Wind Turbine Challenge

- 1.) Determine dimensions.
- 2.)Draw preliminary tower views & 1st blade.
- 3.)Complete tower. Test & record blade on data table.
- 4.) Do 4 different blade arrangements; test & record.
- 5.) Best mV is recorded and RPM calculated.

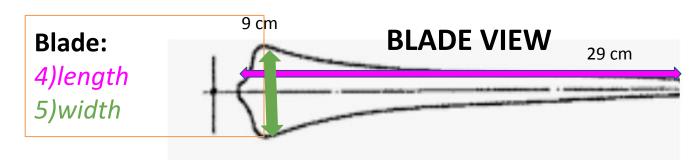
*Save each blade created!

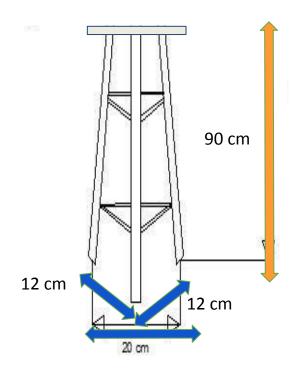
*Save all drawn plans!

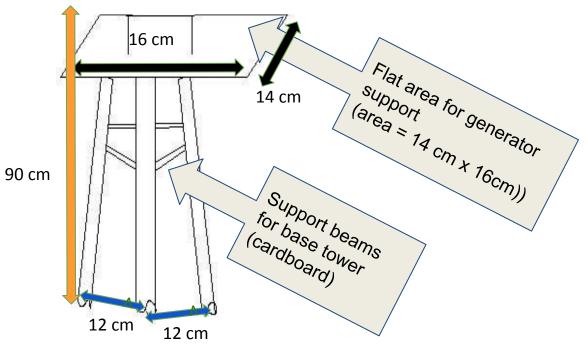
KidWind Challenge, Portland, March 23rd

Wind Turbine Process

- **1st** Engineering Journal: Tower & 1st Blade **2nd** Build tower
- 3rd Construct 1st blade and test on tower
- 4th Record data of blade
- 5th Make 3 more blades, test & record data
- 6th Use the best mV blade and find the RPM
- 7th Complete the Wind Assessment


Tower & Blade Design


Tower:


1)height

2)base dimensions

3)features

FRONT VIEW

SIDE VIEW

What are the variables for blade design?

Blade Blade **Blade Pitch** Blade Area **Total** Blade Number Material (cm^2) Blade Shape Use a protractor How many (What's it Area (Draw the blades are on (Find the average a.) Show your made from?) and round to the the hub? (cm²) shape) formula used or nearest integer.) state if graph paper (Multiply the blade area by the was used. b.) Round to the total blade nearest integer. number.)

DATA TABLE 1: Turbine Blades Description

EACH group member must have their own data tables. Test and record 4 different blade arrangements or designs. You must make at least 4 different prototypes!

Blade Material (What's it made from?)	Blade Shape (Draw the shape)	Blade Number How many blades are on the hub?	Blade Pitch Use a protractor (Find the average and round to the nearest integer.)	a.) Show your formula used or state if graph paper was used. b.) Round to the nearest integer.	Total Blade Area (cm²) (Multiply the blade area by the total blade number.)	Millivolts (mV) -use multimeter Round to the nearest integer.	Milliam ps (mA) -use multimeter Round to the nearest integer.	Milliwatts (mW) Calculate using the formula: (mV)(mA) = mW Round to the nearest integer.	
2	Enter data ONLY when your tower is built and								
4				on th					

Reading a Multimeter

Electrical Force

(voltage) mV (millivolts

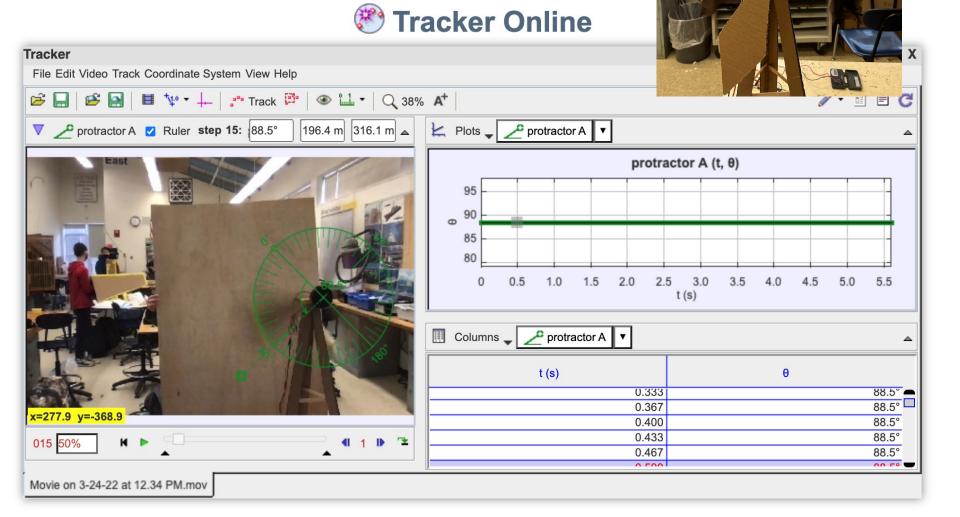
Which place value is milli?

Electrical Flow

(current)

mA (milliamps)

Name:	Partner:
Section:	


DATA TABLE 1: Turbine Blades Description

EACH group member must have their own data tables. Test and record 4 different blade arrangements or designs. You must make at least 4

different prototypes!							
Blade	Blade	Blade	Blade	Millivolts	Milliamps	Milliwatts	
Material	Shape	Area	Arrangement	(mV)	(mA)	(mW)	
	(Describe or draw the shape)	a.) Show formula used or state if graph paper was used.	A. How many blades are on the hub?B. What is the blade pitch?- use a protractor Find the average and	-use multimeter Round to the nearest integer.	-use multimeter Round to the nearest integer.	Calculate using the formula: (mV)(mA) = mW Round to the	
		b.) Round to the nearest integer.	round to the nearest integer.			nearest integer.	
1							
2							
3							
4							

Calculating RPM

(Rotations per Minute)

DATA TABLE 2: Turbine Blade RPM Analysis

Choose your best blade design and arrangement and analyze the rotations per minute. **EACH** partner must do their own set of data recordings. *Go to Mr. Nicholson's subpage "Wind Power" for the tutorial on how to analyze the RPM.

4 et T	and T	m.		D ()	D	D 4.4
1 st Frame	2 nd Frame	Time	Angle	Rotation	Rotations	Rotations
Time (seconds)	Time (seconds)	Difference (seconds)	(degrees)	<u>Angle</u> 360°	per Second (RPS)	per Minute (RPM)
Show 3 decimal places	Show 3 decimal places	(2 nd Frame Time- 1 st Frame Time) Round to 3 decimal places	Round to the nearest integer	Round to 2	Rotation Time difference Round to 2 decimal	(RPS) (60 <u>s</u>) min Round to the
		pagangan and (1944)		decimal places	places	nearest integer

Average Rotations per Minute (RPM) =