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Abstract. The structure of the elementary cellular automata rule
space is investigated. The probabilities for a rule to be connected to
other rules in the same class (intra-class), as well as rules in differ-
ent classes (inter-class), are determined. The intra-class connection
probabilities vary from around 0.3 to 0.5, an indication of the strong
tendency for rules with the similar behavior to be next to each other.
Rules are also grouped according to the mean-field descriptions. The
mean-field clusters are classified into three classes (nonlinear, linear,
and inversely linear) according to the “hot bits” in the rule table. It is
shown that such classification provides another easy way to describe
the rule space.

1. Introduction

Cellular automata (CA) as fully discrete dynamical systems with spatial
degrees of freedom have become new models for the study of nonlinear com-
plex systems [1]. Compared with other spatially extended dynamical sys-
tems, such as partial differential equations, cellular automata distinguish
themselves by the possibility to have all kinds of functional forms including
discontinuous ones. Even though the rules of cellular automata can be writ-
ten as boolean functions (e.g., table 1 in [2]), the expression can be utterly
irregular. Having modular operation as an ingredient in order to keep the
value in a finite field, boolean functions are also intrinsically nonlinear, which
makes the analysis difficult. As a result, much understanding of the cellular
automata dynamics has been acquired by computer experiments.

Generally, a cellular automaton rule is represented by a lookup table:
a list of state values to which block configurations are mapped. This list
can be arranged in certain way as a sequence, which uniquely specifies the
cellular automaton rule. We call this sequence cellular automaton rule table.
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Figure 1: Schematic illustration of the typical structure of a cellular
automaton rule space.

Sometimes, an analogy between the rule table and a DNA sequence is made,
and we can also call it a gene. The characteristics of the rule table is the
genotype and the dynamics shown by the rule is the phenotype.

If two CA rules are the same except that one maps a particular block
configuration to state a, while another maps the same block configuration to
state a, £ 1, we say the two rules are next to each other, with the Hamming
distance between the two rule tables equal to 1. With this concept of distance,
we can consider all the CA rules reside in a space, called the rule space. Each
point in the rule space is a rule table, and all the points are arranged in such
a way that nearby points have Hamming distance equal to 1. The operation
of moving from one CA rule to its nearest rules can be called flipping one bit
in the rule table (in particular for the two-state CAs), or, using the biological
analogy, mutation.

For elementary CA rules, i.e., rules with the form 2i*' = f(z!_,, 2, 2},,)

— the subscript ¢ being the spatial position and the superscript ¢ being the
time — with z; € (0,1), the rule table is a binary sequence with length
8 = 23. We can write a rule table in the form: (t7tetststatatito), which means
that block configuration (000) maps to ¢, block configuration (001) maps to
t1, ... and (111) maps to 7. Because there are two choices for each t;, the
total number of rule tables is 28 = 256, which is also the total number of
points in the elementary CA rule space.

We are interested in how these 256 rules are organized in their rule space,
or structure of the elementary CA rule space, and whether two rules sitting
next to each other are likely to have the same dynamical behavior, or more
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quantitatively, what the probability is for two nearby rules to have the similar
behavior.

It has been observed [3] that different regions of the rule space have rules
with different behaviors, such as regular, complex, and random. An activity
parameter A may be defined [4], in the case of binary states, as the density of
I’s in the rule table. For example, the A value for the rule table (10001001)
is 3/8. Varying the X value provides a way to move from one subset of the
rule space to another.

Figure 1 shows schematically the typical structure of a CA rule space as
parameterized by the A. As A gradually increases from 0 to 1, the dominate
behavior of the rules changes from homogeneous fixed point to inhomoge-
neous fixed point, periodic, complex spatial-temporal dynamics, and chaotic
dynamics, and when A is larger than 0.5, the same process in reverse order.
The reverse process is easy to understand because by switching 0 and 1, the
rules at the tip with A &~ 1 (“north pole”) are equivalent to the rules at the
tip with A & 0 (“south pole”). Due to this equivalence between rules, one
only has to examine the region from A = 0 to A = 0.5, and the remaining
part of the rule space is just the mirror image of the former.

The abrupt change in global behavior when moving along a path in a
CA rule space is highly reminiscent of bifurcation phenomena in smooth
dynamical systems [5]. Actually, the “bifurcation-like” phenomena in CA
rule space is more complicated and subtle than those in lower dimensional
nonlinear systems with one or few parameters. For one thing, there is no
unique “route to chaos,” simply because there are so many paths one can pick
to move from the “south pole” (simple behavior) to the “equator” (random
behavior, or chaos). CA rule space provides us with a new challenger to
understand bifurcation phenomena in multi-parameter, spatially extended
dynamical systems.

A comprehensive discussion of the structure of the CA rule spaces will
be in [3]. Here, we want to illustrate some of the main ideas by examining
the simplest CA rule space — the elementary CA rule space. The paper is
organized as follows. Section 2 introduces the concept of hypercubic space
and folded hypercubic space. Section 3 outlines the classification scheme of
CA, which is the basis for a description of the rule space structure. Section 4
discusses the transition within a class and between classes. Section 5 contains
an attempt to characterize the rule space by the mean-field parameters.

2. Hypercubic spaces and “folded” hypercubic spaces

The set of all possible finite sequences with length n, (¢1¢5---t,), consist
a subset of the n-dimensional grid. When every ¢;’s can choose from the
same state variables, ¢; € {as} (@ = 0,1,---,m — 1), this set has equal size
m on each of the dimension axis, and we call it the size-m n-dimensional
hypercube. In particular, if the state value is binary (m=2), it is the size-1
hypercube, or simply, n-dimensional hypercube.
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Because of the application of finite sequences in many natural systems,
the name hypercube appears in literature quite often, e.g., the study of binary
DNA sequences [6]. Even two-dimensional patterns like those in the Ising
spin model, the concept of hypercube is also applicable [7] because a two-
dimensional pattern can be rearranged to a one-dimensional string. Since
CA rule tables are sequences with finite length, CA rule spaces are also
hypercubes (the size-m hypercube if the number of state is m).

An elementary CA rule f can be equivalent to another rule f; under the
left-to-right transformation, if

fl(xz‘—l, T, 37:‘+1) = f($£+1,$i, xi—l) (2-1)

is true for all 3-site blocks. f is equivalent to rule f; under the 0-to-1 trans-
formation (represented by the overhead bar), if

flera, s zem) = (50, 5 Tom) (2.2)

is always true, and it is equivalent to rule f; under the joint operation of

both if
fa(@ic1, i, 2iga) = f(To, 5, Tica) (2.3)

holds. Suppose the rule table of f is ({7tetstatatatito), the three equivalent
The spatial-temporal patterns for f;, fo and f3 are exactly the same by a
mirror reflection transformation, or a white-to-black transformation, or a
combination of both.

The rule space with only independent rules is smaller than the original
rule space. The resulting rule space is called folded rule space, which is a
folded hypercubic space. Notice that the two transformations or foldings
are of different kinds. The 0-to-1 transformation folds the rule space with
respect to the A = 0.5 “plane.” The left-to-right transformation operates on
rules on the same “plane.” For the 256 elementary CA rules, 88 of them
remain independent.!

Figure 2 shows an actual folding process by grouping elementary “null
rules” (the name will be explained in the next section) that are equivalent
to each other. The rule numbers written in the figure are the decimal rep-
resentation of the binary rule table as used in [8]. Rules in the same shaded
rectangular in Figure 2(a) are equivalent by left-to-right transformations.
The 0-to-1 transformation then folds these rules along the A = 0.5 line and
gives the resulting picture in Figure 2 (b).

Table 1 lists all the equivalence relations with the rules inside the paren-
theses are equivalent to the representative rule outside. Notice that the
number of rules which are equivalent to each other can only be 1, 2, or 4 (see
appendix for the explanation). To represent each cluster of equivalent rules,
one can either (A) use the rule with the smallest decimal representation; or

1The number 88 will be explained in the appendix.
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Figure 2: An example of the folding for the rule space. Thick lines
are mutations by flipping bit #9 (or ¢7), thin lines for mutations at ¢;
(or t3,14,17), and dotted line for bit ¢; (or t5).

(a) All the 24 null rules and their connections. Rules in the same
shaded area are equivalent by the left-to-right transformations.

(b) Clusters and their connections in the folded hypercubic space.

(B) use the rule with the smallest decimal representation among these with
the smaller A value (“south sphere” in the hypercube). The previous studies
use the first convention, e.g., table 2 of [2], but we adopt convention (B) in
this paper. Rule-62, 94, 110, 122, 126 in convention (A) become Rule-131,
133, 137, 161, 129 in convention (B).
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0(255), 1(127), 2(16,191,247), 3(17,63,119), 4(223), 5(95),
6(20,159,215), 7(21,31,87), 8(64,239,253), 9(65,111,125),
10(80,175,245), 11(47,81,117), 12(68,207,221), 13(69,79,93),
14(84,143,213), 15(85), 18(183), 19(55), 22(151), 23, 24(66,189,231),
25(61,67,103), 26(82,167,181), 27(39,53,83), 28(70,157,199),
29(71), 30(86,135,149), 32(251), 33(123), 34(48,187,243),
35(49,59,115), 36(219), 37(91), 38(52,155,211), 40(96,235,249),
41(97,107,121), 42(112,171,241), 43(113), 44(100,203,217),
45(75,89,101), 46(116,139,209), 50(179), 51, 54(147), 56(98,185,227),
57(99), 58(114,163,177), 60(102,153,195), 72(237), 73(109),
74(88,173,229), 76(205), 77, 78(92,141,197), 90(165), 104(233),
105, 106(120,169,225), 108(201), 128(254), 129(126), 130(144,190,246),
131(62,145,118), 132(222), 133(94), 134(148,158,214), 136(192,238,252),
137(110,124,193), 138(174,208,244), 140(196,206,220), 142(212),
146(182), 150, 152(188,194,230), 154(166,180,210), 156(198),
160(250), 161(122), 162(176,186,242), 164(218), 168(224,234,248),
170(240), 172(202,216,228), 178, 184(226), 200(236), 204, 232

Table 1: Clusters of all independent elementary rules. The rules out-
side the parenthesis are representative rules with the smaller A value
and the smaller decimal rule number. Those inside the parenthesis
are rules equivalent to the representative rule.

3. Classification of the cellular automata rule dynamics

In this section, we summarize the classification schemes. A classification
should be specified in order to determine the structure of the rule space. A
full discussion of the issue of classification will be presented in [3]. It should
be emphasized that by “classification of the CA dynamics,” we mean the
characterization of the rules by the dynamics from typical initial configura-
tions (“random initial configurations”). It is not the classification according
to the dynamics from all initial configurations [9], nor is it the mathemat-
ical characterization of the rule tables [10, 11]. In short, it is the typical
phenotype rather than the genotype that is used for our classification.

Since there is nothing fundamentally different between the classification
scheme discussed here as well as in [3] with the originally proposed four
classes [12], the purpose for this section is to clarify a few points that often
cause confusion, as well as to provide a quick reference.

The simplest phenotype classification scheme is to separate CA rules into
two categories: those with periodic dynamics and those with nonperiodic dy-
namics. Since the dynamics for the CA with finite lattice length is always pe-
riodic (due to Poincare’s recurrence time), the criterion becomes whether the
dynamics has “short” or “long” periodicity. The “long” can be understood
as the cycle length being exponentially divergent with the lattice length, and
“short” as the cycle length being independent of the lattice width. It can be
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seen that the uncertainty in explaining the meaning of the “long” periodicity
leaves room for ambiguity.

This classification scheme is too crude to incorporate the variety of the
spatial configurations. After the spatial configuration is considered, we have
the following five classes: (A) null rules: homogeneous fixed-point rules; (B)
fixed-point rules: inhomogeneous fixed-point rules; (C) periodic rules; (D)
locally chaotic rules: chaotic dynamics confined by the domain walls; and (E)
global chaotic rules: rules with random-looking spatial-temporal patterns, or
with exponentially divergent cycle lengths as lattice length is increased, or a
non-negative spatial response to the perturbations.

The relationship between these five classes (A, B, C, D, E) and the four
classes defined by Wolfram in [12] (I, I, III, IV) is the following: Wolfram’s
Class-I rules are the same as null rules (A); Class-II rules are fixed-point
rules and periodic rules (B and C); Class-III rules are global chaotic rules
(E); Class-1V rules, which typically have long transients, are difficult to in-
clude in any of these categories. If we choose the spatial response to the
perturbation as the criterion for nonchaotic or chaotic, the Class-IV rules
then belong to chaotic rules. On the other hand, if the periodicity for the
limiting configuration is chosen as the criterion (suppose the time goes to
infinity while the lattice length is finite), the Class-IV rules are more appro-
priately classified as periodic rules.

To classify CA rules with behaviors between simple and random is not
easy. Nevertheless, the number of such rules is much smaller than those in
other “obvious” groups. For elementary CA rules, only Rule-54 and Rule-
137 (or Rule-110) have the typical Class-IV behaviors. In this paper they
are classified as global chaotic rules.

As for the locally chaotic rules, only three are identified (Rule-26, Rule-
73, and Rule-154). Similar to Class-IV rules, they can also belong to either
the periodic class by one classification scheme or the global chaotic class by
another. Actually, in counting the statistics for the transition probability in
the next section, the locally chaotic rules are grouped with global chaotic
rules. In section 5, they seem to fit well into the periodic rule class in the
mean-field description. In any case, the ambiguity in defining these “bound-
ary rules” (Class-IV rules, the locally chaotic rules, etc.) will not affect the
general conclusion about the structure of the rule space.

Finally, table 2 lists all the 88 independent elementary CA rules in five
classes (A, B, C, D, E). One thing to remember is that even when the locally
chaotic rules (D) are combined with the chaotic rules (E), the resulting four
classes are still not the same as Wolfram’s four classes in [12].

4. Structure of the CA rule space: Intra-class and inter-class con-
nections

With all the elementary CA rules being classified in the last section, each
point in the rule space can be “colored” according to its class, and this
“colored” rule space presents a structure. By this definition, once each rule
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Class Rule number
null 0, 8, 32, 40, 128, 136, 160, 168
fixed point 2, 4, 10, 12, 13, 24, 34, 36, 42, 44, 46, 56,

57, 58, 72, 76, 77, 78, 104, 130, 132, 138, 140,
152, 162, 164, 170, 172, 184, 200, 204, 232,

periodic 1,3,5,6,1,09, 11, 14, 15, 19, 23, 25, 27, 28,
29, 33, 35, 37, 38, 41, 43, 50, 51, 74, 108, 131,
133, 134, 142, 156, 178

locally Chaotic | 26, 73, 154

chaotic 18, 22, 30, 45, 54, 60, 90, 105, 106, 129, 137, 146, 150, 161

Table 2: Elementary cellular automata rules as classified to five
classes.

is classified, the rule structure is determined. The problem is how to visualize
the eight-dimensional hypercube and how to describe the main features of the
structure. In this section, attempts are made to characterize the rule space
by quantitatively determining the connections within the class and between
the classes. In the next section, we will cluster rules by their mean-field
parameters, especially by using the ¢y and t7 bit in the rule table.

Figure 3 shows the five classes of rules and the connection within the
class, or intra-class connections. Since there are only three locally chaotic
rules, they are incorporated into the group with chaotic rules. The rules in
the picture are arranged by their A value: small A rules are on the top and
A is increased while moving down. There is no rule with A larger than 1/2
in the figure because these rules are folded upon the ones on the top with
A<1/2

We have the following observations:

Null rules consist of a cube.

Fixed-point rules are almost divided into two parts, with only Rule-172
and Rule-44 bridging them.

Most of the periodic rules are connected to one piece, except Rule-74
and Rule-108, which are disjointed from others.

Most of the chaotic rules are in two clusters, with the exception of
Rule-45 and Rule-105.

Although it is difficult to draw some general conclusions, we postulate
that some features mentioned above will preserve in larger CA rule spaces:
for example, null rules dwindle into a hypercube with smaller dimensions;
and chaotic rules scatter into more clusters than rules in other classes.

A more complete description of the rule space should also include the con-
nection between different classes, or inter-class connection. Figure 4 shows
such a diagram. It is clear that there are less connections between classes
with completely different behaviors. There are four connections between null
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rules and the chaotic rules, but peculiarly, all by flipping the bit ¢; (or %)
in the rule table. We will discuss this point in the next section. Notice that
even in lower-dimensional dynamical systems like the logistic maps, there
are also some similar rare transitions from short periodic cycles to chaotic
dynamics by tuning the control parameter (e.g., the “crisis” [13]).

Table 3 lists the number of connections within the classes (V;;) and be-
tween the classes (IV;;), for both the original rule space and the folded rule
space. We define the average intra-class transition probabilities as

2N;;

... — 4.1
2Ny + g i Nik (1)

wi;
which are the probabilities for each rule in class ¢ to be connected to another
rule in the same class ¢; and inter-class transition probabilities:

Nij

= L S— 4.2
2N;i + X i Nik s

Wij
which are the probabilities for rule in the class 7 to be connected to rules in
the class 7. The reason to use 2/N;; rather than N;; is because, from the point
of view of each rule in a class rather than the class itself, the link between
two rules in the same class is used twice and so should be Nj;.

By the above definition, the average intra-class transition probabilities
{wi;} in the folded rule space are

0.429  (null rules)

0.535  (fixed-point rules)

0.508  (periodic rules)

0.295  (chaotic and locally chaotic rules) (4.3)

and in the original rule space are

0.417  (null rules)

0.526  (fixed-point rules)

0.511  (periodic rules)

0.337  (chaotic and locally chaotic rules) (4.4)

As mentioned before, the reason to combine the locally chaotic rules with
the chaotic rules is to remove the boundary classes in order to have a better
statistics.

Roughly speaking, the intra-class transition probabilities are between 0.3
to 0.5. It shows a strong tendency for rules to stick to the rules from the same
class. Although elementary CA rule space maybe too simple to be general,
we speculate that the intra-class probabilities for larger CA rule spaces are
within the same range.
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null | fixed pt. | periodic | locally c. | chaotic | total
null 12 24 4 0 4
8(24) |(40)| (88) (12) (0) (12)
fixed pt. 57 51 9 15
32 (97) (204) (192) (32) (56)
periodic 50 5 37
31 (89) (182) (18) (126)
locally c. 1 6
3 (10) @ | @
chaotic 13
14 (36) (36)
total 288
88 (256) (1024)

Table 3: Numbers of connections between classes for the folded rule
space (first line in every array) and for the original rule space (the
number inside the parentheses in every second line). The number of
rules for each class is listed in the first column. “locally c.” refers to
locally chaotic rules.

5. Grouping rules by mean-field clusters

For CA, as well as other dynamical systems, some details about the rule are
not important for the overall behavior of the dynamics. By ignoring these
details, many dynamical rules can be considered to belong to the same group,
which will be called mean-field cluster in this section.

For example, Rule-10, 12, 24, 34, 36 map block (000) to 0, map one of the
three blocks containing one 1 to 1, map one of the three blocks containing
two 1’s to 1, and map block (111) to 0. Following a notation in [11], we
use [noningns] to refer to the mean-field cluster containing rules mapping n;
of the 3-site blocks with ¢ 1’s to site value 1. Clearly, no,ns € (0,1), and
ni,ne € (0,1,2,3). By this notation, the above rules belong to the cluster
[0110].

The mean-field clusters consist a mean-field cluster space. It is a “hyper-
rectangular-block,” because the width of the cluster space is 2 along no and
n3 axes, but 4 along n; and n, axes. Notice that the rules in the same
mean-field cluster will not be next to each other in the original rule space.
For example, the Hamming distance between Rule-2 and Rule-4 (they are in
the same cluster [0100]) is 2. On the other hand, two rules in two nearby
clusters can be next to each other in the original rule space. For example,
the Hamming distance between Rule-40 and Rule-42 (they belong to clusters
[0020] and [0120] respectively) is 1.

As in the case of rule space, the cluster space can also be folded by
the equivalence between clusters. It is easy to show that (ngninsnz) and
(1 —n3,3 —n2,3 —ny,1 —ng) represent the same dynamics under the 0-to-1
transformation. The 64 clusters are thus reduced to 36 independent ones.
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Figure 3: The intra-class connections for all five classes of rules (note
dotted lines do not have any special meanings): (a) null rules, (b)
fixed-point rules, (c) periodic rules, (d) chaotic and locally chaotic
rules (with circles).

In order to view the space of mean-field cluster, three parts are sliced
out: (a) ng =n3 =0; (b) np =0, ng =1; (c) ny =1, nzg = 0. (Those with
no = ng = 1 can be transformed to case (a)). In each slice of the cluster
space, two out of the four n;’s are fixed and the number of free parameters
is 2. So these subspaces are very easy to visualize. Figure 4(a—c) show these
three subspaces. Each cluster is “colored” by the dynamics of the rules.
Since there are cases that rules in the same cluster have different dynamics
(in another word, the mean-field theory fails to predict the behavior correctly
by ignoring important details), more than one “color” is used.

In some sense, which site values block (000) and (111) map to is more
crucial. So the bit #p and #7 in the rule table are more important than other
bits (they can be called hot bits). Once the hot bits are fixed, the features
of the clusters are much easier to summarize.
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Figure 4: The inter-class connections. The number on each line is
the number of connections between two clusters. A thick line indi-
cates the number of connections being more than 10. The classes
are aligned from left to right according to the degree of randomness.
Cluster “Periodic(A)” refers to the biggest cluster for periodic rules,
“Chaotic(A)” refers to Rule-18,22,30,54,146,150. “Chaotic(B)” refers
to Rule-60,90,106,129,137,162.

The clusters with ng = nz = 0 can be called nonlinear clusters, which are
shown in Figure 4(a), since the z}*" versus X{ = z!_, + «! + ¢, function is
reminiscent of the nonlinear logistic map. Nonlinear clusters are organized
in such a way that by going down a path in the graph, one can have the
transition from null to fixed point to periodic and then to chaotic rules.
There are few cases when more random rules make transition to less random
ones (e.g., from [0310] to [0320]), the overall tendency is nevertheless similar

to other nonlinear systems with bifurcation phenomena.

The clusters with ng = 0 and ns = 1 (in Figure 4(b)) are called linear
clusters for the similar obvious reason. Except for two cases (Rule-146 and
Rule-150), most of the rules are null or fixed-point rules as well as a few
periodic rules. It is consistent with the general consensus that linear systems
would not generate complicated dynamics. Actually, 000 — 0 and 111 — 1
are necessary conditions for having fixed-point dynamics.
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Figure 5: The CA rules grouped by the mean-field parameter
[noningna]. (a) no = n3 = 0: nonlinear clusters. (b) ng = 0,n3 = 1:
linear clusters. (c) no = 1, ng = 0: inversely linear clusters.

The clusters with no =1 and nz = 0 (in Figure 4(c)) are called inversely
linear clusters, which are dominated by the periodic rules. These rules cannot
have fixed-point dynamics simply because both 000 — 1 and 111 — 0 violate
the invariant condition required by a fixed-point dynamics. It is probably
somewhat related to the existence of oscillation in systems with negative
feedback which might be responsible for the existence of many physiological
rhythms [14].

To summarize this section, by fixing the “hot bits” ¢y and ¢7, the structure
of the cluster space becomes clear: the linear clusters tend to have rules with
fixed-point dynamics, the inversely linear clusters tend to have rules with
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periodic dynamics, and the nonlinear clusters have the typical bifurcation
transition with the increase of the parameters in the mean-field description.

Conclusion

We have studied the structure of the elementary CA rule space using two
different representations: the original eight-dimensional rule space and the
four-dimensional mean-field cluster space. In both cases, the separation of
simple and random rules and the bifurcation-like phenomena when one moves
around the rule space are observed. It is not clear, however, of how some
other representations can change the structure of the rule space, for example,
the one by “rotating” the eight axes, i.e., recombining the eight bits of the
rule table in some symmetric form.? It is hoped that some axis transforma-
tion will reshuffle entries in the rules table in such a way that the separation
between rules with different behaviors is “clean”. The intra-class connection
probability derived in this paper measures the stability of certain dynamical
behavior under perturbations in the rule table. The range of the intra-class
transition probabilities for elementary cellular automata (0.3 — 0.5) is amaz-
ingly close to the probability for an enzyme to preserve its function under
single amino acid substitution (0.3 — 0.6) according to Ninio [15]. This simi-
larity may reveal some deeper principle on how the phenotype is maintained
when genotype is changed.
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Appendix: The number of independent rules

In this appendix, we will show that 256 elementary rules are reduced to 88
independent rules under left-to-right, 0-to-1 transformation, and the joint
operation of the two. For brevity, 77 represents the 0-to-1 transformation
and T, represents the left-to-right transformation. 73 = T; * T3 is the joint
operation of the two.

Figure 6 shows all possibilities when the two transformations are applied

to a CA rule R:
1. Ty(R) = T3(R) = R, consequently T5(R) = R.
2. Ty(R) = Ty(R) # R, so T3(R) = Ty(R) = Ty(R) # R.
3. Ty(R) = R # Ty(R), so T5(R) = Ty(R).

2A special case has been studied in [10].
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Figure 6: All possible outcomes of the 0-to-1 transformation (73 ) and
the left-to-right transformation (73) applied on a CA rule. The graphs
on the right side also include transformation 75 = T175. There can
only be 1, 2, or 4 rules in one equivalent group.

4. Ty(R) = R # T1(R), so T3(R) = T1(R).

5. Ty(R) # T2(R) # R, so T5(R) # T1(R) # T»(R) # R. It can be proved
by the method of contradiction, using the fact that T;(T;(R)) = R.

Case 1 will give clusters with 1 rule; Cases 2-4 lead to clusters with 2

rules; Case 5 gives clusters with 4 rules. Suppose the numbers of rules in the
above five types are ny,nq, n3,nyg, and ns, then

ny + ng + ng + nyg + ns = 256 (5.1)

The total number of the clusters, or the number of independent rules, is
n1 + (2 + n3 + n4)/2 + ns/4.
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Now we determine the n;’s:

Ik

5.

The rules satisfy #o = to, &7 = t; and t; = t4 = fs. There are 2> = §
possibilities, so ny = 8.

The rules satisfy Ty (R) = To(R), or {7 = to,{s = t4, {5 = to and f3 = 14,
is 2 = 16. Subtracting the case where T1(R) = T3(R) = R, we get

The rules satisfy T3(R) = R, which gives 2* = 16 possibilities. Sub-
tracting the case for T5(R) = T1(R) = R, we have n3 = 16 —4 = 8.

There are 2° rules with T3(R) = R (tg = to, t1 = ty, ty = ty, t3 =
tg, ts = t5 and ¢ = t7). Eight of them satisfy T3(R) = R and are
subtracted, so ny = 64 — 8 = 56.

ng =256 —8 —8 —8 — 56 = 176.

Finally, the number of independent rules is 8 + (8 + 8 + 56)/2 + 176/4 =
8436 + 44 = 88.

References

(1]

2]

Proceedings of an Inter-disciplinary Workshop on Cellular Automata,
J.D. Farmer, T. Toffoli, and S. Wolfram, eds., Physica D, 10 (1-2), (1984).

Appendix of Theory and Applications of Cellular Automata, S. Wolfram,
ed. (World Scientific, 1986).

W. Li; N. Packard, and C. Langton “Transition phenomena in cellular au-
tomata rule space,” Physica D, 44 (1990) to appear; W. Li, Problems
in Complex Systems, Ph.D thesis (Columbia University, 1989); C. Lang-
ton, Computation at the Edge of Chaos, Ph.D Thesis (Michigan University,
1990).

C. Langton, “Studying artificial life with cellular automata,” in Evolution,
Games and Learning: Models for Adaptation in Machines and Nature,
J.D. Farmer, A. Lapedes, N. Packard, and B. Wendroff, eds. (North-Holland,
1986); Physica D, 22(1-3) (1986) 120-149.

R. May, “Simple mathematical models with very complicated dynamics,”
Nature, 261 (1976) 459-467.

P. Schuster, “Structure and dynamics of replication-mutation systems,”
Physica Scripta, 35 (1987) 402-416.

LA. Campbell, J.M. Flesselles, R. Jullien, and R. Botet, “Random walks
on a hypercube and spin glass relaxation,” Journal of Physics C, 20 (1987)
L47-L51.

S. Wolfram, “Statistical mechanics of cellular automata,” Review of Modern
Physics, 55 (1983) 601-644.



The Structure of the Elementary CA Rule Space 297

9]

[10]

[11]

(12]

(13]

[14]

[15]

Karel Culik IT and Sheng Yu, “Undecidability of CA classification schemes,”
Complex Systems, 2(2) (1988) 177-190.

Y. Aizawa and I. Nishikawa, “Toward the classification of the patterns gener-
ated by 1-dimensional cell automata,” in Dynamical Systems and Nonlinear
Oscillations, Giko Ikegami, ed. (World Scientific, 1986).

Howard Gutowitz, “Classification of cellular automata according to their
statistical properties,” preprint, Center for Nonlinear Studies, Los Alamos
National Lab, 1989.

S. Wolfram, “Universality and complexity in cellular automata,” Physica D,
10 (1984) 1-35.

C. Grebogi, E. Ott, and J. Yorke, “Crises, sudden changes in chaotic attrac-
tors, and transient chaos,” Physica D, 7 (1983) 181.

Leon Glass and Michael C. Mackey, From Clocks to Chaos: The Rhythms
of Life (Princeton University Press, 1988).

J. Ninio, “Approches moléculaires de 1’évolution,” in Collection de Biologie
Evolutive, Vol 5 (Masson, 1979).





