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Abstract: This article describes a concept of an autonomous landing system of UAV (Unmanned Aerial Vehicle). This type of device 
is equipped with the functionality of FPV observation (First Person View) and radio broadcasting of video or image data. The problem 
is performance of a system of autonomous drone landing in an area with dimensions of 𝟏𝐦 × 𝟏𝐦, based on CCD camera coupled 
with an image transmission system connected to a base station. Captured images are scanned and landing marker is detected. For this 
purpose, image features detectors (such as SIFT, SURF or BRISK) are utilized to create a database of keypoints of the landing marker 
and in a new image keypoints are found using the same feature detector. In this paper results of a framework that allows detection of de-
fined marker for the purpose of drone landing field positioning will be presented.  
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1. INTRODUCTION 

This article describes a concept of an autonomous landing 
system of UAV (Unmanned Aerial Vehicle). This type of device 
is equipped with the functionality of FPV observation (First Person 
View) and radio broadcasting video or image data. Additionally 
often these flying objects are supplied also with advanced on-
board equipment capable of performing autonomous flight. The 
problem is performance of a system of autonomous drone landing 

in an area with dimensions of 1m × 1m. Usage of GPS devices 
for this purpose is not a good option due to their limited accuracy. 
Therefore to bring down a flying apparatus in a predetermined 
point then so-called manual landing procedure has to be used, 
in this scenario a pilot brings the machine on the ground using 
radio equipment (radio control device). The proposed autonomous 
landing system based on CCD camera coupled with an image 
transmission system connected to a base station and a PC de-
termines the direction of movement of the object during the land-
ing procedure (see Fig. 1). It is worth noting that the developed 
system supports other on-board equipment such as a GPS re-
ceiver, barometric sensor, accelerometer sensors, magnetometer 
and gyroscope. 

 
Fig. 1. The general concept of components needed to implement  
            an autonomous landing 

 

2. REQUIREMENTS 

In this section main purposes of the presented approach, 
as well as differences in existing applications will be delineated. 

The main purpose of the solution is a possibility of proper de-
tection of landing markers by flying drone in real-time. Markers, 
representing landing positions, are defined before capturing imag-
es on-site and are reused in following runs of the algorithm. 
The drone captures surroundings using its mobile camera, 
and as a result of the procedure, the algorithm should give to the 
drone electronics information about positions of detected landing 
markers. In overall the algorithm has to be robust with low compu-
tational complexity, but also with high accuracy. It’s important to 
note, that the landing markers will be visible in drone’s surround-
ings in different scales and rotations. The solution should handle 
this situation gracefully, giving to the drone possibility of different 
capture angles and light intensities, possibly without complicated 
calibration. Also, captured image can be garbled by radio noise 
and very often that noise overlaps the landing marker, thus trick-
ing the detection. 

To solve the problem above, for the purpose of proper detec-
tion of the landing marker even in low quality images, image 
features detectors are utilized to create a database of keypoints 
of the landing marker. 

Different keypoint extracting algorithms were invented by au-
thors over last many years, these include for example Scale-
Invariant Feature Transform (SIFT (Lowe et al., 2004)) or Speed-
ed Up Robust Features (SURF (Bay et al., 2008)), but also recent-
ly presented Binary Robust Invariant Scalable Keypoints (BRISK 
(Leutenegger  et al., 2011)) and many others. 

3. RELATED WORK 

Recognition of defined objects in captured images is a well-
known problem and many solutions are existing. Different ap-
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proaches to image recognition problems, using texture features 
classifiers (Skoczylas et al., 2011), image processing filters, etc 
do exist, and these solutions can perform correct image detection 
and recognition in captured images as static (Ding et al., 2012), 
but also moving images (Pan et al., 2013). 

Topic of images recognition using keypoints descriptors be-
came recently very popular. For example, SURF algorithm was 
successfully utilized for face recognition (Li et al., 2013) and road 
obstacle recognition (Besbes et al., 2010). The BRISK algorithm 
was implemented into traffic sign recognition as presented 
in Zheng et al. (2012). These objects are recognized using key-
points detector and descriptors of the points from training images 
are used to find similar descriptors in captured images. One 
of such examples is also implementation of SIFT object recogniz-
er in FPGA presented recently (Wang et al., 2013). Authors im-
plemented their algorithm using some of the concepts that are 
also a base for this publication. 

There exist also different approaches to markers recognition 
as for example recently presented in Yu et al. (2013). Authors are 
classifying vehicle logos using SVM based on a Bag-of-Words 
(BoW) approach. The algorithm extracts SIFT features and quan-
tizes features into visual words by ‘soft-assignment’. The data-
base is then used for new objects recognition. 

Recently, also topic of autonomous detection of markers 
for Unmanned Aerial Vehicles was researched, for example vision 
based victim detection system was implemented in Andriluka et al. 
(2010) where authors successfully used histogram of oriented 
gradients (HOG) detector for human detection (Dalal et al., 2005). 
In Shaker et al. (2010) authors presented vision-based autono-
mous landing system using reinforcement learning. 

4. FEATURE DESCRIPTORS 

Image feature descriptors are becoming a standard in current 
state of the art of image recognition algorithms. Their application 
is mainly for detection and recognition purposes, however there 
are additional tasks such as medical image registration (Luka-
shevich et al., 2011).  

For this study, author selected most common and popular fea-
ture detectors: SIFT, SURF, and BRISK. Main principles of these 
three algorithms are delineated in the following paragraph. 

 Scale-Invariant Feature Transform (SIFT). The SIFT algorithm 
is quite computational extensive algorithm that detects fea-
tures in images. Best thing about SIFT is that it is invariant to 
scale changes, but also rotations and light intensity changes. 
The original image is incrementally scaled down by a half. 
This operation generates multiple scale pyramids. Local ex-
trema are identified and key point candidates are detected 
from which relative orientation is found and removed giving ro-
tation invariance. Orientation histograms over 4x4 regions are 
extracted and a descriptor vector is created by concatenating 
all orientation histogram entries. Finally that vector is normal-
ized and a SIFT key point descriptor vector is obtained that 
contains 128 values.   

 Speeded Up Robust Features (SURF). SURF algorithm 
is also known as an approximate version of SIFT. Main idea 
of the algorithm is similar, however in SURF authors drew at-
tention to the performance and applied algorithm optimiza-
tions. As presented by authors, the algorithm outperforms 
SIFT in terms of the quality and performance. Scale pyramid 

is not constructed as in SIFT, instead different filter sizes (oc-
taves) are used to achieve the same purpose (the scale space 
is analysed by up-scaling the filter size rather than iteratively 
reducing the image size [Oyallon et al., 2013]). SURF key 
point descriptor vector contains 64 values.   

 Binary Robust Invariant Scalable Keypoints (BRISK). BRISK 
is a novel algorithm presented recently. As authors state the 
quality of key point detection is compared to top state-of-the-
art key detector SURF, but needs less computation time. This 
is achieved by detecting key points in octave layers of image 
scale pyramid, but also in layers in-between in continuous 
domain via quadratic function fitting. As a result a bit-vector is 
constructed.  

5. DETECTION OF LANDING MARKERS 

First, landing marker images database is created. From all 
images from the landing markers database keypoints are detected 
using one of features detector described in previous section. 
Keypoints feature descriptors associated to landing marker image 
from the database are stored, these are reference vectors 
of descriptors used for further detection procedure. Thus, for each 

marker image, a set 𝐷𝑚  of vectors representing features de-
scriptors is created. Note, that these vectors have equal sizes 

in set 𝐷𝑚 , but |𝐷𝑚| can differ, depending on complexity of the 
image. 

In a new image keypoints are found using the same feature 

detector, these keypoints form a set 𝐾𝑐 = 𝑝1, 𝑝2, . .. and are 
considered as candidates for keypoints that correspond to the 

marker image. For all keypoints in the set 𝐾𝑐  feature descriptors 

𝐷𝑐  are calculated, so that each element from set 𝐾𝑐  corresponds 

to one descriptor from set 𝐷𝑐 . From the set of candidates 𝐾𝑐 , only 
keypoints that match keypoints existing in the marker image are 
further processed. For this purpose all keypoints descriptors from 
training marker 𝐷𝑚  are compared with all keypoints descriptors 

detected in the captured image 𝐷𝑐 . A similarity factor, distance 
(for SIFT and SURF algorithms the similarity factor is distance 
of vectors, and for BRISK this factor is calculated based on bit 

operators (Leutenegger et al., 2011)) 𝑠 of all these descriptors 
is calculated and keypoints are associated to each other. 

Found pairs are filtered to find good matches using technique 
described in Bradski et al., (2000): first, the minimum distance 

(𝑚𝑖𝑛) is found from all matches, and then all distances that are 
bigger than (this parameter was set empirically; in the literature 

different parameters for this distance can be found) 2 ⋅ 𝑚𝑖𝑛 
are discarded. If calculated distance between two keypoint de-
scriptors is less than a predefined factor, then such keypoint 
is marked as valid — thus, it is detected and exists in that cap-

tured image and is added to the set of found keypoints 𝐾𝑣𝑎𝑙𝑖𝑑 . 
Process is repeated for all keypoints from set 𝐾𝑐 . If the number 

of keypoints in set 𝐾𝑣𝑎𝑙𝑖𝑑  (keypoints in the captured image 
that correspond to keypoints in marker image, thus with sufficient 
distance) does not exceed predefined factor 𝑓𝑣 ⋅ |𝐷𝑚| thus is not 
satisfactory, that means that marker object is not visible in the 
captured image and the algorithm is stopped. In other case, when 
enough valid keypoints are existing in that captured image, then 
the algorithm searches for largest cluster of keypoints. 

Largest cluster is an area of points that are near to each other. 
Continuously Adaptive Mean Shift (Camshift) algorithm (Bradski 

et al., 1998) is applied on the set of detected keypoints 𝐾𝑣𝑎𝑙𝑖𝑑  
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to find largest cluster of keypoints 𝐾𝑜𝑏𝑗𝑒𝑐𝑡. The starting point  

𝑝𝑠 = (𝑥𝑠 , 𝑦𝑠) for the algorithm is selected from detected key-

points set 𝐾𝑣𝑎𝑙𝑖𝑑  in such a way that ∀𝑝 = (𝑥, 𝑦) ∈

𝐾𝑣𝑎𝑙𝑖𝑑 , √(𝑥𝑠 − 𝑥)2 + (𝑦𝑠 − 𝑦)2 is minimum. Algorithm itera-

tively moves point 𝑝𝑠 towards center of mass of points inside 
defined neighbourhood. If the center of mass of points in neigh-
bourhood is equal 𝑝𝑠 then algorithm is stopped and cluster 

𝐾𝑜𝑏𝑗𝑒𝑐𝑡  is found. 

And finally, keypoints that reside inside that cluster are con-
sidered as keypoints from the marker image. If the number 
of keypoints inside that found cluster exceeds some predefined 
factor 𝑓𝑜 ⋅ |𝐷𝑚| then that cluster is a detected object marker. 

The algorithm calculates the center 𝑝𝑜 of 𝐾𝑜𝑏𝑗𝑒𝑐𝑡  and that center 

is defined as a landing point for the drone. 
All algorithm steps are presented in Fig. 2. 

 
Fig. 2. The Flow chart of marker detection algorithm steps 

6. METHODS AND RESULTS 

It is very important to select proper keypoint detector algorithm 
depending on run time and image conditions. Considering, 
that the whole procedure will be run in an environment with limited 
resources, the selected algorithm must be robust. Thus, the speed 
and run time of the algorithm is favored over the accuracy, 
but from the other hand high accuracy also must be achieved. 
The keypoint detector is most crucial part for the whole procedure, 
as it’s the most computationally exhaustive part. 

To select the keypoint detector algorithm, a database of imag-

es was created. Author created a 1m × 1m marker and it was 
put on the ground in the University campus. Image of the marker 
is shown in Fig. 3. 

 
Fig. 3. 1m× 1m marker image used for experiments 

Micro drone photographed that marker during the flight above 
the ground. Videos in real-life scenarios from micro drone camera 
were captured and several video frames were extracted for further 
processing. These images presented landing marker in different 
conditions (rotated, scaled and in different lighting conditions). 
Such database was evaluated using algorithms described 
in previous sections. 

The first test was performed as follows: on the original learn-
ing image a keypoint detector algorithm was run, keypoints de-

scriptors were stored in a resulting set 𝐷𝑙𝑒𝑎𝑟𝑛  together with their 

positions 𝐾𝑙𝑒𝑎𝑟𝑛 on the image. That image was further processed 
and altered by four tests. Each of the tests was performed inde-
pendently and all the results of individual steps were combined 
for better readability.  

These test runs included: 

 scale was changed to a factor of (0.1,10.0) with a step 
of 0.1; 

 image was rotated and additional black frame was added 
around the image (rotated by a step of 15∘ from 0∘ to 360∘); 

 a gaussian random noise was applied: 𝐼𝑡𝑒𝑠𝑡(𝑥, 𝑦) =
𝐼𝑜𝑟𝑖𝑔(𝑥, 𝑦) + 𝑟𝑎𝑛𝑑𝑜𝑚  from 10 to 1000 with a step of 10; 

 lightness was altered: 𝐼𝑡𝑒𝑠𝑡(𝑥, 𝑦) = 𝐼𝑜𝑟𝑖𝑔(𝑥, 𝑦) +

𝑙𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠  from -250 to 250 with a step of 5.  
After changes to the image were applied, then the whole de-

tection procedure was performed: 

1. On a new image keypoints 𝐾 were detected.  
2. Keypoints pairs were matched and largest cluster was found.  
3. Number |𝐾𝑓𝑖𝑡| of valid keypoints from the marker image 

inside that largest cluster in captured image was calculated.  

4. To calculate the 𝑟𝑎𝑡𝑖𝑜, a number of keypoints |𝐾𝑓𝑖𝑡| is divid-

ed by a number of all keypoints |𝐾| from the marker image, 
and multiplied by 100 for readability.  

5. 𝑡𝑖𝑚𝑒 to perform calculations was recorded.  

 
Fig. 4. Comparison of keypoint descriptors computation time  
            in ms for lightness, noise, scale and rotate changes 
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Fig. 5. Comparison of keypoint descriptors accuracy for lightness,  
            noise, scale and rotate changes 

On each image from original learning data set a test proce-
dure was run, result 𝑟𝑎𝑡𝑖𝑜𝑠 and 𝑡𝑖𝑚𝑒𝑠 needed to perform 
the test were recorded. From all these tests overall results were 
created by combining all results into two charts: time and accura-
cy of each algorithm for lightness, noise, scale and rotate chang-
es. Algorithm was run on 2.6 GHz Intel Core i7 machine. Results 
of the above computations are shown in Fig. 4 and 5. 

During the second approach experimental setup was tested 
in real-life conditions (see Fig. 6). 

 
Fig. 6. Experimental setup overview 

 
Fig. 7. Example marker detection results in real-life captured image 

 
Fig. 8. Example marker detection result in real-life captured image.  
            Captured image contains radio noise that overlaps the marker 

Images were transmitted to a base station and captured. De-
tection result of the marker in real-life captured image examples 
are shown in Fig. 7 and Fig. 8. 

7. DISCUSSION 

Complexity of the whole recognition procedure mainly de-
pends on the number of detected keypoints candidates 𝐾𝑐  in the 
captured image. Also, number of keypoints from original image 

marker 𝐾𝑚  is crucial, as descriptors of both keypoints sets are 
compared to each other. If the image is complex, the more key-
points are detected and large numbers of keypoints cause 
a reduction of recognition speed, due to the fact that all these 
points have to be compared with all keypoints from the marker 
image. 

Recognition accuracy depends on the selected keypoints al-
gorithm, but it is important to note that the algorithm presented 
in this paper has two factor values that have to be defined empiri-
cally. These factors 𝑓𝑣 and 𝑓𝑜 determine interval when not enough 
points (or correct points) are found, thus denoting that the marker 
image is missing in the image (in such case algorithm is stopped). 
Wrong values of these factors can cause a situation that when 
marker image is not existing in the image it is in fact incorrectly 
detected. From the other hand when image has a huge noise, 
then appropriate settings can guide the algorithm to properly 
detect even not-readable image, as it is shown in Fig. 9. 

 
Fig. 9. Example marker detection result in real-life captured image  
            with radio noise, lines show marker keypoints (left-up part of the 
            figure) corresponding to keypoints detected in the captured image 
           (right part of the figure) 
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Let’s analyze result from Fig. 9 that shows correctly detected 

landing marker when 𝑓𝑜 and 𝑓𝑣 values were set to low. Due 
to noise disturbances keypoints are garbled with respect to mark-
er image axes, but the number of detected keypoints is enough 
to correctly find that cluster. However, that could lead to a situa-
tion that when marker is not existing in the captured image it is 
incorrectly detected as in Fig. 10. Keeping these factors high can 
cause a situation that marker keypoints is not detected at all and 
thus false negative results, but too low values cause wrong false 
positives. Further study is needed to correctly define impact 
of these factors on recognition procedure accuracy and computa-
tion times in real-life scenarios. 

 
Fig. 10. Example non-existing marker detection result in real-life captured  
              image with incorrectly set 𝑓𝑜  and 𝑓𝑣  parameters 

It is important to note, that from all keypoint detectors, 
the BRISK algorithm gives the best accuracy for different scales, 
keeping very good accuracy for rotations. Considering that drone 
will mostly have to deal with scaled and rotated landing marker 
image but not noise and lightness changes, this seems as a good 
feature of this algorithm. 

In addition, BRISK outperforms SURF and SIFT in terms 
of performance considerably, thus BRISK with no doubt is the 
best choice for further analysis and implementation in embedded 
environment. 

8. CONCLUSIONS 

The problem of proper detection of landing marker in user sur-
roundings of the drone can be solved by the algorithm from previ-
ous sections. Shapes, representing landing marker, are detected 
using SURF or BRISK algorithm with very good rate, their low 
computation time allows the user to run it in limited environment, 
even in real-time. Proper and fast keypoints matching solves 
different angles and light intensities, without any calibration, also 
with existing radio noise. However, it is still necessary to perform 
further study on the performance of these algorithms in real-life 
scenarios. 
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