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Abstract 
Numerous mobile applications are available that aim at supporting sustainable 
physical activity and fitness training in sedentary or low-trained healthy people. 
However, the evaluation of the quality of these applications often suffers from 
severe shortcomings such as reduction to selective aspects, lack of theory or 
suboptimal methods. What is still missing, is a framework that integrates the 
insights of the relevant scientific disciplines. 
In this paper, we propose an integrative framework comprising four modules: 
training, behavior change techniques, sensors and technology, and evaluation of 
effects. This framework allows to integrate insights from training science, exercise 
physiology, social psychology, computer science, and civil engineering as well as 
methodology. Furthermore, the framework can be flexibly adapted to the specific 
features of the mobile applications, e.g., regarding training goals and training 
methods or the relevant behavior change techniques as well as formative or 
summative evaluation. 

KEY WORDS: MOBILE TECHNOLOGIES, WEARABLES, FITNESS TRACKER, 
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Introduction 

Sustainable physical activity (SPA) and fitness training (FT) have become an indispensable and 
constitutive part of health-related activities (e.g., ACSM, 2011; WHO, 2010, 2018). SPA and 
FT have numerous benefits for health, ranging from positive effects on physiological, e.g., 
cardiovascular, respiratory, metabolic, neuromuscular and hormonal, functions and anatomical 
structures of the human organism, e.g., heart, blood vessels, blood, muscles, bones, and brain, 
to positive effects on cognition, emotion, volition, and motivation in all age groups (Janssen & 
LeBlanc, 2010; Poitras et al., 2016; WHO, 2018). Furthermore, SPA and FT support prevention 
and therapy of numerous diseases, e.g., heart diseases, stroke, diabetes mellitus and specific 
types of cancer (WHO, 2018). Despite these tremendous benefits, many people do not meet the 
minimum requirements for SPA. “Worldwide, 1 in 4 adults, and 3 in 4 adolescents (aged 11–17 
years), do not currently meet the global recommendations for physical activity set by WHO” 
(WHO, 2018, p.6). Furthermore, the initiation and maintenance of regular physical activity (PA) 
and FT poses numerous challenges to many people. The list of impediments and barriers ranges 
from lack of motivation or attitude over fear of injury or falling to time and financial constraints 
(e.g., Lachman et al., 2018). 
Strictly speaking, the ultimate goals must be to initiate and maintain a change of behavior in 
humans that have previously been inactive or did not meet the required amount or continuity of 
SPA yet. To establish sustainable engagement in PA, social psychology claims that people (are 
able to) adopt behavior change techniques (BCT; e.g., Williams & French, 2011; Michie et al., 
2011, 2013). These techniques include various behavioral, (meta-)cognitive, social, emotional, 
volitional, and motivational mechanisms of support that are derived from several theories. 
Beyond establishing SPA, a high quality of training must be offered, including instructions and 
plans for training, adequate monitoring and feedback etc. Physical training is at least ineffective 
or inefficient if not harmful if the current insights from sport science, particularly training and 
movement science as well as sport medicine and exercise physiology, are ignored (e.g., Halson 
et al., 2016). 
In the age of ubiquitous information and communication technologies (ICT), the question arises 
whether and how SPA and PT in healthy sedentary or low-engaged target groups can be 
supported or enhanced by the usage of mobile and wearable applications. Considering the claims 
of the publishers, mobile fitness apps promise to boost fitness or health training. However, these 
“aggressive and exaggerated claims” (Düking et al., 2018, p.1) have rarely been sufficiently 
validated (e.g., Halson et al., 2016; Peake, Kerr, & Sullivan, 2018; Romeo et al., 2019). In 
current reviews, two aspects are criticized, i.e., lack of user or consumer integration in the 
development process and lack of adequate validating research (e.g., Düking et al., 2018; Peake, 
Kerr, & Sullivan, 2018, Warraich, 2016). Halson et al. (2016) enumerate numerous issues of 
mobile ICT regarding SPA and FT, ranging from technical issues like sensor placement and 
accuracy (see also Wahl et al., 2017) to ethical considerations. Furthermore, motivational and 
informational challenges have to be met (Schmidt et al., 2015).  
Therefore, the goal of this paper is to present an appropriate framework for the evaluation of 
fitness apps. This framework is intended to assess the quality of the fitness app for SPA and FT. 
Regarding fitness apps, “quality” can pertain to different dimensions: outcomes, application 
procedures and conditions, and features of the technical system. 
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Considering the aspects discussed earlier, from a scientific point of view, the following criteria 
constitute the quality of fitness apps: 

1. Outcomes: The fitness app must be effective and efficient. This means that the app has 
to accomplish the respective training goals with an adequate amount of investment of 
time, money etc. Effectivity and efficiency should be evaluated using appropriate 
scientific approaches to formative and summative evaluation. 

2. Application procedures (training): In order to reach the training goals, the app has to 
employ appropriate scientific concepts and rules for training. 

3. Technical system: Within the respective training framework, the app has to deliver the 
required information with adequate accuracy and precision. This means that technology 
and in particular sensors have to work accurately and precisely. 

4. Application procedures (control of behavior): Finally, training aims at sustainable 
engagement in PA. This means that the respective scientific models of change and 
maintenance of behavior have to be included in the app. 

Therefore, four modules are included in the framework for evaluating the quality of mobile 
fitness apps: Training (T), Behavior change techniques (B), technology (T) and evaluation of 
effects (E). Note that this framework does not cover all aspects of training with mobile apps. As 
has been argued previously, further aspects such as legal and ethical issues (e.g., privacy policy) 
are also important factors contributing to the quality of mobile fitness apps (e.g., Bondaronek et 
al., 2018). However, regarding the primary goal of sustainably improving the fitness and PA of 
healthy people, these aspects are considered secondary. 
In this paper, we discuss the four modules of the TBTE framework: (1) the sport-scientific basis 
of PA and methods for FT, (2) the social-psychological basis of BCT, (3) mobile and wearable 
technologies, and (4) evaluation of the effects of mobile ICT on SPA and FT. In each section, 
we start with the scientific basics of the respective field, followed by selected examples, studies 
and reviews addressing the application of mobile ICT in the respective field. Finally, we discuss 
the complete TBTE framework for assessment and evaluation of mobile apps for SPA and FT.  
Considering the wide range of physical training and due to the fact that the primary target groups 
of mobile fitness apps are healthy people with a low engagement in PA and low fitness level this 
paper focusses on the group of healthy untrained or low or moderately trained persons. Another 
reason for excluding other target groups is that the requirements and conditions for high- or top-
level athletes as well as people suffering from diseases are very specific and much more complex 
compared to lower levels of training in healthy people. 

Structure of PA, physical fitness and methods for physical exercise 
Physical Activity (PA) is defined as “any bodily movement produced by skeletal muscles that 
requires energy expenditure” (WHO, 2010, p.53). This means, that human movements have to 
exceed a certain threshold (i.e., basic metabolic rate) to be considered PA. This is established by 
activating the big muscles of the body, e.g., leg, arm or trunk muscles. Typical examples are 
walking, running, rowing, and cycling. Energy expenditure (EE) can be measured in units of 
Calories or Joule. An alternative is to determine MET, i.e., metabolic equivalent of task 
(Ainsworth et al., 1993). For example, a value of 7 MET (moderate cycling or jogging) means, 
that a person with a weight of 70kg spends 490 kcal per hour in the respective PA. PA can be 
classified as low or light (EE < 3 MET), moderate (EE between 3 and 6 METs) and vigorous 
(EE > 6 MET). Beyond intensity, PA can also be quantified according to duration, volume, 
frequency, and density (i.e., relation of load periods and breaks). In addition to increase of EE, 
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PA is accompanied by or results in several biomechanical, physiological, and psychic processes 
(see also Table 3), for example, force production, acceleration of body and body parts, increase 
of heart rate (HR), and increase of rating of perceived exertion (RPE). 
Physical fitness (PF) is defined as “a set of attributes people have or achieve that relate to the 
ability to perform physical activity” (Caspersen, Powell, & Christenson, 1985, p.129). PF can 
be categorized into energy-determined attributes such as strength, endurance, and speed and 
information-determined attributes such as sensorimotor coordination and skills. Important 
health-related components of PF are cardiorespiratory, neuromuscular, metabolic, and 
sensorimotor functions such as balance, agility, and reaction (ACSM, 2011). 
Physical training, exercise or fitness training (FT) can be defined as “subset of physical activity 
that is planned, structured, and repetitive and has as a final or an intermediate objective the 
improvement or maintenance of physical fitness” (Caspersen, Powell, & Christenson, 1985, 
p.126). FT recommended for the primary target group of fitness apps by international institutions 
(e.g., ACSM, 2011; WHO, 2010) includes four main components of physical fitness: 

 Aerobic capacity 

 Strength or resistance 

 Flexibility 

 Sensorimotor coordination and skills 
Regarding these four components, specific training methods exist. These methods can be 
generally characterized according to the FITT-VP framework (Gibson, Wagner, & Heyward, 
2018, p.126-127), which is well-accepted in training science.  

 Frequency, i.e., number of sessions per week 

 Intensity, i.e., level of training stimulus 

 Time, i.e., duration of training stimulus or number of sets/repetitions or density of 
training stimulus (relation of load and recovery phases) 

 Type of training stimulus 

 Volume, i.e. total duration or total training load 

 Progression 
In addition, further indicators of training load have been proposed, for example, fractional and 
temporal distribution of the contraction modes (static, concentric, eccentric) per repetition, 
duration of one repetition, rest in-between repetitions, time under tension, muscular failure, 
range of motion, recovery time, and anatomical definition for resistance training (Toigo & 
Boutellier, 2006; Wackerhage et al., 2018) or the SPORT approach (specificity, progression, 
informational overload, reversibility, and tedium) for skill training (Farrow & Robertson, 2017). 
Existing recommendations for training in the respective target group (e.g., ACSM, 2011; 
O’Donovan et al., 2010; WHO, 2010) are mainly based on the FITT-VP framework. In Table 1, 
these recommendations are summarized. 
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Table 1. Recommendations for PA and FT in healthy untrained or moderately trained people according to ACSM 
(2011), WHO (2010) and O’Donovan et al. (2010) 

Type Intensity Time/  
Density 

Frequency  
[d/wk] 

Volume Further  

recommendations 

Aerobic  
endurance 

Moderate  
(3-6 MET) or 

Vigorous  
(> 6 MET) 

 10 min 
(single bout) 

continuous 

 150 
min/wk 

– 
1000 
MET 
min/wk 

800 – 
1,000 
kcal/wk 

Cyclic movements, 
major muscles 

P: gradual - volume 

Strength 40-70% 1RM 

8 – 12RM 

Discontinuous  

break: 2 – 3 
min between 
sets 

2 - 3 1 – 3 sets 

8 – 15 
reps. 

 

30 
min/wk 

Major muscle 
groups 

8 – 12 exercises 

P: gradual - 
intensity, reps, 
frequency 

Flexibility Feeling of 
tightness/ 
slight 
discomfort 

10 – 60 sec 

 

2 - 3 60 sec per 
exercise 

Active or passive 
static stretch, 
dynamic stretch or 
PNF stretch 

Sensorimotor 
control 

Informational 
(over)load 

20 – 30 
min/d 

2 - 3  60 
min/wk 

Motor skills (sport, 
leisure, ADL) & 
abilities (balance, 
agility, 
coordination) 

Proprioceptive 
exercises 

P: difficulty, 
complexity, reps 

Legend: reps – repetitions; RM – repetition maximum (i.e., load the allows for the respective reps); MET – 
metabolic equivalent of task; P – progression; ADL – activities of daily living 

Table 1 shows that in order to achieve specific adaptations, the training stimulus has to be 
specific and exceed a certain threshold. To be effective, training load has to be tailored to the 
individual conditions such as fitness level, health conditions, and age (e.g., O’Donovan et al., 
2010; WHO, 2010). Finally, short-term and long-term recovery play an important role (e.g., 
Kellmann et al., 2018). 

In addition to the general recommendations, specific training methods exist that are also relevant 
to training in healthy low-trained people, e.g., (high-intensity) interval training for time-efficient 
aerobic exercises comprising short bouts of near-maximum intensity with short, incomplete 
breaks (e.g., Batacan et al., 2017) or PNF (proprioceptive neuromuscular facilitation) stretching 
methods including pre-stretch isometric contraction of the agonists and peri-stretch contraction 
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of antagonists for more effective increase of range of motion (e.g., Guissard, Duchateau, & 
Hainaut, 1988; Fasen et al., 2009).  
The methods of training serve as components for a training plan. This training plan contains 
several elements: 

 Training goals: anticipated and desired effects of training 

 Training content: methods, media and exercises (including training devices) 

 Training schedule: temporal distribution of training sessions dedicated to specific 
training goals and content 

Furthermore, training has to be systematically monitored to ensure accomplishing the training 
goals, to prevent adverse events such as injury, illness, overreaching and overtraining and to 
support sustainable exercise motivation. This iterative process is illustrated in Figure 1. Training 
is executed according to the training plan. This execution is documented by training protocols, 
athlete monitoring (e.g., diaries or logs), and performance diagnostics (e.g., field or laboratory 
tests). These documents and data are analysed regarding process and outcomes according to the 
training plan. It may be necessary to correct and modify the training plan, if the analysis shows 
significant discrepancies, e.g., between intended and actual outcomes. 

 
Figure 1. Iterative process of training control (modified according to Hohmann, Lames & Letzelter, 2002, p.167) 

Based on the recommendations of health institutions (ACSM and NASM), Chi-Wai et al. (2011) 
developed a Virtual Fitness Training Workflow (VFTW) including four main stages: pre-
participation assessment (5 steps), pre-exercise evaluation and exercise prescription (8 steps), 
program monitoring (7 steps), and program evaluation (4 steps). Particularly, the first stage and 
parts of the second stage expand the model illustrated in Figure 1 by specifying information 
required for building an individualized training plan, i.e., assessment of trainees’ expectations, 
preferences and constraints, health status and medical history, and performance level. 
To conclude this section, training science, exercise physiology and sports medicine provide 
numerous important insights into the process of PA and FT that have to be considered in mobile 
training apps in order to ensure a sound basis of successful training. A checklist for evaluating 
mobile apps for PA and FT should at least contain the following domains and functions (Chi-
Wai et al., 2011; Kranz et al., 2013; Wiemeyer et al., 2016; Kettunen, Critchley & Kari, 2019): 

 Assessment and input of individual characteristics, e.g., age, gender, anthropometrics 
(body height and weight), performance level, training goals, health status, expectations, 
preferences, and constraints 
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 Creation and input of individualized and flexible training plans according to the 
characteristics mentioned above 

 Data base including a collection of exercises for FT, indexed by appropriate meta-data 

 Data base including tests and procedures for diagnostics of performance and fitness level 
as well as health status, preferences, and constraints 

 Recording and feedback functions regarding quality of training, including training load 
(stress), objective and subjective strain indicators (e.g., Borg scale) and performance 
indicators (adaptation) 

 Options for the analysis and (audio-visual) presentation of the recorded training data 

 Online and offline feedback functions to inform and motivate the trainees 

 Prescriptions, guidelines and recommendations for individualized training 

 Coaching functions including social support and persuasive strategies, context-related 
instructions, goal-oriented, individualized and immediate feedback, motivation, 
appraisal and reinforcement, and advice 

Behaviour change techniques (BCT) 
Beyond requirements derived from training science, sustainable FT and PA means to adopt and 
maintain a change of behaviour. Because this issue is not specific to SPA and FT, numerous 
social-psychological models regarding sustainable change of behaviour have been proposed. 
These models can be categorized according to specificity (generic versus domain-specific) and 
temporal criteria (structural or static versus procedural or dynamic; Table 2). Whereas generic 
models address human behaviour in general, specific models focus on PA. Structural models 
describe the interaction of more or less time-invariant factors whereas dynamic models focus on 
temporal sequences of particular phases. The models address selected cognitive, social-
cognitive, emotional, motivational and volitional determinants of human behaviour. 
Important generic structural models that have been successfully applied to PA are the theory 
of planned behaviour (TPB; Ajzen, 1991; Hagger, & Chatzisarantis, 2014), the social-cognitive 
theory (SCT; Bandura, 1999), and the self-determination theory (SDT; Ryan & Deci, 2000; 
Teixeira et al., 2012). According to the TPB, three factors indirectly contribute to behaviour via 
intention: perceived control, subjective norm, and attitudes towards the behaviour. Hagger and 
Chatzisarantis (2014) added implicit attitudes and implicit motivation as factors directly 
influencing behaviour. The SDT claims that three important factors influence intrinsic 
motivation, i.e., autonomy, competency, and social relatedness. Going beyond the individuum, 
the SCT claims that human behavior emerges from a dynamic and flexible interaction of internal 
personal factors, behavioral patterns, and environmental influences. One important assumption 
of this theory is the distinction between direct personal agency, proxy agency (i.e., delegating 
agency to other persons), and collective agency (i.e., acting in groups).  
Generic procedural models include the trans-theoretical model (TTM; Prochaska, Redding, & 
Evers, 2008; Marshall & Biddle, 2001) and the Rubicon model (Heckhausen, 1989). Whereas 
the TTM postulates six stages in the long-term adoption of new behaviour, i.e., 
precontemplation, contemplation, preparation, action, maintenance, and termination, the 
Rubicon model distinguishes two volitional (i.e., action initiation and maintenance) and two 
motivational phases (i.e., formation and deactivation of intentions) in short-term control of goal-
directed behaviour. The TTM includes numerous cognitive, motivational, and social processes 
happening in the six stages. 
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Domain-specific structural models of PA claim a more or less time-invariant interplay of 
factors contributing to sustainable change of behaviour. For example, the Health Belief Model 
(HBM; Champion & Skinner, 2008) claims an important influence of individual beliefs 
regarding susceptibility of disease, threats, benefits, barriers, and self-efficacy on health-related 
behaviour. Another structural model by Wagner (2000) confirmed a medium term (6 months) 
influence of group affiliation, social support by family and health satisfaction on maintenance 
of PA as well as a long-term (12 months) influence of self-efficacy, social support, and intention. 
A well-known and confirmed domain-specific process model of health-related behaviour is 
the MoVo concept integrating motivational and volitional factors influencing human behaviour 
change (Fuchs et al., 2011). This model claims that intentions and situational cues directly and 
indirectly influence the initiation of actions. Furthermore, outcome experiences, outcome 
expectancies, and self-efficacy indirectly influence the initiation and maintenance of actions, 
particularly in early stages. Finally, the (delayed) influence of self-concordance (i.e., extent to 
which a specific goal intention is in accordance with the attitudes of the person) and barrier 
management could be confirmed (Fuchs et al., 2012). 

Table 2. Examples of models relevant to sustainable adoption of training 

Reference 
 
Specificity 

Time 
(procedural) 

Structure 

Generic Trans-Theoretical Model 
Rubicon model 

Theory of Planned Behaviour 
Social-Cognitive Theory 
Self-Determination Theory 

Domain-specific MoVo model Health Belief Model 
 

Beyond these models, various authors have collected and classified BCT as a “union” (or 
taxonomy) of different theories. Munson and Consolvo (2012) identified four “promising 
approaches” for BCT: goal-setting, rewards, self-monitoring, and sharing data and experiences. 
Michie et al. (2013) present a taxonomy of 93 BCT which have been ordered in 16 clusters: 
scheduled consequences, rewards and threats, repetition and substitution, antecedents, 
associations, covert learning, natural consequences, feedback and monitoring, goals and 
planning, social support, comparison of behaviour, self-belief, comparison of outcome, identity, 
shaping knowledge, and regulation. The BCT are located at the (meta-)cognitive, motivational, 
emotional and social level.  
Regarding technology-based interventions aiming at weight loss, Khaylis et al. (2010) 
discovered five key factors: self-monitoring (e.g., diary or activity recording), counsellor 
feedback and communication (e.g., motivating feedback regarding goals, results, and progress), 
social support (e.g., chats with peers and friends), use of a structured program (e.g., regular 
lessons), and use of an individually tailored program (e.g., tailored to individual goals, 
preferences, and barriers). Rhea, Felsberg and Maher (2018) proposed a theory-based framework 
to support developing of health apps based on scientific evidence. 
Considering this huge amount of BCT, the question arises whether all BCT are equally important 
for SPA and FT. Williams and French (2011) meta-analysed 27 PA-directed intervention studies. 
They found that the following BCT had a significantly low to moderate impact on PA: 
facilitation of social comparison (Effect size d=0.46), action planning (d=0.38), reinforcement 
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of effort or progress (d=0.33), time management (d=0.33), provision of information on 
consequences of behaviour in general (d=0.27), and provision of instruction (d=0.26). Regarding 
self-efficacy, an important long-term source of maintenance, action planning (d=49), social 
comparison (d=0.34), reinforcement (d=0.31), and instruction (d=0.21) had a low to moderate 
influence.  
BCT have been applied in several studies evaluating mobile PA apps. 
Conroy, Yang and Maher (2014) assessed 167 top-ranked mobile PA apps based on the CALO-
RE taxonomy (Michie et al., 2011). They found that most of the apps incorporated fewer than 
four BCT; the five most common BCT were: “instruction on how to perform exercises, 
modelling how to perform exercises, providing feedback on performance, goal-setting for 
physical activity, and planning social support/change” (Conroy, Young & Maher, 2014, p.649).  
Direito et al. (2014) analysed the top-20 payed and top-20 free apps for PA and nutrition using 
a 26-BCT taxonomy (Abraham & Michie, 2008). They found that paid apps contained more 
BCT (M = 9.7; range 2 – 18) than free apps (M = 6.6; range 3 – 14). More than half of the apps 
addressed provision of instruction, graded task-setting, prompting self-monitoring and 
identification as a role model, planning of social support/change, social comparison, and 
feedback on performance. Prompts were used more extensively in paid apps, while 
demonstration of behaviour and provision of information on consequences were more present in 
free apps. 
C.H. Yang, Maher and Conroy (2015) evaluated 100 PA apps using the 93-BCT taxonomy of 
Michie et al. (2013). An average of 6.6 BCT (Mdn=6) was incorporated in each app. About 50% 
of the apps included social support (79%), information about others’ approval (64%), instruction 
on how to perform a behaviour (49%) and demonstration of the behaviour (47%), followed by 
feedback on behaviour (42%) and goal setting (36%). 
McKay et al. (2018) reviewed 36 studies evaluating apps dedicated to health issues. From the 5 
studies related to PA (quality: 9 to 13 of 15 points; medium to high), three (i.e., the studies 
analysed above) applied checklists based on theory, and two studies (reported in the fourth 
section) assessed effectiveness of PA apps. 
Shameli et al. (2017) analysed the data of 3,637 users of a competitive PA app. The users were 
engaged in 2,432 seven-day competitions. The authors found a significant effect of social 
competition on PA (measure: daily steps) which was independent of gender, age, and baseline 
activity. An important factor influencing engagement is the closeness of competition; in close 
competitions, engagement is much higher compared to competitions with big differences 
between the competitors. The most important single predictor of PA engagement was the 
engagement in previous competitions.  
McKay, Slykerman and Dunn (2019) have recently proposed an “App Behavior Change Scale” 
(ABACUS) for assessing the BCT quality of mobile applications. The ABACUS comprises 21 
items constituting 4 scales: Knowledge and information (5 items: options for 
customization/personalization, informed development, input of baseline information, 
instruction, consequences of behaviour), goals and planning (3 items: readiness, goal setting, 
goal monitoring), feedback and monitoring (7 items: understandable feedback, self-monitoring 
options, social comparison, automatic or personal feedback, data export options, rewards and 
incentives, encouragement and reinforcement), and actions (6 items: reminders, prompts, and 
cues, encouragement of positive habit formation, no limits for exercise, plan for barriers, support 
for restructuring environment, support with distraction and avoidance). Unfortunately, only 10 
items reached sufficient interrater reliability (Krippendorff   .5) in the final evaluation, 



IJCSS – Volume 18/2019/Issue 3 www.iacss.org 

21 

whereas overall reliability (ICC = .91) and internal consistency were high (Cronbach  = 93).  
To conclude this section, the following checklist for evaluating mobile apps for PA and FT 
regarding BCT is reasonable: 

 Action planning: goals (set and monitor), consequences, barriers, alternatives, schedule 

 Feedback, reinforcement and rewards: effort, outcomes and progress as well as causal 
attribution (intrinsic – changeable causes) 

 Meta-cognitive strategies: resource management like effort, time and barriers, self-
monitoring  

 Informational guidance: Knowledge, information, feedback and instruction 

 Support options for prompts, cues, and reminders 

 Social comparisons and competition 

 Social support: family, friends, training group (for different types of social support, see 
Chi-Wai et al., 2011, p.57) 

 Supporting intrinsic motivation, self-efficacy and self-concordance, e.g. by 
individualization and customization, role models, feedback, and appropriate causal 
attribution 

Mobile technologies 
„Technological development has promoted the emergence of various new technologies that 
allow their user to track, measure, and evaluate a multitude of personal activities and biosignals” 
(Kari & Rinne, 2018, p.128). Heikenfeld et al. (2018, p.217) even call it an “explosion of 
wearable sensors”. 
PA and FT include movements of body parts and the whole body. These movements can be 
assessed and analysed regarding three dimensions, i.e., a biomechanical, a physiological, and a 
psychic dimension including numerous parameters (see Table 3). 
The options for assessment of PA and FT documented in Table 3 are currently not fully deployed 
in mobile apps dedicated to the target group. In the majority of applications, standard smartphone 
sensors (i.e., accelerometer, gyroscope, orientation sensors, camera, and GPS, He & Li, 2013) 
are used to assess simple PA indicators such as step or activity counts, covered distance, velocity 
or activity (profiles), total training time, repetitions and energy expenditure (e.g., Knight et al., 
2015; Wiemeyer et al., 2016). In addition, smartphones can be coupled to a bunch of wireless 
biosensors such as optical or electric sensors via USB, Bluetooth, ANT, ZigBee or WiFi, to 
measure HR (Ludwig et al., 2018), hormones, electrolytes, or metabolites (Roda et al., 2016; 
Kassal, Steinberg, & Steinberg, 2018). Currently, the most commonly measured parameters 
from external sensors are HR and EE (Knight et al., 2015). For the future, considering the further 
development of smartphone and sensor technology as well as appropriate algorithms for signal 
processing and classification, these potentials are expected to be more extensively exploited.  
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Table 3. Overview of dimensions of PA and FT and options for assessment 

Dimension Parameter 
Examples 

Assessment (sensors, 
scales) 

Reference 

Biomechanical Kinematics: 
Velocity, 
acceleration 
Joint position & 
angle 

Accelerometer 
Inertial sensors 
Goniometer 
GPS 

Baca (2015) 
Mukhopadhyay (2015)  
Heikenfeld et al. (2018) 

 Kinetics: 
Force, torque 
Work, energy, 
power 

Resistive sensors 
Piezoelectric sensor 
Capacitive sensor 

Physiological Cardiovascular: 
HR, HRV, ABP, 
ECG 

numerous sensors and 
principles, e.g., electric or 
optical methods 

Baca (2015) 
Ludwig et al. (2018) 

 Respiratory: 
Respiratory rate, 
VT; VO2 

Spirometric sensors Baca (2015) 
Heikenfeld et al. (2018) 

 Metabolic:  
Lactate, glucose; 
Energy expenditure 

Invasive and non-invasive
sensors (e.g., 
amperometric) 

Gao et al. (2016); Roda et 
al. (2016) 

 Hormones: 
Cortisol, 
testosterone 

Invasive and non-invasive
sensors 

Heikenfeld et al. (2018) 
Roda et al. (2016) 

 Electrolytes:  
sodium (Na+), 
potassium (K+) 

Invasive and non-invasive
sensors (ion-selective 
membrane cocktails) 

Gao et al. (2016) 

 Neuromuscular:  

EMG 

EMG surface electrodes Baca (2015) 

Wong et al. (2015) 

Psychic Subjective strain: 
Exertion 

RPE (Borg scales) Borg (1998) 

 Recovery Recovery-stress 
questionnaire 

Kellmann & Kallus (2001)

Kellmann et al. (2018) 
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Dimension Parameter 
Examples 

Assessment (sensors, 
scales) 

Reference 

 Emotion:  
Mood,  
enjoyment 

POMS 
PANAS 
 
PACES 

Leunes & Burger (2000) 
Watson, Clark & Tellegen 
(1988) 
Kendzierski & DeCarlo
(1991). 

 motivation SMS Pelletier et al. (1995) 
Legend: GPS – global positioning system; ECG – Electrocardiogram; HR – heart rate; HRV – HR variability; 
ABP – arterial blood pressure; VT – ventilatory threshold; VO2 – oxygen uptake; EMG – electromyography; RPE 
– rating of perceived exertion; POMS – profile of mood states; PANAS – positive affect negative affect scale; 
PACES – physical activity enjoyment scale; SMS – sport motivation scale 

Regarding the digital acquisition of physical signals, there is a chain of processes that comprise 
signal transduction, conditioning, A/D conversion, transmission, and further digital processing 
(see Figure 2). The primary criteria for quality of this chain is errors of measurement, i.e., 
consistency and deviation of measurement from the “true” value (reliability and validity; e.g., 
Atkinson & Nevill, 1998). Errors can be divided into systematic error or systematic bias 
(accuracy) and random error (precision). Furthermore, static and dynamic error can be 
distinguished. The sources of errors are manifold, ranging from sensor inaccuracy, noise in the 
system, inadequate representation to calculation error or human mistakes. For example, a 
bioelectrical HR sensor may be inadequately located at the breast or wrist and may therefore 
lose skin contact or wireless signal transmission may be interrupted. In addition, processing an 
erroneous HR signal to calculate EE or a noisy acceleration signal to calculate distance may 
cause error propagation problems.  
There are numerous statistical measures of error, ranging from simple descriptive measures such 
as various mean difference measures (e.g., mean difference, mean absolute difference error – 
MAPE - or root mean square error – RMSE) and coefficient of variance (CV) to inferential 
statistics such as hypothesis testing or correlation, regression and structural equations (see Table 
4). In addition, the graphical representation of error assessment also covers a wide range from 
simple bar charts to regression and Bland-Altman plots (Atkinson & Nevill, 1998). 

 
Figure 2. Chain of digital data acquisition and signal processing
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Table 4. Selected statistics for error assessment (taken from Atkinson & Nevill, 1998) 

Measures Remarks 

t-Test, repeated measures 
ANOVA 
 
Pearson correlation 
ICC 
Regression 

Depending on random error, no post measurement 
correction possible 
Depending on sample homogeneity 
Different ways of calculation 
Inappropriate statistical model 

SEM 
CV 
Limits of agreement 

No clarity regarding acceptable SEM, several pre-
assumptions 
Normality required, no agreed limit 
Bland-Altman plot (visual exploration), systematic 
and random error 

Legend: ANOVA – Analysis of Variance; CV – Coefficient of Variation; ICC – Intraclass correlation; SEM – 
Standard Error of Mean 

Table 5. Recommendations for standardized evaluation of PA-monitoring wearable devices (supplemented 
according to Düking et al., 2018, p. 4) 

Category Factor Specification (examples) 

Wearable-
specific 
factors 

Sensor characteristics 
Software 
Raw data 
 
Durability 
Anatomical positioning 

Scrutiny of each sensor 
Calculations, algorithms; version 
Sampling frequency and pre-processing (e.g., 
filtering, amplification) 
Durability and age of the device 
Report of exact positioning, reproducibility 
and possible interferences 

Evaluation 
conditions 

Study population 
Exercise protocol 
 
Potential confounders 

Description, inclusion & exclusion criteria 
Detailed description; systematic variation of 
form and intensity of exercise 
Report, check, control and minimize influence 

Statistical 
analysis 

Selection and calculation of 
adequate measures of … 
Reliability 
Sensitivity & selectivity/ 
specificity 
 
Validity 

 
 

Intra- and inter-device reliability 
Smallest worthwhile change (continuous 
data); true positives & true negatives 
(classification) 
Concurrent criterion, content, and construct 
validity 
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Düking et al. (2018) propose recommendations for standardized evaluation of reliability, 
sensitivity, and validity of PA-monitoring wearable devices. In their checklist the authors 
identify 11 factors which are grouped into three categories (see Table 5). 
Regarding accuracy (systematic error or bias) and precision (random error) of the sensors 
integrated in the mobile apps, numerous studies have been published showing a great variety in 
measures and procedures. For example, Case et al. (2015) compared 10 different applications 
and devices (4 smartphone apps, 1 pedometer, 2 accelerometers, 3 wearable devices) concerning 
predetermined number of steps (500 and 1500 steps on a treadmill at 3 mph) in a sample of 28 
health adults aged 18 years and above. With one exception, the devices showed reasonable 
accuracy and precision (measures: absolute and relative systematic error; SD for random error); 
however, the accelerometers (FitBit One and Zip) were more accurate and precise compared to 
all other devices. Note that the devices were placed at different body locations, i.e., waistband 
(accelerometers and pedometer), wrist (wearable devices), or pants pocket (smartphones); 
therefore, the advantages of the accelerometers may be due to their placement at the waistband, 
i.e. reduced representation error.  
Battenberg et al. (2017) also tested 10 step-measuring devices (9 accelerometer-based apps and 
one pendulum-design pedometer) in a sample of 20 healthy young adults (mean age: 25.6 years; 
12 females and 18 males). The protocol included five exercises (400 m brisk walk or run, 10 m 
walk at “household pace”, ascend 10 steps, and descend 10 steps) and was repeated three times. 
Again, placement of the sensors varied (waistband, wrist, ankle, and anterior superior iliac 
spine). Accuracy of the devices was determined by percentage error (formula: 100*(device count 
– actual count)/actual count) and showed considerable variability depending on the exercise. 
Overall, one accelerometer-based waist-born device (FitBit One) showed highest accuracy 
(above 94%) and precision (smallest 95% confidence intervals). The most challenging 
conditions were slow walk and stair-climbing.  
Kooiman et al. (2015) checked the accuracy of 10 fitness trackers using a sample of 33 healthy 
adults (16 males, 17 females; aged: between 18 and 64 years). The authors tested the devices 
under laboratory (treadmill: 30-minute walk at 4.8 km/h) and field conditions (normal working 
day between 9.00 am and 4:30 pm). The OptoGait and ActivPAL system served as reference 
systems. Accuracy was determined by the difference between tracking device and gold standard 
(OptoGait treadmill system) and MAPE (formula: 100*(mean difference device –gold standard)/ 
mean gold standard). Reliability was determined by ICC between device and gold standard, 
while level of agreement was assessed by Bland-Altman plots. Overall, the FitBit Zip device 
showed highest accuracy (validity) and reliability. 
Fokkema et al. (2017) found that accuracy and precision of 10 step-counting fitness trackers 
varies, i.e. generally increases (with some exceptions) with running speed (3.2, 4.8, and 6.4 
km/h). Accuracy was determined by mean difference between device and gold standard (manual 
hand counter) and MAPE (cut-off criterion: 5%), while precision was assessed by ICC. Only 
one tracker (Apple watch) showed good accuracy and precision at all speeds. Test-retest 
reliability was best in Samsung Gear S and FitBit Charge HR. 
Bender et al. (2017) assessed the accuracy (relative differences and correlations between two 
devices) of four fitness trackers in a 14-week intervention under field conditions (sample: 2 
males, 1 female; members of the research team). Participants wore the devices for approximately 
16 hours for pairwise comparison on three days. Whereas differences between two devices of 
the same product (FitBit Flex) were low (range: 0 to 7%), differences between different products 
(FitBit Charge HR versus Garmin vivoactive; FitBit Flex versus Apple Watch) were high (range: 
0 to 40%). 
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Wahl et al. (2017) tested the criterion validity of 11 different wearables (Bodymedia Sensewear, 
Beurer AS 80, Polar Loop, Garmin Vivofit, Garmin Vivosmart, Garmin Vivoactive, Garmin 
Forerunner 920XT, Fitbit Charge, Fitbit Charge HR, Xaomi MiBand, Withings Pulse Ox) in a 
sample of 20 healthy students. The participants performed a protocol including various running 
exercises (i.e., staged, intermittent, and outdoor runs). Validity was assessed by MAPE (formula: 
100*(mean difference device – gold standard)/ mean gold standard) and ICC (device versus gold 
standard) as well as typical error (TE; formula: TE = SD · -ICC) and upper and lower limits 
of agreement according to Bland-Altman. Whereas the devices showed good validity regarding 
step count, measurement of covered distance and energy expenditure was not sufficiently valid. 
Adopting a different (qualitative) approach, R. Yang et al. (2015) analysed 600 product reviews 
and interviewed 24 end-users of six mobile fitness trackers (3 wrist-worn, 2 waist-worn and one 
chest-worn). The accuracy issue was mentioned in 220 of the 600 reviews. Analysis revealed 
that users had a different understanding of “accuracy”; most of them rather meant “reliability” 
or “precision” of measurements. To test the accuracy or precision of their devices, users adopted 
more or less intuitive procedures, e.g., adhoc or spontaneous assessment and folk-testing as well 
as comparison with ground truth or other commercial devices. Considering these more or less 
unsystematic and error-prone procedures, the authors recommend to include testability as a 
feature into the applications. 
The physiological signal measured most often by mobile PA and FT apps is heart rate (HR; 
Mukhopadhyay, 2015). Regarding HR, numerous procedures and devices are available (Ludwig 
et al., 2018). Electrographical procedures such as electrocardiogram (ECG) are considered the 
gold standard; they show the best validity compared to other procedures. For many other 
procedures, validity is either worse or data are not (yet) available. For example, Ho et al. (2014) 
compared four smartphone apps with the gold standard in a sample of 40 children (median age: 
4.3 years). The authors applied paired t-tests and correlation/regression analysis for comparing 
the smartphone values to the ECG values. Scatter plots were used to illustrate the correlations. 
R2 values ranged between 0.071 and 0.857. In general, earlobe sensors outperformed sensors 
placed at toe or finger. The authors conclude that accuracy of the four apps is not sufficient for 
medical use. 
Gao et al. (2016) introduced a flexible integrated sensor array (FISA) for a complex sweat 
analysis regarding lactate, glucose, sodium, potassium, and skin temperature. The authors 
analysed the chrono-electric and temperature-dependent behaviour of each sensor. The linear 
behaviour of each sensor (sensitivity, accuracy) was checked (relation of substrate concentration 
and current for glucose and lactate or relation of substrate concentration and potential for sodium 
and potassium) and confirmed experimentally. Precision was assessed by relative SD (metabolic 
sensors: 1% SD; electrolyte sensors: 5% SD). In addition, real-time monitoring was applied 
using specific ramped, continuous and graded load protocols on the cycle ergometer to test 
criterion validity. This study is a rare example where dynamic errors were addressed. The error 
curves show short latencies and overshoots depending on substance concentration. 
Many sensors mentioned in Table 3 can either be deployed as stand-alone devices or they can 
be integrated in smartphones or wrist-worn devices such as smartwatches. Stand-alone sensors 
transmit data via wireless connectivity such as Bluetooth, WiFi, ANT or ZigBee 
(Mukhopadhyay, 2015; Kassal, Steinberg, & Steinberg, 2018). 
Usually, the raw signals are further processed in order to quantify and qualify the relevant aspects 
of PA and FT. In addition, the results of the signal processing must be presented as visual, 
acoustic or haptic feedback to the user, e.g. regarding current state and discrepancies from target 
(Tang & Kay, 2017). 
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Data or signal processing requires more or less computational power depending on the 
complexity of algorithms and data volume. The different devices offer specific options for 
processing and presentation. On the one hand, small wrist-worn devices are light and non-
obtrusive, but have low capacities for computation and presentation. On the other hand, 
smartphones offer enhanced capacities at the cost of higher weight and reduced wearing comfort. 
Due to the fact that small wrist-worn devices are preferred by users (e.g., Kettunen, Critchley & 
Kari, 2019), algorithms for low-capacity computations are often applied such as support-vector 
machines (SVM) or simple neural network implementations or other machine learning 
approaches (e.g., Zhou et al., 2018). 
Technologies for PA and FT have to fulfil numerous quality criteria (see Table 5): At the sensor 
level, as has been mentioned above, the device has to be precise and accurate. Errors can result 
from the signal (e.g., signal-to-noise ratio), the sensor itself, sensor-movement interactions or 
algorithmic problems, i.e., error propagation. Generally, measurements and assessments should 
be objective, reliable and valid. In addition, often-used classifications like “correct” – “wrong” 
or “low” – “high” must be checked for sensitivity and selectivity (specificity). Unfortunately, no 
generally agreed standards for the assessment of measurement quality regarding PA or FT exist 
(e.g., Dowd et al., 2018). 
Furthermore, to fulfil the functions specified in the previous sections, the system should have 
the following features (see also Preuschl et al. 2010; Fritz et al., 2014; Wiemeyer et al., 2016; 
Tang & Kay, 2017; Kari et al., 2016; Wiemeyer, 2018; Kettunen, Critchley & Kari, 2019): 

 Wireless communication with devices to transmit, store and further analyse sensor data, 
e.g., with a database server. 

 Export and import function for training schedule to and from external calendar systems 

 Import functions for media like audios, texts, photos or videos 

 Options for synchronous and asynchronous communication 

 Options for individualized visual, acoustic, and/or haptic (online or offline) feedback 
regarding current status, discrepancies, training history (e.g., long-term trends and 
patterns), goal tracking (including flexible filtering, e.g., for relative versus absolute goal 
attainment), encouragement, appreciation, and reinforcement 

 Options for self-reflection and self-awareness, e.g., analysis of training context and 
factors affecting training adherence, trends and patterns 

 Connection to social networks and communities 
Beyond the functionality of technology, mobile technologies for training should satisfy a number 
of further criteria, e.g., usability (effectiveness, efficiency, and satisfaction; ISO norm 9241-
11:2016; Bevan et al., 2016, p.269). “Nowadays, usability is considered one of the most 
important aspects for the success of any technological product” (Paz & Pow-Sang, 2016, p.165). 
The top-5 methods for usability assessment comprising more than 70% of the applications are: 
questionnaires, user testing, heuristic evaluation, interview, and thinking aloud (Paz & Pow-
Sang, 2016). The concept of user experiences denotes a broader approach than usability, 
including the (meta-)cognitive and emotional experiences of users when interacting with ICT 
within a specific context (Lallemand, Gronier & Koenig, 2015). Furthermore, for interactive 
ICT, certain “dialog principles” are defined by ISO norm 9241-110:2006, i.e. suitability for the 
task, self-descriptiveness, conformity with user expectations, suitability for learning, 
controllability, error tolerance, and suitability for individualization (Mentler & Herczeg, 2013, 
p.503). 
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Considering the fact, that many mobile fitness apps transfer data via wireless connectivity, 
security issues are also relevant to these applications. In this regard, Fereidooni et al. (2017) 
recently revealed severe security issues in the market-leading fitness tracker.  
Beyond the “top-down” norms mentioned above, users themselves have specified numerous 
criteria for a positive experience of using mobile PA and FT apps. The most prominent 
expectations of users are (Casey et al., 2014; Kari et al., 2016; Tang et al., 2016; Wang et al., 
2016; Kettunen, Critchley & Kari, 2019): 

 ease of implementation and use 

 clear, relevant, individualized and non-schematic information (presentation) matching 
the user’s expectancies and capabilities 

 ubiquitous and flexible support for effective and efficient training, awareness, self-
reflection etc.  

 fun and entertainment (particularly for teenagers; Kettunen & Kari, 2018) 
To conclude this section, the following criteria for the evaluation of technology should be 
applied: 

 Sensors: precision and accuracy, conditions of application (temperature, placement, 
movements etc.), errors (static – dynamic; random – systematic) 

 Data transmission and storage: transmission rate, data security 

 Data processing: algorithm (type, performance, feasibility) 

 Data classification: validity, specificity and selectivity 

 Device: technical features regarding computational capacity, presentation, connectivity, 
communication etc. 

 Device-user interaction: usability (effectivity, efficiency, satisfaction; pragmatic and 
hedonic quality), dialogue and interaction (ISO norm 9241-110:2006) 

 Feasibility “in the wild”, i.e., under prototypical PA and FT conditions: laboratory and 
real-life situations; systematic variation of relevant FITT parameters 

Effects of mobile apps on PA and FT – evaluation and evidence 
The criteria specified in the previous modules (training, BCT, and technology) can be considered 
as sine qua non regarding the final module: the actual impact of mobile apps on SPA and FT 
outcomes. Finally, the apps must on the one hand achieve the goals and outcomes they have 
been developed for and on the other hand find acceptance in the target group. 
The gold standard for the summative evaluation of treatment effects is a two-arm randomized 
controlled trial (RCT) applying at least one pre- and post test with at least two parallel groups 
(e.g., Hecksteden et al., 2018). To allow for unbiased causal interpretations, group assignment 
should be randomized and method of randomization specified. Furthermore, sample composition 
must be explicitly planned and groups must be comparable regarding the most important features 
(e.g., gender, age, performance level, experience level; initial values of dependent variables). In 
addition, sample size should be carefully (pre-)determined to balance type 1 and 2 errors. At 
least, the personnel and testing persons should be blinded to the group assignment. The study 
should be based on clear hypotheses and outcomes must be measured or assessed according to 
the quality standards (reliability, validity, errors; precision, accuracy). Statistical procedures 
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must be appropriate regarding hypothesis, data scale as well as drop-outs and missing values. 
Despite the controversy regarding the use of inference statistics (e.g., Küberger et al., 2015), 
there is still good reason to apply (multivariate) Analysis of Variance ((M)ANOVA) to the data. 
Effect sizes should be reported as well as a priori and a posteriori estimation of statistical power. 
In longitudinal studies with fitness apps, dropouts and withdrawals as well as technical issues 
may cause missing data issues. However, to amend or at least mitigate this problem, appropriate 
statistical procedures have been proposed, e.g., multiple imputations or full information 
maximum likelihood (e.g., Lang & Little, 2018) or intention-to-treat analysis (e.g., McCoy, 
2017). 
Another option for a research design is a matched case-control trial (MCCT; Rose & Laan, 
2009), where groups are matched regarding selected indicators. MCCTs allow for conditional 
rather causal interpretations and can mitigate confounding, but do not allow for avoiding bias. 
Furthermore, MCCT requires specific statistical procedures for analysis. 
For exploratory purposes, feasibility or pilot studies can also be applied in order to prepare an 
RCT (Arain et al., 2010). However, these types of studies have numerous shortcomings, 
including lack of causal or conditional interpretation as well as lack of control over bias. 
Due to the complexity of PA and FT (see also Table 3), training goals, the variety of possible 
training settings and the multi-dimensionality of human behaviour, a great variety of outcomes 
can be assessed (see Table 6), ranging from direct assessment of PA and fitness (e.g., Reilly et 
al., 2008; recent review: Dowd et al., 2018) over PA questionnaires (review: Helmerhorst et al., 
2012) and self-reports to assessment of factors influencing outcomes such as attitude, 
motivation, training setting and quality of the app (e.g., Plonczynsky, 2000; McKay, Slykerman 
& Dunn, 2019). 
In order to illustrate the procedure of summative evaluation, one selected best-practice example 
is described. The study of King et al. (2016) includes an 8-week RCT comparing three different 
mobile PA apps. The sample is determined according to explicit criteria (age, PA) and described 
in detail. Adequate recruitment procedures and random and blinded assignment are applied. 
Optimal sample size has been explicitly calculated. Furthermore, the apps have been explicitly 
developed and selected with regard to a theoretic background (motivation, social-cognitive 
theory, self-regulation). The intervention is controlled and described in detail, e.g., customized 
feedback, push and pull information components, baseline and application period. In addition, 
the research methods comprise objective primary outcomes (MVPA and sedentary time, derived 
from accelerometry) and secondary subjective outcomes (self-estimations, self-reports). 
However, further secondary outcomes such as anthropometry, physiological and psychic 
variables (see Table 6) have not been assessed. Statistical procedures (i.e., mixed-models 
analyses) are deliberately and adequately chosen. According to Romeo et al. (2019, additional 
material), risk of bias in this study is comparatively low. Finally, the report is comprehensive 
regarding participation (including dropouts), measurement (insufficient data) and descriptive 
statistics. However, regarding statistics, only significant results are reported in sufficient detail.  
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Table 6. Outcomes and operationalizations for the evaluation of fitness apps 

Outcome/ Variable Assessment (examples) 

Steps per day, activity 
counts, METs, PAL, PA or 
MVPA duration/profile 

On-body sensors (pedometer, accelerometer, heart rate 
monitor, armband) 
Observation, activity journal or log 
PA questionnaire 
Interview or calculation: Energy expenditure 

Fitness Various field and laboratory tests for different 
components of fitness, e.g., Cooper test, treadmill or 
bicycle ergometer tests 
Self-estimation questionnaire 
Interview 

Anthropometry: Body mass, 
BMI, body composition 

Scale 
Ruler, stadiometer 
Bioelectrical impedance analysis 

Physiological: resting heart 
rate, blood pressure 

Heart rate monitor 
Blood pressure devices 

App usage: duration, 
usability 

Recording 
Report (questionnaire, interview) 
Log, journal or diary 

Psychic: goals, expectations, 
motivation, volition, 
emotion, self-efficacy, 
barriers, quality of life 

Questionnaire  
Self-report 
Interview 

 

For synthesis of research, systematic qualitative and quantitative methods are available. These 
methods should also follow the respective standards, e.g., PRISMA (Liberati et al., 2009), 
AMSTAR (Shea et al., 2009) or CONSORT standards (Guyatt et al., 2011). For example, the 
search procedure should be carefully documented. Furthermore, the quality of the primary 
studies (e.g., Maher et al., 2003) as well as risk of bias should be assessed (e.g., Higgins & 
Altman, 2008). 
Regarding the impact of mobile apps on PA and FT, some reviews exist that will be addressed 
in chronological order to give a realistic impression of the possible impact of mobile fitness apps 
on SPA and PF. 
Fanning, Mullen and McAuley (2012) performed a meta-analysis regarding the impact of early-
state mobile applications (i.e., SMS/mobile phones and PDA) on PA. Search procedure and 
quality of the studies were documented. The 11 studies and 18 effect sizes yielded a weighted 
mean effect size of g = 0.54 (moderate). Moderator analysis revealed a significant large effect 
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regarding pedometer steps (as compared to MVPA duration) and a significant moderate effect 
of mobile phone (as compared to PDA). 
Derbyshire and Dancey (2013) performed a systematic review regarding evidence for the impact 
of smartphones on females’ health. Search procedure was documented according to the PRISMA 
standards. They identified only one study confirming the superiority of app-based self-
monitoring over diary and website use. 
O’Reilly and Sprujit-Metz (2013) performed a systematic review of mobile app interventions 
regarding PA. Literature search was carefully documented including data bases, search items, 
and selection procedure. In addition, the quality of the studies was rated according to an 
established instrument (Effective Public Health Practice Project Quality Assessment Tool). Nine 
of 12 studies reported significant positive effects on PA. Results regarding personalized 
information (tailoring) were inconsistent. 
Stephens and Allen (2013) report a systematic review regarding the impact of mobile phone 
interventions on PA and weight loss. Literature search was carefully documented and seven 
studies were identified. Five studies applied text messaging and two studies used a smartphone 
app. Quality of studies was thoroughly discussed, four studies were classified as RCT. Five of 
seven studies reported at least one significant outcome in favour of mobile apps. 
Bert et al. (2014) performed a literature search regarding the application of smartphones to health 
(particularly, nutrition, lifestyle and PA). Search was carefully documented and only one 
matched case-control trial was located. Three studies were just RCT study protocols (without 
results), the rest included application descriptions and validations.  
Mateo et al. (2015) performed a review and meta-analysis of studies applying mobile phone apps 
for weight loss and increase of PA. Search was carefully documented according to the PRISMA 
standard and seven studies addressing PA were identified (6 RCT, 1 MCCT). Mean standardized 
effect size was low to moderate (0.40) and not significant. Risk of bias was assessed based on 
the Cochrane standard. For the seven studies, one to four items were considered critical. All 
studies suffered from performance bias, while 6 studies suffered from detection bias.  
Matthews et al. (2016) reviewed 20 studies promoting PA. Search was carefully documented. 
Studies included 11 RCT or outcome studies, 5 studies focussed on software design and 
evaluation and the remaining 4 studies targeted stakeholders’ opinions using focus groups and 
interviews. According to the Persuasive Systems Design (PSD) model (Oinas-Kukkonen & 
Harjumaa, 2009), the authors identified four types of support: primary task support (e.g., self-
monitoring, tailoring, or personalization), dialogue support (e.g., suggestions, reminders, 
praises, and rewards), social support (e.g., social comparison, social learning, and competition), 
and system credibility support (e.g., authority and trustworthyness).  
McKay et al. (2018) identified two effectiveness studies for PA. The only RCT has already been 
covered by the review of Mateo et al. (2015). 
Romeo et al. (2019) performed a meta-analysis regarding the impact of smartphone apps on PA 
(steps per day). Literature search as well as quality of the studies and app features were carefully 
documented. The authors found a non-significant effect size for the 6 studies (SMD = 0.21). 
Therefore, existing reviews are inconclusive, indicating no or low to moderate effects of fitness 
apps. Furthermore, only few high-quality studies exist. 
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To conclude this section, evaluation of mobile apps targeting PA and FT should adopt the gold 
standard of RCT meeting established quality criteria as well as avoiding risk of bias. In sum, the 
following aspects have to be adequately considered for single studies: 

 Research design: RCT or MCCT 

 Sample: adequate structure, size, and characteristics 

 Treatment: according to theory, model, and hypotheses; clear plan; randomized 
assignment 

Dependent variables: according to intended effects (level); blinding of assessors; validity 
criteria 

 Statistical procedures: according to design and data quality; intention-to-treat, multiple 
imputation 

Risk of bias – five core areas (Higgins & Altman, 2008): selection, performance, 
attrition, detection, and reporting. 

 Research report: according to the established standards 

Discussion 

Currently, many mobile applications are available that offer support for SPA and FT. However, 
the quality of these applications has not yet been addressed sufficiently. Rather, with only few 
exceptions, either low-quality research designs have been applied or only selective aspects of 
the applications have been tested like application of BCT, technical quality or impact on SPA 
and FT. What is still missing, is an approach that integrates the most important aspects and 
disciplinary insights contributing to the outcome quality of mobile applications for healthy 
people. 
Therefore, the main contribution of this paper is the introduction of a modular interdisciplinary 
framework for the evaluation of mobile applications aimed to support SPA and FT in health 
people with low training level. The framework comprises four modules: Training, BCT, 
technology and sensors, and evaluation of effects (see Figure 3). 

 
Figure 3. TBTE framework – Overview; legend: FITT-VP – frequency, intensity, time, type, volume, progression; 

SPA – sustainable physical activity; FT – fitness training 
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The four modules and the respective specifications can provide a comprehensive guidance for 
the systematic (formative or summative) evaluation of mobile applications dedicated to SPA and 
FT (see Table 7). The specifications have been derived from insights in the relevant scientific 
fields, for example, training science, exercise physiology, social psychology, computer science, 
and civil engineering. Therefore, the appropriate scientific standards have been considered. Of 
course, the list of criteria can be extended or shortened according to the specific goal of the 
evaluation. However, the proposed framework is considered a reasonable starting point for a 
comprehensive evaluation of mobile fitness apps in the specified target group. 

Table 7. Overview of criteria in the four modules 

Training Behavior change 
techniques 

Technology & 
sensors 

Evaluation 

Individual 
assessment  

Individual and 
flexible training 
plans  

Data base: fitness 
exercises 

Data base: tests and 
diagnostics  

Recording and 
feedback  

Analysis and 
presentation of 
training data 

Online and offline 
feedback  

Instructions for 
individualized 
training 

Coaching functions 

Action planning 
Feedback, 

reinforcement 
and rewards 

Informational 
guidance 

Prompts, cues, and 
reminders 

Social comparisons 
and competition 

Social support 
Supporting intrinsic 

motivation, self-
efficacy and self-
concordance 

Sensors: reliability 
& errors 

Data transmission 
and storage: rate, 
security 

Data classification: 
validity, 
specificity and 
selectivity 

Device: technical 
features  

Device-user 
interaction: 
usability, 
dialogue and 
interaction  

Feasibility “in the 
wild” 

Export and import 
functions (data 
bases, media) 

Communication 
functions 

Customization 
 

Research design 
Sample 
Treatment & 

procedure 
Dependent 

variables 
Statistical 

procedures 
Risk of bias 
Standard research 

report 

 

Note that there is considerable overlap of the four modules (see Figure 3). For example, 
technology and sensors have to take into account the specific aspects of training, e.g., relevant 
methods and parameters that have to be assessed. In a similar vein, BCT and evaluation are 
closely related, since evaluation has to take into account the specific BCT and training concepts, 
e.g., when selecting and operationalizing adequate dependent measures. 
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Regarding the concrete application of the framework, numerous options are available, for 
example, regarding the selection of sensors and research methods. This “freedom of choice” has 
been addressed in all sections, e.g., regarding the selection of training methods in the first 
section, the selection of BCT approaches in the second section, the selection of dimensions and 
parameters for assessment in the third section, and the selection of evaluation methods in the 
fourth section. However, choice has consequences regarding quality of outcome, application 
process, technology, and evaluation.  
Finally, the proposed model is selective and does not cover all the insights from the relevant 
scientific disciplines. Rather, the framework is meant to be open to adding further specification 
that may be deemed important under certain conditions.  

Conclusion 

The evaluation of the quality of mobile applications supporting SPA and FT requires an 
interdisciplinary approach that integrates the insights from the relevant scientific disciplines. In 
this paper, we propose an interdisciplinary framework that integrates the insights from trainings 
science, exercise physiology, social psychology, computer science, and civil engineering. The 
framework consists of four modules: training, BCT, technology and sensors and evaluation of 
effects. 
Considering this framework may contribute to enhance the quality of evaluating mobile 
applications aiming at SPA and FT in healthy person with low engagement in PA and low 
performance level. 
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