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Abstract—Due to the prevalence of graph data, graph analysis
is very important nowadays. One popular analysis on graph
data is Random Walk with Restart (RWR) since it provides
a good metric for measuring the proximity of two nodes in
a graph. Although RWR is important, it is challenging to
design an algorithm for RWR. To the best of our knowledge,
there are no existing RWR algorithms which, at the same
time, (1) are index-free, (2) return answers with a theoretical
guarantee and (3) are efficient. Motivated by this, in this paper,
we propose an index-free algorithm called Residue-Accumulated
approach (ResAcc) which returns answers with a theoretical
guarantee efficiently. Our experimental evaluations on large-scale
real graphs show that ResAcc is up to 4 times faster than the
best-known previous algorithm, guaranteeing the same accuracy.
Under typical settings, the best-known algorithm ran around
1000 seconds on a large dataset containing 41.7 million nodes,
which is too time-consuming, while ResAcc finished in 275 seconds
with the same accuracy. Moreover, ResAcc is up to 6 orders
of magnitude more accurate than the best-known algorithm in
practice with the same execution time, which is considered as a
substantial improvement.

I. INTRODUCTION

The node-to-node proximity captures the relevance between

two nodes in a graph and has been recognized as an important

research problem in the data mining community [23], [3],

[24], [6], [10]. Random Walk with Restart (RWR) is a widely

adopted proximity measure due to its ability of considering

both the local structure and global structure of the graph.

Specifically, given a graph G and a pair of nodes, namely s and

t in G, the RWR value π(s, t) is defined as the probability that

a random walk starting from s (the source node) terminates

at t (the target node), which reflects the relevance of t with

respect to (w.r.t) s. One useful query of RWR is the single-
source RWR (SSRWR) query, which takes as input a source

node s and returns the RWR values of all nodes in the graph

w.r.t s.

The SSRWR query has many real-world applications. One

application is for improving the quality of community de-

tection in networks [5], [31], [7], [12]. In addition, SSRWR

queries are widely used for real-time recommendation sys-

tems [8], [19], [17], [25] (which recommends to a user items

that are similar to those the user has liked previously), and

friend-suggestion on social networks (which recommends to a

user some friends who have high relevance to the user).

Although the SSRWR query is widely needed, it is challeng-

ing to design an algorithm for effectively computing RWR

values quickly. We summarize 3 challenges here. The first

challenge is that adopting an index-oriented approach is too

costly for SSRWR. That is, the index-oriented approaches

require huge time overheads, high memory cost (in the online

query phase), and bulky space cost (of the offline indexing

structures), leading them infeasible to be applied to dynamic

graphs. This challenge motivates us to design an index-free

approach in this paper.

The second challenge is that computing exact RWR values

is computationally expensive. Among all existing algorithms,

Inverse [24] is the only one that computes the exact RWR

values. Since Inverse needs to compute the inverse of an (n×n)

matrix, where n is the number of nodes, it takes O(n2.373)
time cost, which is unaffordable at all when n is large. This

challenge motivates us to design an algorithm returning an

approximate solution with a theoretical error bound.

The third challenge is that it is expected to answer the

SSRWR query efficiently in many applications like the over-

lapping community detection mentioned earlier, which is much

challenging when we address the above 2 challenges. In the

literature, all index-free approaches returning an approximate

solution with a theoretical error bound [21], [9], [18], [29],

[30] could not answer the SSRWR query efficiently. Among all

these approaches, FORA [29] has the best performance in the

query phase in terms of accuracy and efficiency. Unfortunately,

our experimental results show that FORA took around 1,000

seconds in Twitter containing only 41.7 million nodes for the

SSRWR query. It could not meet the efficient requirement for

the real-world applications where the graph, such as Instagram

containing 1 billion nodes, is more large-scale than Twitter.

Motivated by the above 3 challenges, in this paper, we

design an algorithm called Residue-Accumulated approach
(ResAcc) which satisfies the following requirements.
• Index-free. It does not incur any burden to the data man-

agement system (i.e., index construction and maintenance).

• Output-bound. It outputs the estimated RWR values with

accuracy guarantee.

• High-efficiency. It is computationally efficient.

However, none of the existing algorithms satisfy all the above

3 requirements simultaneously as shown in Table I.

Our contributions. The following shows our major contribu-

tions. (1) Firstly, we propose an index-free algorithm, ResAcc,

satisfying the 3 requirements simultaneously, by incorporating

a novel and highly efficient technique called h-HopFWD

where h is a parameter. (2) Secondly, we prove that ResAcc can

guarantee the user-specified accuracy with (1−pf ) probability
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TABLE I
COMPARISON AMONG EXISTING ALGORITHMS FOR THE SSRWR QUERY.

Approach Technique Algorithm Error Bound Efficiency

Index-
oriented

Iterative-based TPA [32] Additive Medium

Matrix-based

B-LIN [24] Not given Slow

QR [11] Not given Slow

BEAR [23] Relative Medium

BePI [14] Relative Medium

Monte-Carlo-based
HubPPR [26] Relative Medium

FORA+ [29] Relative Fast

Index-
free

Iterative-based Power [21] Additive Slow

Local update
Forward

Search [2]
Not given Fast

Matrix-based Inverse [24] Exact Slow

Monte-Carlo-based

Random Walk
Sampling [9]

Relative Slow

BiPPR [18] Relative Medium

TopPPR [30] Additive Medium

FORA [29] Relative Medium

ResAcc (ours) Relative Fast

where pf is the failure probability. (3) Thirdly, we conducted

comprehensive experiments on real datasets containing up

to billions of edges. The results demonstrate that ResAcc
outperforms all the existing algorithms by up to 4 times in

terms of query time and by up to 6 orders of magnitude

in terms of accuracy, which is considered as a substantial

improvement. In particular, our experiments show that the

best-known algorithm FORA ran nearly 1000 seconds on

Twitter, but RecAcc ran less than 275 seconds with the same

theoretical accuracy. (4) Fourthly, to show the superiority of

ResAcc over the existing algorithms in real-world applications,

we conducted an experiment for the overlapping community

detection. The results about the overlapping community detec-

tion demonstrate that our proposed method ResAcc took less

time cost by up to 1 order of magnitude than FORA.

We organize the paper as follows. Section II gives our

problem definition, and introduces two basic existing tech-

niques and the state-of-the-art FORA. Section III elaborates

our proposed method ResAcc. Sections IV and V present

two techniques used in ResAcc. The detailed related work

and the experimental results are elaborated in Section VI and

Section VII, respectively. Section VIII gives the conclusions.

II. PRELIMINARIES

In Section II-A, we first define our problem. Several impor-

tant concepts are defined in Section II-B, while the background

techniques used by the state-of-the-art appear in Section II-C.

A. Problem Definition

Let G(V,E) be a directed unweighted graph with n nodes

and m edges. For an undirected graph, we can convert it to

a directed one by treating each edge as two opposite directed

edges. Same as [26], [29], [30], [23], [14], [24], we assume

that the graph has no self-loop. Given a graph G(V,E) and

a source node s, Random Walk with Restart (RWR) [24]

computes the RWR value of each node in G(V,E) w.r.t s
by simulating a number of random walks, where each random

walk starts from s, and at each step, it either (i) terminates with

α probability, or (ii) moves to an out-neighbour of the current

node with (1−α) probability. For each t ∈ V , the RWR value

π(s, t) of t w.r.t s can be regarded as the stationary probability
that a random walk from s terminates at t. In this paper, we

focus on the approximate single-source RWR query (SSRWR).

Definition 1 (Approximate SSRWR). Given a graph G(V,E),
a source node s, a threshold δ, a restart probability α, a
relative error ε and a fail probability pf , an approximate
SSRWR returns the estimated RWR value π̂(s, t) such that for
each t ∈ V whose π(s, t) > δ, with at least 1−pf probability,

|π̂(s, t)− π(s, t)| ≤ ε · π(s, t). (1)

Personalized PageRank (PPR). Personalized PageRank

(PPR) [20] is an extension of RWR, which calculates the

relevance of nodes according to a preference distribution for

a given source node s. A random walk considered by PPR

either jumps to a random node according to this preference

(with α probability) or moves to an out-neighbour (with 1−α
probability) [23]. However, most studies on PPR [18], [26],

[29], [4], [1], [24], [11] focus on the single-source PPR
query (SSPPR), which the random walk stops and re-starts

from (which could be interpreted as jumping to) s with α
probability, and returns the PPR value of all nodes in the graph

w.r.t s. In this case, SSPPR is identical to SSRWR.

B. Concepts and Their Definitions

In this section, we formally define several important terms

to be used in our proposed method.

Definition 2 (The shortest distance). Given two nodes in a
graph, namely u and v, the shortest distance from u to v is
the length of the shortest path from u to v.

Definition 3 (The i-hop layer). Given a node v in a graph,
the i-hop layer of v, denoted by Li−hop(v), is the set of nodes
whose shortest distance from v is exactly i. Besides, when
i = 0, L0−hop(v) = {v}.
Definition 4 (The i-hop set). Given a node v in a graph, the i-
hop set of v, denoted by Vi−hop(v), is the set of nodes whose
shortest distance from v is at most i. That is, Vi−hop(v) =
L0−hop(v) ∪ L1−hop(v) ∪ ... ∪ Li−hop(v).

Definition 5 (The i-hop induced subgraph). Given a node v
in a graph G, the i-hop induced subgraph of v, denoted by
G′i−hop(v), is the subgraph of G induced by the i-hop set of
v, i.e., Vi−hop(v), such that the set of nodes in G′i−hop(v) is
Vi−hop(v) and the set of edges in G′i−hop(v) is {(u,w)|u,w ∈
Vi−hop(v) and (u,w) ∈ E}.
C. Basic Techniques and The State-Of-The-Art

Next, we introduce two basic techniques for SSRWR,

namely Random Walk sampling [9] and Forward Search [2],

which are used in the state-of-the art, FORA [29].

Random Walk sampling [9]. Given a source node s, random

walk sampling first generates a number of random walks from

s and for each t ∈ V , it uses the fraction of walks that

terminate at t as an estimation of π(s, t), denoted by π̂(s, t).
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Algorithm 1 Forward search
Input: A graph G(V,E), a source node s, the restart probability α, and the residue

threshold rfmax

Output: Reserve πf (s, t) and residue rf (s, t) for each t ∈ V
1: πf (s, t)← 0 for all t ∈ V ;
2: rf (s, s)← 1; rf (s, t)← 0 for each t ∈ V \{s};
3: while ∃t ∈ V such that rf (s, t)/dout(t) ≥ rfmax do
4: Do a forward push operation at node t;
5: Return πf (s, t) and rf (s, t) for each t ∈ V ;

Its time cost depends on the number of walks it generates.

According to [9], to guarantee a relative error ε, it needs to

generate O(n log(n)
ε2 ) random walks. Thus, it takes O(n logn

αε2 )
query time since the expected length of a walk is 1

α , which is

expensive for large-scale graphs.

Forward Search [2]. Forward Search is a local update

algorithm which approximates the RWR value of each node

w.r.t a source node s via a graph traversal. Specifically, for

each t ∈ V , it maintains a forward reserve πf (s, t) and a

forward residue rf (s, t) and continually updates them using

forward push operations (to be defined shortly). Intuitively,

the forward residue rf (s, t) “temporarily” stores some RWR

values that belong to t and its out-neighbours. The forward

push operation “pushes” the current residue held by t to itself

and its out-neighbours denoted by N out(t). When it finishes,

the final forward reserve πf (s, t) is an approximate RWR

value π̂(s, t). Formally, the push condition and the forward
push operation are defined below.

Definition 6 (The push condition). Given a residue threshold
rfmax, a node t ∈ V is said to satisfy the push condition if and
only if its residue rf (s, t) divided by its out-degree dout(t) is
at least rfmax, i.e., rf (s,t)

dout(t)
≥ rfmax.

Definition 7 (Forward push operation). If a node t ∈ V
satisfies the push condition, a forward push operation at node
t will be performed by executing three actions sequentially: (i)
it increases t’s reserve πf (s, t) by α · rf (s, t); (ii) it increases
the residue of each out-neighbour of t by 1−α

dout(t)
·rf (s, t); and

(iii) it sets rf (s, t) = 0.

Algorithm 1 gives the pseudo-code of Forward Search. It

is proven in [2] that Forward Search takes O( 1

αrfmax
) query

time. Given a smaller rfmax, Forward Search is slower since it

needs to perform more push operations. Besides, for any fixed

rfmax > 0, Forward Search cannot provide any output bound.

FORA [29]. To our best knowledge, FORA is the state-

of-the-art index-free algorithm for SSRWR, whose key idea

is to combine Forward Search and Random Walk sampling.

Specifically, FORA first performs Forward Search with early

termination (using a larger residue threshold rfmax), and

subsequently runs a certain number of random walks only

from the nodes whose residue is non-zero. In this way, the

number of walks required for satisfying the given accuracy

is reduced compared with the traditional random walk sam-

pling. To satisfy Equation (1) in Definition 1, FORA requires

O( 1

α·rfmax
+

m·rfmax·c
α ) query time where c =

(2ε/3+2)·log(2/pf )
ε2·δ ,

since it takes O( 1

α·rfmax
) time for Forward Search and gener-

Node 
1 0 0 0Source node

Push operation 
at node 

(1) 0 0.4 0.4 0
(2) 0 0 0.4 0.32
(3) 0 0.32 0 0.32
(4) 0 0 0 0.576
(b) without residue accumulation at node .

(c) with residue accumulation at node .

(a) An example of graph.

Push operation 
at node 

(1) 0 0.4 0.4 0
(2) 0 0.72 0 0
(3) 0 0 0 0.576

Fig. 1. Running example of the effect of residue accumulation. For each push
operation, the updated residues are highlighted in grey.

ates O(m · rfmax · c) random walks. However, FORA is still

inefficient (to be elaborated in Section III and Section IV).

III. RESACC: RESIDUE-ACCUMULATED APPROACH

In this section, we present our Residue-Accumulated ap-

proach (ResAcc) for SSRWR query. As a whole, ResAcc
estimates the RWR value π(s, t) of each node t ∈ V w.r.t

a source s by applying the following invariant from [1], [29]:

π(s, t) = πf (s, t) +
∑

v∈V rf (s, v) · π(v, t). (2)

where πf (s, t) (resp. rf (s, v) ) is the reserve of node t (resp.

the residue of node v) w.r.t s. This equation provides a way

to compute π(s, t) by utilizing the reserves and the residues

of all nodes in the graph. However, it is very expensive to

compute the RWR value π(v, t) for each v ∈ V . To speed up

the computation, a rough approximation of π(v, t), denoted as

πo(v, t), can be computed by utilizing Random Walk sampling

so that ResAcc estimates the RWR value π(s, t) as follows:

π̂(s, t) = πf (s, t) +
∑

v∈V rf (s, v) · πo(v, t), (3)

where π̂(s, t) is the estimation of π(s, t).
Main challenge. A straightforward solution by exploiting

Equation (3) is to first perform Forward Search with a residue

threshold rfmax and then simulate the random walks from

each node v whose residue rf (s, v) is non-zero, which is

the major idea of FORA. However, this solution suffers from

low-efficiency issue due to two reasons: (1) Forward Search

is inefficient even with a large rfmax, and (2) it requires to

simulate a huge number of random walks. In particular, the

number of random walks required by FORA is proportional to

the sum of non-zero residues of all the nodes in the graph,

denoted as rsum where rsum =
∑

v∈V rf (s, v), which is

usually large due to the large residue threshold rfmax. Thus,

the existing technique Forward Search significantly limits the

efficiency for computing the reserves and residues, leading to

that FORA cannot answer SSRWR query efficiently.

A. Intuition of Residue Accumulation

For Algorithm 1 (Forward Search), given the source node s,

the residue rf (s, t) of node t ∈ V can be regarded as a “tem-

porary container” that contains a part of reserves that belong to

t’s out-neighbours and t itself. Thus, a forward push operation
at node t can be regarded as a settlement to let rf (s, t) be 0

(since the graph has no self-loop). If we do not perform a

push operation at t, rf (s, t) will increase by receiving the
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residues from its in-neighbours and be accumulated to a large
value. This large accumulated residue rf (s, t) is important
since node t can perform the push operation only once rather

than every time t satisfies the push condition. We denote this

phenomenon of accumulating large residue values as residue
accumulation. To illustrate the effect of residue accumulation,

an running example is given in Figure 1, where Figure 1(a)

shows the graph, Figure 1(b) and Figure 1(c) show the push

operations without and with applying the residue accumulation

at node v2, respectively. Specifically, with applying the residue

accumulation at v2, we do not perform the push operation at v2
until its residue remains unchanged. By comparing Figure 1(b)

with Figure 1(c), we can see that the residue accumulation at

node v2 can reduce the total number of push operations of

Forward Search from 4 to 3, and the final results on both

cases are the same. Although the performance gain in this

example is only 1 since the graph is very simple, the gain in

the real-world would be very large where the number of in-

neighbours of a node is large. Thus, the residue accumulation

is very useful to accelerate the computations of SSRWR.

B. Overview of ResAcc

To efficiently solve SSRWR query, ResAcc exploits the

intuition of residue accumulation in a non-trivial way so

that it has the following two achievements: (i) it quickly

updates the reserves and residues of all nodes in the graph

by taking a small amount of time cost, and (ii) the number

of random walks required is significantly reduced since rsum
is largely reduced. Thus, ResAcc is of high efficiency while

guaranteeing high accuracy of the estimated RWR values.

Towards this end, ResAcc computes the reserve and residue

of each node by subsequently using two efficient and novel

techniques proposed by us, called the h-Hop forward search

(h-HopFWD) and the one-more forward search (OMFWD).

As illustrated in Figure 2, ResAcc consists of three phases:

• the h-HopFWD phase (see Section IV for the details). In

this phase, ResAcc runs h-HopFWD from the source node

s by focusing on the h-hop induced subgraph of s (i.e.,

G′h−hop(s)). This phase quickly computes the reserve and

residue of each node in G′h−hop(s) (instead of all nodes in

the graph) by utilizing the intuition of residue accumulation.

• the OMFWD phase (see Section V for the details). In this

phase, ResAcc runs OMFWD to obtain the final reserve

πf (s, t) and final residue rf (s, t) of each t ∈ V . This

phase further reduces rsum quickly due to the residue
accumulation at the nodes in L(h+1)−hop(s).

• the Remedy phase. In this phase, ResAcc estimates π̂(s, t)
for each node t ∈ V by combining Random Walk sampling

with the final reserves and residues based on Equation (3).

C. Implementation Details of ResAcc

Algorithm 2 gives the pseudo-code of ResAcc. For read-

ability of this algorithm, we regard h-HopFWD and OMFWD

as blackboxes here (to be introduced later). ResAcc takes as

inputs a graph G(V,E), a source node s, a restart probability

Fig. 2. Illustration of ResAcc from the source node s.

α, a residue threshold for h-HopFWD rhopmax, a residue thresh-

old for OMFWD rfmax, and the number of hops h. The goal

of ResAcc is to return the estimated RWR value π̂(s, t) of

each node t in the graph. Specifically, ResAcc first initializes

the estimated RWR value π̂(s, t) = 0 for each node t ∈ V
and the forward residue rf (s, t) such that rf (s, s) = 1 and

rf (s, t) = 0 for each t ∈ V where t �= s (Lines 1-2). Then, it

starts the h-HopFWD phase by invoking Algorithm 3 (to be

introduced later) by taking as inputs the source s, the threshold

rhopmax, parameter h, and the current reserve and residue of each

node (Line 3). Next, it starts the OMFWD phase by invoking

Algorithm 4 (to be introduced later) taking as input rfmax and

the current reserve and residue of each node (Line 4). After

that, the reserve π̂(s, t) and residue rf (s, t) of each t ∈ V are

obtained. Finally, it starts the remedy phase (Lines 5-17).

In the remedy phase, ResAcc estimates
∑

v∈V rf (s, v) ·
πo(v, t) in Equation (3) by simulating a number of random

walks from each v whose residue rf (s, v) is non-zero. Specif-

ically, it computes the total residue of all nodes rsum, based

on which it derives a value nr that will be used to decide the

number of random walks from each node v (Line 6-7). After

that, it proceeds to estimate rf (s, v)·πo(v, t) for each v whose

residues are larger than zero (Lines 8-15). In particular, for

each t ∈ V , it initializes a value Ct to be zero (i.e., Ct = 0),

where Ct is the estimated value of
∑

v∈V rf (s, v) · πo(v, t)
(Line 8). After that, for each node v, it performs nr(v) random

walks from v, where nr(v) is defined as below:

nr(v) =
⌈rf (s, v) · nr

rsum

⌉
.

If a random walk terminates at a node t, then ResAcc increases

Ct by
a(v)·rsum

nr
, where a(v) = rf (s,v)

rsum
· nr

nr(v)
(Lines 11-15).

After each v whose residue is non-zero is processed, for each

t ∈ V , the algorithm increases π̂(s, t) by Ct (Lines 16-17).

Then, the algorithm terminates.

D. Accuracy Guarantee

We first prove that the results returned by ResAcc are

unbiased. Due to space limit, we give the proof sketches of

all lemmas and theorems below while the step-by-step proofs

could be found in the appendix of our technical report [16].

Theorem 1. The expectation of π̂(s, t) returned by Algo-
rithm 2 is equal to π(s, t), i.e., E[π̂(s, t)] = π(s, t).

Proof. Firstly, to prove this theorem, it is equal to prove that

E[Ct] =
∑

v∈V rf (s, v) · π(v, t). Next, we prove that when

ResAcc processes a node v whose residue is non-zero, the

expected amount of increment of Ct is exactly rf (s, v)·π(v, t)
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Algorithm 2 ResAcc
Input: A graph G(V,E), the source node s, the restart probability α, residue thresholds

rhop
max and rfmax, and the number of hops h

Output: Reserve π̂(s, t) for each t ∈ V
1: π̂(s, t)← 0 for all t ∈ V ;
2: rf (s, s)← 1; rf (s, t)← 0 for each t ∈ V such that t �= s;
3: [π̂s, r

f
s ]← h-HopFWD(s, rhop

max, h, [π̂s, r
f
s ]);

4: [π̂s, r
f
s ]← OMFWD(rfmax, [π̂s, r

f
s ]);

5: /*Start the remedy process*/
6: Compute rsum =

∑
v∈V rf (s, v);

7: Compute nr = rsum · (2ε/3+2)·log(2/pf )

ε2·δ ;

8: Ct ← 0 for each t ∈ V ;
9: for v ∈ V with rf (s, v) > 0 do

10: Let nr(v) =
⌈

rf (s,v)·nr
rsum

⌉
;

11: Let a(v) =
rf (s,v)
rsum

· nr
nr(v)

;

12: for i = 1 to nr(v) do
13: Generate a random walk from v;
14: Let t be the last node of this walk;

15: Ct ← Ct +
a(v)·rsum

nr
;

16: for each node t ∈ V do
17: π̂(s, t)← π̂(s, t) + Ct;
18: Return π̂(s, t) for each t ∈ V ;

based on the definition of nr, nr(v), and a(v). Finally, by

processing all nodes, E[Ct] =
∑

v∈V rf (s, v) · π(v, t).
Next, we show that ResAcc guarantees the accuracy of the

estimated RWR values by applying the following concentra-

tion bound as shown in Theorem 2 from [29].

Theorem 2 ([29]). Let X1, ..., Xnr
be independent random

variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1−pi. Let
X = 1

nr

∑nr

i=1 aiXi with ai > 0, and ζ = 1
nr

∑nr

i=1 a
2
i ·pi. By

letting a = max{a1, ..., anr}, the following inequality holds:

Pr[|X − E[X]| ≥ λ] ≤ 2 · exp(− λ2 · nr

2ζ + 2aλ/3
).

Lemma 1. For any node t, given an arbitrary
relative error ε, we have the following inequality:
Pr[|π(s, t)− π̂(s, t)| ≥ ε · π(s, t)] ≤ 2 · exp(− ε2·nr·π(s,t)

rsum·(2+2ε/3) ).

Proof. Firstly, we define some notations. Let bj = a(v) if

the j-random walk starts from a node v ∈ V where j ∈
{1, ..., nr}. We can know that maxjbj = 1, and b2j ≤ bj for

any j since a(v) ≤ 1. Then, we define Yj(t) be the random

variable such that:

Yj(t) =

{
1, if the j-th walk ends at t,

0, otherwise.

Let Y = 1
nr

∑nr

j=1 bjYj(t), and ζ = 1
nr

∑nr

j=1 b
2
i ·E[Yj(t)]. Let

a = max{b1, ..., bnr
}. By definition, b2j ≤ 1, and so, ζ ≤ E[Y ]

and a ≤ 1. Secondly, by substituting ζ and a in Theorem 2,

we have that: Pr[|Y − E[Y ]| ≥ λ] ≤ 2 · exp(− λ2·nr
2E[Y ]+2λ/3

).

Since π(s, t)− π̂(s, t) = nr(v)·rsum

nr
(E[Y ]− Y ), we have

Pr[|π(s, t)− π̂(s, t)| ≥ nr(v)·rsum

nr
· λ] ≤ 2 exp(− λ2·nr

2E[Y ]+2λ/3
).

Finally, we complete the proof due to the facts that

E[Y ] ≤ nr

nr(v)·rsum
· π(s, t), λ = ε · nr·π(s,t)

nr(v)·rsum
and a < 1.

Theorem 3. For any node t with π(s, t) > δ, if nr ≥ rsum ·
(2ε/3+2)·log(2/pf )

ε2·δ , ResAcc returns an approximate RWR π̂(s, t)
that satisfies Equation(1) with at least 1− pf probability.

Proof. We prove that Pr[|π(s, t)− π̂(s, t)| ≥ ε · π(s, t)] ≤ pf
by substituting nr and π(s, t) in Lemma 1.

Push operation 
at node 

Initial None 0.512 0 0 0 0 0
(1) 0 0.4096 0 0.1024 0 0
(2) 0 0 0.32768 0.1024 0.08192 0
(3) 0.262144 0 0 0.1024 0.08192 0.065536

Push operation 
at node 

Initial None 1 0 0 0 0 0
(1) 0 0.8 0 0.2 0 0
(2) 0 0 0.64 0.2 0.16 0
(3) 0.512 0 0 0.2 0.16 0.128

(a) A graph 
for example.

(b) Subsequent forward push operations with the initial residue 
of , = 1.

(c) Subsequent forward push operations with the initial residue of , = 0.512.

Source node

Fig. 3. Running example of the looping phenomenon where the restart

probability α = 0.2 and the residue threshold rfmax = 0.1. For each push
operation, the newly updated residue and reserve are highlighted in grey.

IV. NEW TECHNIQUE: h-HOPFWD

A. Observation: Looping Phenomenon

We observed that the Forward Search (Algorithm 1) has the

looping phenomenon at the source node s. Initially, Forward
Search assigns 1 to the residue of s w.r.t s, i.e., rf (s, s) = 1.

For simplicity, we denote this initial residue of s as rf0 (s, s).
Subsequently, Forward Search performs the very first forward
push operation at node s since only s satisfies the push

condition (while currently other nodes have zero residue),

after which, the residue of s becomes zero. However, during

the remaining process of Forward Search, the residue of s
might become non-zero again via its in-neighbours, denoted

by rf1 (s, s) to differentiate from rf0 (s, s). Since rf1 (s, s) is non-

zero, the algorithm needs to do another forward push operation

at s again (if it satisfies the push condition). However, we

observed that all the operations done with the originally

residue value (i.e., rf0 (s, s) = 1) have to be repeated with

the newly updated residue rf1 (s, s).
To illustrate, a running example is given in Figure 3

where Figure 3(a) shows the graph. In particular, Figure 3(b)

illustrates three push operations performed when the initial

residue of s (rf0 (s, s)) is set to be 1. Specifically, the algorithm

subsequently performs a push operation at s, v1, and v2. For

each push operation, the newly updated residue and reserve

are highlighted in grey. We can see that after the third push

operation (at node v2), the residue of s becomes non-zero (i.e.,

0.512), which consequentially leads the algorithm perform a

push operation at s again. Next, Figure 3(c) illustrates the

three push operations performed when the initial residue of

s becomes 0.512. However, the orderings of push operations

performed at this time is the same as in Figure 3(b). Thus, a

looping phenomenon exists at node s, leading to the redundant
operations in Forward Search since such loopings at node s
will continue to happen until the final residue of s cannot

satisfy the push condition. For example, the final residue of

s in Figure 3(c) is 0.262144 (> rfmax = 0.1), which makes

another loop at s, leading to low-efficiency.
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B. Details of h-HopFWD

To avoid the looping phenomenon in Forward Search, we

propose a new technique called h-HopFWD by accumulating
the residue of the source node s so that the looping at s is

cut down to avoid the redundant push operations. However, it

is computationally expensive to accumulate the residue of s
in the whole graph since it takes large time cost to let all the

nodes in the graph except s not satisfy the push condition. To

address this issue, h-HopFWD exploits the hop-based induced
subgraph constructed from source s, namely G′h−hop(s) such

that it can perform the push operations at only the nodes in

G′h−hop(s), instead of at all the nodes in the graph, and so

its time cost is extremely low. Besides, the subgraph helps

to accumulate the residue of nodes in L(h+1)−hop(s) to be a

large value (see Section V). As a whole, h-HopFWD has two

phases: the accumulating phase and the updating phase. In the

accumulating phase, it accumulates the residue of s after the

first push operation. This phase continues until the residue of

s remains unchanged. In the updating phase, it computes the

reserve and residue of each node in the subgraph in O(1) time

by utilizing the accumulated residue of s.

The updating phase. However, it comes a question: how to
compute the reserve and residue of each node in the subgraph?
The updating phase is based on Lemma 2, which indicates that

the ordering of all the push operations done with rf0 (s, s) = 1
(the original residue of s) could be the same as these with the

accumulated residue rf1 (s, s) after the accumulating phase (if

it is not zero) by adjusting the push condition.

Lemma 2. Given a residue threshold rhopmax, the ordering of all
the push operations done with rf0 (s, s) = 1 could be identical

to these with rf1 (s, s) by changing the push condition with
rf1 (s, s) as follows: a node t ∈ V is said to satisfy the push
condition if and only if its residue divided by its out-degree
dout(t) is at least rhopmax ·rf1 (s, s) (instead of rhopmax as previous).

Proof. For the case with rf0 (s, s) = 1, we assume that

the total number of push operations is l. We denote the

ordering of nodes selected for the push operations as {N}l =
{v1, v2, ..., vl} where vi ∈ V . Similarly, We denote the

ordering of nodes with rf1 (s, s) as {N ′}l′ = {v′
1, v

′
2, ..., v

′
l′}

where l′ is the number of push operations done with rf1 (s, s).
Using Mathematical Induction, we prove that {N}l is equal

to {N ′}l′ such that: (i) l = l′ and (ii) vi = v
′
i for each i.

Besides, we observe that for a fixed initial residue of the

source node s, says rf0 (s, s), in the accumulating phase, the

reserve and residue of each node are proportional to rf0 (s, s)
with different coefficients. For example, given a graph shown

in Figure 3(a), with rf0 (s, s), the residue of node v1 is equal

to
(1−α)
dout(s)

· rf0 (s, s) by a push operation at node s; and

the residue of node v2 is equal to
(1−α)rf0 (s,v1)

dout(v1)
, which is

(1−α)2

dout(v1)dout(s)
·rf0 (s, s), by a push operation at node v1. Thus,

if we know the reserve and residue of any node t ∈ V after

the accumulating phase with rf0 (s, s), it is easy to know the

reserve and residue of node t after the accumulating phase with

Algorithm 3 h-HopFWD

Input: Graph G(V,E), source node s, restart probability α, residue threshold rhop
max,

the number of hops h, reserve πf (s, t) and residue rf (s, t) of each node t ∈ V
Output: Reserve πf (s, t) for each t ∈ Vh−hop(s) and residue rf (s, t) for each

t ∈ Vh−hop(s) ∪ L(h+1)−hop(s)
1: /*Start the accumulating phase*/
2: Perform a single forward push operation at s;

3: while ∃t ∈ Vh−hop(s)\{s} such that
rf (s,t)
dout(t)

≥ rhop
max do

4: for each v ∈ Nout(t) do
5: rf (s, v)← rf (s, v) + (1− α) · rf (s,t)

dout(t)
;

6: πf (s, t)← πf (s, t) + α · rf (s, t);
7: rf (s, t)← 0;
8: /*Start the updating phase*/

9: T ←
⌈

log(r
hop
max·dout(s))

log rf (s,s)

⌉
; //compute the maximum number of loops at s

10: S ← 1−[rf (s,s)]T−1

1−rf (s,s)
; //compute the scaler

11: for each v ∈ Vh−hop(s) do
12: πf (s, v)← πf (s, v) · S;
13: if v is the source node s then
14: rf (s, v)← [rf (s, v)]T ;
15: else
16: rf (s, v)← rf (s, v) · S;
17: for each v ∈ L(h+1)−hop(s) do
18: rf (s, v)← rf (s, v) · S;
19: Return Reserve πf (s, t) for each t ∈ Vh−hop(s) and residue rf (s, t) for each

t ∈ Vh−hop(s) ∪ L(h+1)−hop(s);

a different value for the initial residue of s, says rf1 (s, s), since

the ordering of push operations with rf1 (s, s) is the same as

previous (Lemma 2). To illustrate, we denote the accumulating
phase with rf0 (s, s) = 1 and rf1 (s, s) as Phase-1 and Phase-
2, respectively. Let πf

1 (s, t) and rf1 (s, t) be the reserve and

residue of any node t ∈ V after Phase-1, respectively. Let

πf
2 (s, t) and rf2 (s, t) be the reserve and residue of any node

t ∈ V after Phase-2, respectively. For any node t ∈ V , we

can derive a relationship between πf
1 (s, t) and πf

2 (s, t), and a

relationship between rf1 (s, t) and rf2 (s, t) as follows:

πf
2 (s, t)

rf1 (s, s)
=

πf
1 (s, t)

rf0 (s, s)
and

rf2 (s, t)

rf1 (s, s)
=

rf1 (s, t)

rf0 (s, s)
,

which could be verified by the example in Figure 3.

Moreover, we observe that if the residue of s obtained by

Phase-2 is larger than the residue threshold rhopmax, another

accumulating phase could be triggered. Let T denote the

total number of the accumulating phases with a given residue

threshold rhopmax. For any node t ∈ V , by summing up the

reserves (or residues) of t in all T accumulating phases, we

can obtained the final reserve (residue) of t w.r.t s. Instead of

generating T accumulating phases one by one, the updating
phase of h-HopFWD exploits the relationships between the

reserve (or residue) of t obtained after the i-th accumulating

phase, denoted as πf
i (s, t) (or rfi (s, t)), and the reserve πf

1 (or

the residue rf1 (s, t)):

πf
i (s, t)

rfi−1(s, s)
=

πf
1 (s, t)

rf0 (s, s)
and

rfi (s, t)

rfi−1(s, s)
=

rf1 (s, t)

rf0 (s, s)
.

It also indicates that rfi (s, s) = [rf1 (s, s)]
i. Thus, the updating

phase computes the final reserve and residue of t in O(1) time,

leading to high efficiency. Specifically, in the updating phase,

if rf1 (s, s) is not equal to zero, it computes the reserve and

residue of each node t ∈ V as follows:

πf (s, t) = πf
1 (s, t) · S (4)
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rf (s, t) =

{
rf1 (s, t) · S , if t �= s

[rf1 (s, t)]
T , otherwise

(5)

where S =
1−[rf1 (s,s)]

T−1

1−rf1 (s,s)
, T =

⌈
log[rhop

max·dout(s)]

log rf1 (s,s)

⌉
.

Algorithm 3 gives the pseudo-code of h-HopFWD. Lemma 3

shows that h-HopFWD computes the reserve and residue of

each node in the subgraph correctly (whose step-by-step proof

could be found in our technical report [16]).

Lemma 3. If rf1 (s, s) �= 0, the reserve and residue
of any node t by h-HopFWD are correct. Besides,
rf (s, s) < rhopmax · dout(s).
Proof. We prove this using the relationships stated above.

Next, we bound the sum of non-zero residues of all nodes

obtained by h-HopFWD, denoted by rhopsum, in Lemma 4. Its

step-by-step proof could be found in our technical report [16].

Lemma 4. If rhopmax is small enough such that each node v ∈
Vh−hop(s) performs at least one push operation, then rhopsum is
bounded where rhopsum ≤ (1− α)h.

Proof. From the definition of RWR, we have the invariant

that rhopsum +
∑

v∈Vh−hop(s)
πf (s, v) = 1 after h-HopFWD

terminates. Based on this, we prove that rhopsum is largest

if h-HopFWD performs only one push operation at each

v ∈ Vh−hop(s), by which we can compute the residues of

nodes in Lj−hop(s) for each 0 ≤ j ≤ h. By summing up

those resides, we prove that rhopsum is at most (1− α)h.

V. ANOTHER TECHNIQUE: OMFWD

In the h-HopFWD phase, the push operations performed

at the nodes in the last layer of the h-hop subgraph (i.e.,

Lh−hop(s)) are “special” since they push the residues to

the nodes which are not in the subgraph, namely the nodes

in L(h+1)−hop(s). As defined, the nodes in L(h+1)−hop(s)
cannot perform the push operations even though their residues

satisfy the push condition. Thus, the residue of each node in

L(h+1)−hop(s) is accumulated to a large value.

Motivated by this, we propose OMFWD which performs

the forward push operations from the nodes with accumulated

residues. Algorithm 4 gives its pseudocode. Given a new

residue threshold rfmax, which is different from rhopmax used in

h-hopFWD, OMFWD performs the recursive push operations

at the nodes which satisfy the push condition with rfmax. After

termination, it returns the updated reserves and residues of all

node in the graph. Let rsum denote the sum of all residues after

OMFWD finishes. Note that rsum is very smaller, resulting in

less random walks in the remedy phase.

VI. OTHER RELATED WORK

A. Existing Work for SSRWR Query

For completeness, this section includes the existing work

for the SSPPR query and discusses how to extend the existing

work for the Multiple-Sources RWR (MSRWR) query. The ex-

isting approaches could be categorized into four types: (i) the

iterative-based approaches, (ii) the local update approaches,

Algorithm 4 OMFWD
Input: A graph G(V,E), a source node s, the restart probability α, and the residue

threshold rfmax, the current reserve πf (s, t) and residue rf (s, t) for each t ∈ V ,
the set L(h+1)−hop(s)

Output: Final reserve πf (s, t) and residue rf (s, t) for each t ∈ V
1: Enqueue each nodes in L(h+1)−hop(s) in the decreasing order of residue;
2: while the queue is not empty do
3: Dequeue a node from queue and set it to be t;
4: πf (s, t)← πf (s, t) + α · rf (s, t);
5: for each v ∈ Nout(t) do
6: rf (s, v)← rf (s, v) + (1− α) · rf (s,t)

dout(t)
;

7: if rf (s, v)/dout(v) ≥ rfmax then
8: Enqueue node v to the queue;
9: rf (s, t)← 0;

10: Return πf (s, t) and rf (s, t) for each t ∈ V ;

(iii) the matrix-based approaches, and (iv) the Monte-Carlo-

based approaches. Table I compares them according to the

three requirements mentioned in Section 1.

Iterative-based. Power [21] is an index-free method which

iteratively updates the RWR values of all nodes w.r.t the source

until convergence. The time complexity of Power is O(mT )
since it traverses all edges in the graph in each iteration

where T is the number of iterations, which is huge on large

graphs and cannot satisfy the high-efficiency requirement.

TPA [32] is an index-based iterative method. Specifically, in

the preprocessing phase, TPA estimates the RWR values of

nodes far from the source node using their PageRank scores.

In the query phase, it estimates RWR values of nodes close

to the source node using Power. However, the same as Power,

TPA suffers from expensive time cost in the query phase.

Local update. There are two local update approaches in

the literature: Forward Search [2] (destribed in Section II-C)

and Backward Search [1], [27], both of which are index-

free. Unlike Forward Search, Backward Search performs a

graph traversal from a target node via the reverse direction

of edges and returns the approximate RWR values of a target

node w.r.t all the nodes in the graph. Backward Search is

computationally expensive for the SSRWR query since it has

to perform backward searches from each node in the graph.

Besides, both approaches cannot guarantee the result accuracy.

Matrix-based. According to [23], [24], [11], [14], given a

source node s, the RWR values of all nodes w.r.t s can

be computed to by πs = α(I− (1− α) · D−1AT )−1es. Thus,

the exact RWR values can be obtained by computing a matrix

inversion, which is time-consuming. The existing matrix-

based approaches utilize different matrix decompositions in

the preprocessing phase to reduce the time for computing

a matrix inversion in the query phase. Thus, most of them

are index-oriented and do not satisfy the index-free require-

ment. Frequently-used matrix optimization methods include:

low-rank approximation [24], LU decomposition [22], QR

decomposition [11], [22], and Complete Schurment [23], [14].

Unfortunately, most of the matrix-based approaches does not

meet the high-efficiency requirement since they take O(n2)
query time in the worst case. Besides, some of them cannot

provide the accuracy guarantee (e.g., B-LIN [24] and QR [11]).

Monte-Carlo-based. The Monte-Carlo-based technique is ex-
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ploited by BiPPR [23], HubPPR [26], TopPPR [30] and

FORA/FORA+ [29], [28] (described in Section II). Among

them, BiPPR and HubPPR were proposed for the pairwise

PPR query, where the goal is to approximate the value π(s, t)
given a pair of nodes s and t. BiPPR is a combination of

Random Walk sampling and Backward Search [1], which first

generates a number of random walks from source s, then

runs Backward Search from target t, and finally estimates

π(s, t). HubPPR is the index-version of BiPPR, which stores

the results of random walk sampling (and backward search) for

some “hub” nodes in the preprocessing phase. However, when

being adapted for SSRWR query, both BiPPR and HubPPR
are time-consuming since they have to execute the backward

search for each node in the graph. As shown in [29], FORA
runs faster than BiPPR and HubPPR, guaranteeing the same

relative error. TopPPR was proposed for the top-K PPR query.

It combines Forward Search, Backward Search and Random
walk sampling to return the top-K nodes. Although it is

index-free and can be adapted for the SSRWR query, it does

not satisfy the high-efficiency requirement since it needs to

perform the backward search from each node in the graph,

which is expensive.

Extension to MSRWR query. Unlike SSRWR query,

MSRWR takes as an input a set S of source nodes, and

outputs the RWR scores of each node in the graph w.r.t

each source node s ∈ S . However, to the best of our

knowledge, no existing work studies how to solve MSRWR

query efficiently. Meanwhile, no existing work conducted the

experiments for MSRWR query. We are the first one to conduct

the experiments for MSRWR. A natural method to extend

the existing methods for MSRWR query is executing them

for each node s ∈ S by |S| times where |S| is the number

of nodes in set S. Our experiments show that ResAcc is

the fastest for answering MSRWR query among all index-

free methods. Besides, ResAcc achieves the highest empirical

accuracy among all methods by up to 9 orders of magnitude.

B. Comparison with Particle Filtering

Particle Filtering (PF) [15], [13] is an alternative technique

of the Monte-Carlo simulations (i.e. MC) by combining a

“deterministic” distribution phase and a random sampling

phase. Suppose that the total number of random walks to

be generated is w. In the “deterministic” distribution phase,

PF computes a value wv for each node v ∈ V where wv

is the number of random walks starting from the source

node s visiting v. Specifically, for each node whose wv

divided by its out-degree dout(v) is at least a threshold wmin

(i.e., wv

dout(v)
≥ wmin), for each out-neighbour u of v, PF

“deterministically” increases wu by wv

dout(v)
. But, for each node

v whose wv divided by dout(v) is smaller than wmin, PF
switches to the random sampling phase by randomly selecting

an out-neighbour u of v and increasing wu by wmin. This

random phase for node v repeats for at most � wv

wmin
� times.

However, PF cannot provide the accuracy of estimated RWR

values and its “empirical” accuracy is low since its randomized

process directly select an out-neighbour of a node based on a

TABLE II
DATASETS.(K = 103 , M=106 , B=109)

Dataset n m m
n h

DBLP 317K 2.1M 6.6 3

Web-Stan 282K 2.3M 8.2 2

Pokec 1.63M 30.6M 18.8 2

LJ 4.8M 69.0M 17.4 2

Orkut 3.1M 117.2M 38.1 2

Twitter 41.7M 1.5B 35.3 2

Friendster 65.7M 2.1B 38.1 2

TABLE III
THE AVERAGE QUERY TIME (IN SECONDS) OF EACH INDEX-FREE

ALGORITHM FOR SSRWR QUERY VS. DATASET. THE WORD “O.O.T”
MEANS THE ALGORITHM RUNS EXCEEDING 1 DAY.

Power FWD MC FORA TopPPR ResAcc

DBLP 76.596 2.60 19.21946 1.091 1.0324 0.5126
Web-Stan 0.324 3.904 9.2242 0.182 0.1534 0.031

Pokec 733.174 22.400 118.23 13.945 69.4092 5.6384
LJ 958.011 45.405 262.54 23.715 78.8589 11.9546

Orkut 4452.06 123.715 451.8 596.186 196.211 23.064
Twitter 68566.12 720.796 8389.34 979.516 1672.6 274.722

Friendster o.o.t 2863.45 o.o.t o.o.t o.o.t 643.828

user-specified parameter wmin. The larger the wmin, the larger

the error. Our experiments show that PF was outperformed by

ResAcc in terms of accuracy by up to 4 orders of magnitude,

running in similar query time.

VII. EXPERIMENTS

A. Experimental Setup

All experiments were conducted on a Linux machine with

Intel 2.20GHz CPU and 64GB memory. We used 7 real graphs

in our experiments: DBLP, Web-Stan, Pokec, LJ, Orkut, Twitter
and Friendster, which are the benchmarks in previous stud-

ies [26], [29], [23], [14]. Table II summarizes their statistics.

For each dataset, we chose 50 source nodes uniformly at

random. An average query time was reported.

We compared our proposed approach, ResAcc, against 9

existing algorithms, which can be categorized into two types:

index-free approaches and index-oriented approaches. Specif-

ically, the index-free approaches are: (1) Power, which gen-

erates the ground truth [21], (2) Forward Search (FWD) [2],

(3) Random Walk sampling (MC) [4], (4) FORA, which has

the best query performance among Monte-Carlo-based algo-

rithms [29], (5) TopPPR, which has the best query performance

for the top-K query [30], and (6) ResAcc, which is our

proposed method. Since TopPPR solves the top-K query, we

let K = 105 to optimize the performance of TopPPR in terms

of both the efficiency and accuracy (the effect of K for TopPPR
was evaluated in Section VII-F). We did not compare ResAcc
with other existing index-free methods in Table I since they

are empirically outperformed by the above 5 existing methods

in [29]. Besides, the index-oriented approaches are: (1) BePI,
which has the best performance among matrix-based index-

oriented algorithms [14], (2) TPA, which has the best perfor-

mance among iterative-based index-oriented algorithms [32],

and (3) FORA+ [29]. The performance of other index-oriented

algorithms introduced in Section VI were dominated by the

above approaches as evaluated in [14], [29] and thus, are
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TABLE IV
PERFORMANCE OF EACH INDEX-BASED ALGORITHM VS. ResAcc.(“O.O.M” MEANS “OUT OF MEMORY”)

Dataset
Average query time Preprocessing time Index size Graph

sizeBePI TPA FORA+ ResAcc BePI TPA FORA+ ResAcc BePI TPA FORA+ ResAcc

DBLP 0.272 3.136 0.16 0.5126 4.165 7.31 10.359 0 156.1MB 15MB 38.9MB 0 18.4MB

Web-Stan 0.09 0.856 0.157 0.031 2.550 3.59 3.84 0 113.3MB 6.7MB 38.4MB 0 10.4MB

Pokec 12.131 38.256 1.771 5.6384 65.357 70.96 112.334 0 2.65GB 40MB 330MB 0 130.8MB

LJ 20.282 85.916 3.786 11.9546 140.621 167.6 190.559 0 5.088GB 120MB 583MB 0 295.2MB

Orkut o.o.m 140.271 9.019 23.064 o.o.m 282.74 453.741 0 o.o.m 76MB 879MB 0 950.1MB

Twitter o.o.m 1954.957 165.715 274.722 o.o.m 4323.74 5634.31 0 o.o.m 1.1GB 12.6GB 0 6.2GB

Friendster o.o.m o.o.m o.o.m 643.828 o.o.m o.o.m o.o.m 0 o.o.m o.o.m o.o.m 0 31GB

excluded. We obtained the codes of BePI from [14], TPA
from [32], FORA/FORA+ from [29] and TopPPR from [30].

All algorithms were implemented in C++ except BePI and

TPA implemented in both C++ and Matlab (due to the matrix

operation library usage).

For all methods, α = 0.2 following previous work [26],

[29], [30], [2], [32]. For fair comparison, we set the parameters

of each approach mainly following the best setting reported

in [18], [29], [14], [26]. Specifically, we set rfmax to be 10−12

in FWD and we tune the hub selection ratio in BePI so that

its efficiency is maximized on each dataset. In MC, FORA,

FORA+ and ResAcc, we set δ = 1/n, pf = 1/n, and ε = 0.5.

Moreover, in ResAcc, we set rfmax = 1
10·m , rhopmax = 10−14.

The value of h for each dataset is as shown in the last column

of Table II. The effect of parameter h and rhopmax are evaluated

in our technical report [16] and Section VII-G, respectively.

Following [30], we evaluated the accuracy of each method

using two classic metrics: absolute error and Normalized
Discounted Cumulative Gain (NDCG). Detailed description

of NDCG could be found in [30].

B. Experimental Results for SSRWR Query

1) Query Time: Index-free approaches. Table III shows

the query time of the index-free approaches. From Table III,

we observe that ResAcc takes the least time consistently in

all cases. For example, on Twitter, ResAcc is 250 times faster

than Power and is around 3 times faster than FWD, FORA
and TopPPR. In particular, compared with FORA (the state-

of-the-art), ResAcc is at least 2 times faster on most datasets. it

clearly demonstrates that ResAcc satisfies the high-efficiency

requirement even on large-scale graphs.

Index-oriented approaches. Table IV compares ResAcc
against the index-oriented approaches by measuring the query

time, the preprocessing time and the index size for each

approach. Note that ResAcc is index-free and so, it has zero
preprocessing time and index size. However, it is compared in

this experiment to verify that even without indexing, ResAcc
can achieve a comparable query time as the index-oriented

approaches. and meanwhile, it gets rid of the large prepro-

cessing time and high space overhead, making it suitable

for supporting online SSRWR. Thus, ResAcc satisfies the

high-efficiency requirement and the index-free requirement,

Compared with TPA, ResAcc runs faster in the query phase

by up to 6 times on all datasets. It is because TPA has to

traverse the whole graphs by many iterations in the query

phase. Compared with BePI, ResAcc answers SSRWR query

faster even without the indexing structures on most datasets.

It is because BePI needs to execute many matrix-vector

multiplications, each of which requires O(n2) query time in

the worst case. Moreover, BePI runs out of memory on large-

scale datasets, e.g., Orkut and Twitter, which indicates that

BePI is not scalable to large graphs. Compared with FORA+,

ResAcc is slightly slower. However, FORA+ suffers from the

costly preprocessing time. For example, on Twitter, it takes

FORA+ around 1.5 hours to construct an index structure,

which is unacceptable if graphs are changed dynamically.

Moreover, FORA+ runs out of memory in the preprocessing

phase on large graphs (e.g., Friendster) since it needs to

generate a huge number of random walks and consumes huge

memory to store intermediate results. Besides, we evaluated

the index updating time for each index-oriented approach when

the graph is dynamically changed, the results indicate that

without the large index updating time, ResAcc is a superior

option for dynamic graphs than those index-oriented (see in

our technical report [16] for more details).

Besides, to verify the effect of each phase in ResAcc, we

conducted an ablation study on ResAcc. Due to the space

limit, the details and the results are shown in our technical

report [16]. In summary, on average over 6 datasets, the h-

HopFWD phase, the OMFWD phase and the remedy phase

take about 1.79%, 64.58% and 33.63% of the total time,

respectively. In addition, to demonstrate the effect of each

trick used in ResAcc (the accumulating loop strategy, the h-

hop induced subgraph, and the OMFWD phase), we compared

ResAcc against different variants by removing each trick from

ResAcc. For lack of space, the results are shown in our

technical report [16]. In summary, all results demonstrate that

each trick in ResAcc helps to improve the efficiency of ResAcc.

2) Accuracy: We proceed with the experiments measur-

ing the accuracy of each approach (we only focus on ap-

proaches which guarantee relative errors as ResAcc) in terms

of absolute error and NDCG. Firstly, following previous

work [30], we reported the average absolute error of the k-

th largest RWR values in Figure 4 where k is varied from

{1, 10, 102, 103, 104, 105}. Due to space limit, the results on

dataset WebStan could be found in our technical report [16].

Note that BePI on Orkut and Twitter are omitted since it runs

out of memory. Besides, since FORA+ has the same accuracy

as FORA, we plotted the accuracy of FORA only. According to

the results, the absolute error of ResAcc is among the smallest
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(a) DBLP (b) Pokec (c) LJ (d) Orkut (e) Twitter( )

Fig. 4. The absolute error of each algorithm. BePI is omitted on Orkut and Twitter since it runs out of memory.

(a) DBLP (b) Pokec (c) LJ (d) Orkut (e) Twitter( )

Fig. 5. The NDCG of each algorithm. BePI is omitted on Orkut and Twitter since it runs out of memory.

(a) The “empirical” error with similar
query time

(b) The query time with similar
“empirical” error

Fig. 6. Fair comparison of ResAcc with FORA.

on all datasets. In particular, on Twitter, the absolute error

of ResAcc is lower than that of FORA by up to 4 orders of

magnitude. It is due to the h-hopFWD and OMFWD phases

of ResAcc where a huge amount of residues are converted

into reserves (a part of optimal RWR values) and so only

small rsum needs to be pushed further via the remedy process.

However, FORA only converts a small amount of residues into

reserves and estimates the RWR values by utilizing a lot of

random walks (which are “randomized” RWR values).

Secondly, in terms of NDCG (see Figure 5), we computed

the NDCG value of each method by considering the k nodes

with the highest RWR values returned by each method (where

k is varied from {1, 10, 102, 103, 104, 105}). Our experiments

show that all the methods except TopPPR and TPA can order

the important nodes correctly on all dataset. Specifically, TPA
has bad performance on Twitter (which is large-scale) since

TPA approximates the RWR values for nodes which are not

close to the source node by directly using their PageRank

scores, which are not exactly the RWR values.

3) Fair comparison with FORA: For fair comparison with

FORA, we evaluated two perspectives: (1) we measured the

absolute error of results when ResAcc and FORA run in similar
query times, and (2) we measured the query time when ResAcc
and FORA output the results with similar absolute errors.

For the first perspective, we terminate the running of FORA
as long as it takes as more query time than ResAcc in one

specific dataset. We used Twitter for evaluation. The results in

terms of absolute error are illustrated in Figure 6(a). We can

see that ResAcc returns the values with much smaller absolute

error than FORA by up to 6 orders of magnitude. It is because

(a) Query time (b) Absolute error (c) NDCG

Fig. 7. Boxplot: performance distribution of each algorithm on DBLP.

(a) Query time (b) Absolute error (c) NDCG
Fig. 8. Boxplot: performance distribution of each algorithm on Twitter.

FORA cannot generate random walks from most of nodes in

the graph when the time is over. For the second perspective,

the details could be found in our technical report [16] for

the lack of space. We evaluated on 3 datasets, namely DBLP,

Pokec, and Twitter. The results are illustrated in Figure 6(b).

We can see that ResAcc runs in less query time than FORA
by up to around 4 times.

4) Performance for the outliers: In this section, we evalu-

ated the performance distribution (instead of the average per-

formance) of 6 methods, namely MC, BePI, FORA, TopPPR,

TPA and ResAcc (we excluded other existing methods since

they have been outperformed by these 6 methods in the

previous section) on two datasets (i.e., DBLP and Twitter).

Specifically, we use two visualization tools, namely “boxplot”

(which reports min, Q1, median, Q3, and max among the

results of all query nodes) and “error-bar” (which reports the

mean and the standard deviation of all results), to show the

performance distribution in terms of query time, absolute error

and NDCG. The results plotted by “boxplot” are illustrated in

Figure 7 and Figure 8, while the results plotted by “error-bar”

are illustrated in Figure 9 and Figure 10. On dataset Twitter,

the results of BePI are not plotted since it runs out of memory.

By “boxplot”, the results show that ResAcc achieves better
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(a) Query time (b) Absolute error (c) NDCG
Fig. 9. Error-bar: performance distribution of each algorithm on DBLP.

(a) Query time (b) Absolute error (c) NDCG
Fig. 10. Error-Bar: performance distribution of each algorithm on Twitter.

performance than other methods for handling the outliers in all

terms of query time, absolute error and NDCG. Specifically,

on Twitter, the maximum query time cost of ResAcc for a

SSRWR query is the smallest. In addition, on Twitter, ResAcc
has the lowest variability than all existing methods in terms of

query time. Besides, ResAcc has the greatest accuracy among

all methods in terms of absolute error. Similar findings could

be found by using “error-bar”. In summary, the results show

that ResAcc achieves better performance than other methods

for handling the outliers in 3 aspects.

C. Comparison with Particle Filtering

In this section, we examined the performance of ResAcc
compared with PF in terms of average query time, absolute

error and NDCG. We included MC for comparison since PF is

a variant of MC. Besides, since PF has no accuracy guarantee,

we set the total number of random walks used in PF to be

equal to that in MC for fair comparison. We tested on DBLP

and Twitter, and for each dataset, we set wmin to be 104 to

optimize its performance in terms of efficiency and accuracy.

Due to space limit, the results could be found in our technical

report [16]. In summary, our experiments show that although

PF takes similar query time to ResAcc, its performance in

terms of absolute error and NDCG is outperformed by ResAcc
by up to 4 orders of magnitude and nearly 3 times, respectively.

D. Effect of The Characteristics of Query Nodes

This section evaluated the performance of each method for

the query nodes with the highest out-degrees. We included

4 index-free methods: MC, FORA, TopPPR and ResAcc, all

of which have shown their superiority over other methods in

previous sections. Specifically, we used two datasets, namely

DBLP and Twitter, and chose 20 nodes with the largest out-

degrees in each dataset. For the lack of space, the results

are illustrated in our technical report [16]. In summary, our

experiments show that ResAcc takes the least query time

among all methods on all datasets. Besides, ResAcc achieves

the highest accuracy than existing methods.

E. Experimental Results for Multiple-Sources RWR Query

This section evaluates the performance of each algorithm

for MSRWR query. We varied the number of sources |S|
from {25, 50, 75, 100}, and used two datasets: DBLP and

Twitter. We included two types of methods for comparison

with ResAcc: the index-free methods (i.e., MC, FORA and

TopPPR) and the index-based methods (i.e., BePI, FORA+
and TPA). Besides, for each method, the average query time

and the absolute error were evaluated (we excluded NDCG

here since most of methods could order the nodes correctly,

which have been shown in Section VII-B2). For the lack of

space, the results could be found in our technical report [16].

In summary, the results show that ResAcc takes the least

query time compared with the index-free methods by up to

2 orders of magnitude. Although ResAcc is slightly slower

than FORA+, ResAcc avoids the heavy preprocessing cost

and could be easily applied to large-scale dynamic graphs

(while FORA+ cannot), and ResAcc has higher accuracy than

FORA+. Finally, ResAcc achieves the highest accuracy among

all existing methods by up to nearly 3 orders of magnitude.

F. Fair Comparison with TopPPR

For fair comparison with TopPPR, we vary the value of K in

TopPPR by setting it from from {5×103, 1×104, 5×104, 1×
105, 5 × 105}. For each K, we evaluated the performance of

TopPPR in terms of average query time, average absolute

error, and NDCG of the k nodes with the highest RWR

values on two datasets, namely DBLP and Twitter, where

k = 105. Due to space limit, the results could be found in

our technical report [16]. To sum up, our experiments show

that ResAcc always takes less query time cost than TopPPR on

both datasets by up to 2 orders of magnitude. Besides, with

different k, ResAcc always achieves smaller absolute error than

TopPPR by up to 2 orders of magnitude, and ResAcc always

orders the important nodes correctly while TopPPR does not.

Finally, we conducted an experiment to show the accuracy

of both ResAcc and TopPPR when they take similar query

time on Twitter. The results show that ResAcc achieves higher

accuracy than TopPPR by up to 3 orders of magnitude.

G. Effect of rhopmax in ResAcc

This section evaluated the effect of rhopmax in ResAcc. The

setting is as follows: we varied the value of rhopmax from the

set {10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}
on DBLP. For parameters h and rfmax, we set it by default

(see Section VII-A). For each dataset, we measured the

performance of ResAcc in terms of query time, absolute error

and NDCG. Due to space limit, the experimental results could

be found in our technical report [16]. In summary, ResAcc
takes the least query time cost when rhopmax is set to be 10−11.

Besides, the performance of ResAcc has non-monotonic

behaviour with the value of rhopmax. It is because a smaller

value of rhopmax makes the h-HopFWD phase take more query

time to stop while a larger value makes the accumulated

residues at the (h+1)-th layer smaller, leading to the OMFWD

phase spend more query time. Thus, a proper choice of rhopmax

could minimize the query time cost of ResAcc.

H. ResAcc for Overlapping Community Detection

In this section, we examined the effectiveness of community

detection using SSRWR queries and the effectiveness of Re-
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TABLE V
THE EFFECT OF SSRWR QUERIES FOR COMMUNITY DETECTION.

Dataset Method
Average

Normalized Cut

Average

Conductance

Facebook
NISE [31] 0.2233 0.1917

NISE-without-SSRWR 0.5710 0.5601

DBLP
NISE [31] 0.2365 0.2118

NISE-without-SSRWR 0.4719 0.4148

TABLE VI
THE RESULTS OF OVERLAPPING COMMUNITY DETECTION.

Dataset Approach
Total Time

(in seconds)

Average

Normalized Cut

Average

Conductance

Facebook
FORA [29] 3.8 ×103 0.2394 0.203

ResAcc (ours) 2.5 × 103 0.2297 0.1950

DBLP
FORA [29] 1.5×104 0.2437 0.2151

ResAcc (ours) 6.4 × 103 0.2373 0.2121

sAcc for overlapping community detection. Our experiments

were conducted with NISE [31] (which adopts SSRWR queries

as an important component for finding high-quality over-

lapping communities). Due to space limit, the experimental

setting could be found in our technical report [16]. We used

two common metrics in the literature to evaluate the quality

of detected communities, namely Average Normalized Cut
(ANC) and Average Conductance (AC). The smaller the value,

the better the quality of communities. Table V and Table VI

show the results of the effectiveness of community detection

using SSRWR queries and the effectiveness of ResAcc for

overlapping community detection, respectively. In summary,

the results show that ResAcc is faster than FORA. Besides,

ResAcc returns the communities of better quality than FORA.

Summary: In summary, ResAcc outperforms most existing

approaches in query time by up to 4 times, satisfying the

high-efficiency requirement. Meanwhile, ResAcc not only

guarantees the accuracy of the estimated RWR values (i.e.,

satisfies the output-bound requirement) but also has higher

empirical accuracy than the state-of-the-art by up to 6 orders

of magnitude. Finally, ResAcc is index-free and thus, it can be

easily applied on both static and dynamic graphs. ResAcc is

the first algorithm which satisfies all requirements for SSRWR

simultaneously.

VIII. CONCLUSION AND FUTURE WORK

We present ResAcc for the approximate SSRWR query.

ResAcc is based on the idea of residue accumulation so that it

is able to avoid a mass of redundant computations, leading to

higher efficiency than the existing algorithms. We provide the

theoretical analysis of ResAcc in terms of both accuracy and

query time. Extensive experiments demonstrate the superiority

of ResAcc in terms of both efficiency and accuracy. Finally,

the theoretic insight on why ResAcc is faster than FORA is an

interesting future work due to its significant performance.

ACKNOWLEDGEMENT. We are grateful to the anonymous

reviewers for their constructive comments on this paper. The

research of Dandan Lin and Raymond Chi-Wing Wong was

supported by HKRGC GRF 14205117.

REFERENCES

[1] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S Mirrokni, and S.-H.
Teng. Local computation of pagerank contributions. In International
Workshop on Algorithms and Models for the Web-Graph, 2007.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using
pagerank vectors. In FOCS’06, 2006.

[3] L. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: query
rewriting through link analysis of the click graph. VLDB, 2008.

[4] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte
carlo methods in pagerank computation: When one iteration is sufficient.
SIAM Journal on Numerical Analysis, 2007.

[5] B. Cai, H. Wang, H. Zheng, and H. Wang. An improved random
walk based clustering algorithm for community detection in complex
networks. In SMC, 2011.

[6] S. Chakrabarti, A. Pathak, and M. Gupta. Index design and query
processing for graph conductance search. The VLDB Journal, 2011.

[7] I. S. Dhillon, S. Mallela, and D. S Modha. Information-theoretic co-
clustering. In SIGKDD, 2003.

[8] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet,
M. Ulrich, and J. Leskovec. Pixie: A system for recommending 3+
billion items to 200+ million users in real-time. In WWW’18, 2018.
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