods, and while it does require the developers to
create an ad-hoc dataset for the evaluation every time a new
method must be assessed, it does not necessarily require in-
tervention of external experts, and allows for incremental
development of both the creative system and the evaluation
method. For all these reasons, we believe it can be useful
and practical for researchers and developers at many stages
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of development. We showed how the procedure functions
by applying it to a real case scenario, evaluating a module
for the evaluation of structural coherence in folk music, ap-
plied to the results of FolkRNN. It is important to mention
that this approach did not evaluate FolkRNN directly, nor we
mean to make any sort of statement about that system. We
only used it as a framework to evaluate our own evaluation
module.

We did not discuss the development of the evaluation
module nor of the system, since our procedure is meant to
apply to a variety of situations, but the question on how to
use the results of such an evaluation module within a sys-
tem might arise. While the answer depends on the specific
system, a few possible ways can apply to almost any situa-
tion. The most naive one is to use a threshold on the results
of the module to discard any generated results that is too far
from the ideal results, or similarly to use the results of the
evaluation method to rank the output of the system so that
the developer will first inspect those results that are most
promising. When more than one internal evaluation feature
is implemented, the developers might want to assign weights
to every feature to create the final ranking, or might want to
use regression algorithms on the evaluated features to find
the overall best ranking. Having a variety of evaluated fea-
tures might also give the possibility to specify settings for
the generation/evaluation: in some cases the user might want
to be stricter on some rules rather than others.

Regardless on how the evaluation modules are embedded
in the final system, it is important to remind that the current
proposal is useful for the meta-evaluation of some quantita-
tive metrics used within the system to guide the generation
process. On the contrary, this method is not a procedure for
the evaluation of the system in itself and for the value or
novelty of the final results. To that goal, human assessment
done by experts of the artefact’s field is still the method to
be preferred (Jordanous, 2012).

Acknowledgments

FC is funded by a doctoral grant by University of Padova,
and visited Vrije Universiteit Brussel thanks to a mobility
grant from Fondazione Ing. Aldo Gini, which made this
work possible. NH, ST and GW received funding from the
Flemish Government under the “Onderzoeksprogramma Ar-
tificiéle Intelligentie (Al) Vlaanderen” programme.

We thank the anonymous reviewers whose comments al-
lowed us to greatly improve this article.

References

Agres, K.; Forth, J.; and Wiggins, G. A. 2016. Evaluation
of musical creativity and musical metacreation systems.
Computers in Entertainment (CIE) 14(3):33.

Amabile, T. M. 1983. A Consensual Technique for Cre-
ativity Assessment. In Amabile, T. M., ed., The Social
Psychology of Creativity, Springer Series in Social Psy-
chology. New York, NY: Springer New York. 37-63.

Boden, M. A. 2004. The creative mind: Myths and mecha-
nisms. London, United Kingdom: Routledge.



Carnovalini, F.; Harley, N.; Homer, S. T.; Roda, A.; and
Wiggins, G. A. 2021a. Studying structural regularities
through abstraction trees. In Manuscript Submitted for
Publication, 10.

Carnovalini, F.; Roda, A.; Harley, N.; Homer, S. T.; and
Wiggins, G. A. 2021b. A New Corpus for Computational
Music Research andA Novel Method for Musical Struc-
ture Analysis. In Audio Mostly 2021 (AM ’21), 4.

Colton, S. 2008. Creativity Versus the Perception of Cre-
ativity in Computational Systems. In AAAI spring sympo-
sium: creative intelligent systems, volume 8, 7.

Dodge, Y. 2008. The Concise Encyclopedia of Statistics.
New York, NY: Springer New York.

Foxley, E. 2011. Nottingham Database.

Jordanous, A. 2012. A standardised procedure for evaluat-
ing creative systems: Computational creativity evaluation
based on what it is to be creative. Cognitive Computation
4(3):246-279.

Jordanous, A. 2014. Stepping back to progress forwards:
Setting standards for meta-evaluation of computational
creativity. In Proceedings of the Fifth International Con-
ference on Computational Creativity, 8. Ljubljana, Slove-
nia: JoZef Stefan Institute.

Lamb, C.; Brown, D. G.; and Clarke, C. L. A. 2018. Evalu-
ating Computational Creativity: An Interdisciplinary Tu-
torial. ACM Computing Surveys 51(2):1-34.

Pearce, M.; Meredith, D.; and Wiggins, G. 2002. Motiva-
tions and methodologies for automation of the composi-
tional process. Musicae Scientiae 6(2):119-147.

Pérez y Pérez, R., and Sharples, M. 2004. Three computer-
based models of storytelling: BRUTUS, MINSTREL and
MEXICA. Knowledge-Based Systems 17(1):15-29.

Simonetta, F.; Carnovalini, F.; Orio, N.; and Roda, A. 2018.
Symbolic Music Similarity through a Graph-Based Rep-
resentation. In Proceedings of the Audio Mostly 2018 on
Sound in Immersion and Emotion - AM’18, 1-7. Wrex-
ham, United Kingdom: ACM Press.

Sturm, B. L.; Ben-Tal, O.; Monaghan, \.; Collins, N.; Herre-
mans, D.; Chew, E.; Hadjeres, G.; Deruty, E.; and Pachet,
F. 2019. Machine learning research that matters for music
creation: A case study. Journal of New Music Research
48(1):36-55.

Ventura, D. 2017. How to Build a CC System. In Interna-
tional Conference on Computational Creativity, 253-260.

Proceedings of the 12th International 217
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5



