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Abstract. The structure of th e elementary cellular automata rule
space is investigated. The probabiliti es for a rule to be connected to
other rules in th e same class (intra-class) , as well as rules in differ­
ent classes (inter-class), are determined. The intr a-class connection
prob abilities vary from around 0.3 to 0.5, an indication of th e strong
tendency for rules with the similar behavior to be next to each other.
Rules are also group ed according to th e mean-field descriptions. The
mean-field clusters are classified into three classes (nonlinear , linear ,
and inversely linear) according to the "hot bit s" in the rule table . It is
shown that such classificat ion provides another easy way to describe
the rule space .

1. Introduction

Cellular automata (CA) as fully discret e dy namical systems with spatial
degrees of freedom have becom e new models for the study of nonlinear com ­
plex systems [1]. Compar ed with ot her spatially extended dynamical sys­
tems, such as part ial differenti al equations , cellu la r automata distinguish
themselves by the possibili ty to have all kinds of functional forms including
dis continuous ones . Even though the ru les of cellular automata can be writ ­
ten as boolean fun ct ions (e.g., table 1 in [2]) , t he expression can be utterly
irregular. Having modular op eration as an ingredi ent in or der to keep the
value in a finite field, boolean functions are also intrinsically nonlinear , which
makes the an alysis difficult. As a result , much underst anding of t he cellular
automata dyn ami cs has been acqu ire d by computer experiments.

Generally, a cellu lar automaton ru le is represented by a lookup table:
a list of state values to whic h block configurations are mapped. This list
can be arranged in certain way as a sequence, which uniquely specifies the
cellular automaton ru le. We call this sequence cell ular automaton rule table .
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Figure 1: Schematic illustration of the typical st ructu re of a cellular
automaton rule space.

Sometimes, an analogy between the ru le table and a DNA sequence is made,
and we can also call it a gene. T he characterist ics of the rule tab le is the
genotype and t he dynami cs shown by the ru le is the ph enotype.

If two CA ru les are the same except that one maps a partic ular block
configurat ion to state a", while another maps the same block configuration to
state a", ± I , we say the two rul es are next to each other, with the Hamming
distance between the two rule tab les equal to 1. With this concept of dist ance,
we can cons ider all the CA ru les reside in a space, called the rule space. Each
point in the rul e space is a rule table, and all the points are arr anged in such
a way that nearby point s have Hamming distance equal to 1. The op eration
of moving fro m one CA rule to its nearest rules can be called flipping one bit
in the rule tab le (in parti cular for the two-state CAs), or, using the biological
analogy , mu tation .

For elementary CA rules, i.e., rul es wit h the form X;+l = f (xLI' xL X;+l)
- th e subscript i being the spatial pos it ion and the supersc ript t being the
t ime - wit h Xi E (0,1) , the ru le table is a binar y sequence wit h length
8 = 23

. We can writ e a ru le tab le in the form: (t7t6tSt4t3t2tltO) , which means
that block configurat ion (000) map s to to, block configuration (001) maps to
tl , . . . and (Ill) map s to t7. Because there are two choices for each ti, the
total number of rule tables is 28 = 256, which is also the to tal number of
points in the elementary CA rule space.

We are interested in how these 256 rules are organized in their rule space,
or struct ure of the elem entary CA rule space, and whether two rul es sit t ing
next to each ot her are likely to have the same dyn ami cal behavior, or more
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quantitatively, what the probability is for two nearby rules to have the similar
behavior.

It has been observed [3J that different regions of the ru le space have rules
with different behaviors, such as regular, complex, and random. An activity
para meter A may be defined [4], in the case of binary states, as the density of
l 's in the ru le table. For example, the A valu e for the ru le table (10001001)
is 3/8. Varying the A value provides a way to move from one subset of the
rule space to another.

Figure 1 shows schematically the typical structure of a CA rule space as
parameterized by the A. As A gradually increases from 0 to 1, the dominate
behavior of the ru les changes from homogeneous fixed point to inhomoge­
neous fixed point, periodic, complex spatial-temporal dynamics, and chaotic
dynamics, and when A is larger than 0.5, the same process in reverse order .
The reverse process is easy to understand because by switching 0 and 1, the
ru les at the tip with A ~ 1 ("north pole") are equivalent to the rules at the
tip wit h A ~ 0 ("so uth pole"). Due to this equivalence between rules, one
only has to examine the region from A = 0 to A = 0.5, and the remaining
part of the rule space is just the mirror image of the former.

The abrupt change in global behavior when moving along a path in a
CA rule space is highly reminiscent of bifurcation phenomena in smooth
dynamical systems [5J. Act ually, t he "bifurcation-like" phenomena in CA
rule space is more complicated and subtle than those in lower dimension al
non linear systems with one or few parameters. For one thing, there is no
unique "route to chaos," simply because there are so many paths one can pick
to move from the "south pole" (simple behavior) to the "equator" (random
behavior, or chaos). CA ru le space pro vides us with a new challenger to
understand bifurcation phenomena in multi-parameter, spatially extended
dynamical systems.

A comprehensive discussion of the structure of the CA ru le spaces will
be in [3J. Here, we want to illust ra te some of the main ideas by examining
the simp lest CA rule space - the elementary CA rule space. The paper is
organized as follows. Sect ion 2 introduces the concept of hypercubic space
an d folded hypercubi c space. Section 3 outlines the classificat ion scheme of
CA, which is the basis for a description of the ru le space structure. Section 4
discusses the transit ion within a class and between classes. Section 5 contains
an attempt to characterize the rule space by the mean-field parameters.

2. Hypercu bic spaces and "folded" hyper cubic sp aces

The set of all possible finite sequences with length n , (tlt2 · · · tn), consist
a subset of the n-dimensional grid. When every t;'s can choose from th e
same state variables, t t E {a",} (a = 0, 1, . . . , m - 1), this set has equal size
m on each of the dimens ion axis, and we call it tile size-m n-dim ensional
hypercube. In particular, if the state value is binary (m =2), it is the size-1
hypercube, or simp ly, n-dimensional hypercube.
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Because of the application of finite sequences in many natural systems,
the name hypercube appears in literature quite often, e.g., t he st udy of binary
DNA sequences [6]. Even two-dimensional patterns like those in the Ising
spin model, the concept of hyp ercube is also applicab le [7] because a two­
dimensional pattern can be rearranged to a one-dimensional string. Since
CA ru le tables are sequence s with finite length, CA ru le spaces are also
hyp ercub es (the size-m hypercube if the number of state is m) .

An elementary CA ru le I can be equivalent to another ru le 11 under the
left- to-right t ransformat ion, if

(2.1)

is true for all 3-sit e blocks . I is equivalent to ru le h under the 0-to -1 trans­
formatio n (represented by the overhead bar), if

(2.2)

is always true, and it is equivalent to rule 13 under the joint operation of
both if

(2.3)

holds. Suppose the rule table of I is (t7t6tSt4t3t2tltO )' the three equivalent
ru les are 11 = (t7t3tStlt6t2t4tO) ' h = (fat~t;t~t~ t-;; f;;f7)' and h = (fot~t-;f6t~ t-;;t~f7) '

The sp atial-temporal patterns for iI , 12 and h are exactly the same by a
mirror reflection transformation , or a white-to-black transformation, or a
combination of both.

The rule space with only ind epend ent ru les is smaller than the orig inal
rul e space. The resu lting rul e space is called folded rule space, which is a
folded hypercubic space. Noti ce that the two transformations or foldings
are of different kinds. The 0-to- 1 transformation folds the rule space with
respect to the A = 0.5 "plan e." The left-to-right transformation operates on
rul es on the same "plane." For the 256 elementary CA rules, 88 of them
remain independent ."

Figure 2 shows an actual foldin g pro cess by grouping elementary "null
rul es" (the name will be expl ain ed in the next sect ion) that are equivalent
to each other . The rule numbers written in the figure are the decim al rep ­
resentation of the binary ru le tabl e as used in [8]. Ru les in the same shaded
rect an gular in Figure 2(a) are equivalent by left -to-righ t trans formations.
The 0-to -1 transformation then folds these ru les along the A = 0.5 line and
gives the resulting picture in Figure 2 (b ).

Tab le 1 lists all the equivalence relations wit h the ru les insi de the paren­
theses are equiva lent to the representative rule outside. Notice that the
number of ru les which are equivalent to each other can only be 1, 2, or 4 (see
appendix for the exp lanation). To represent each cluster of equivalent ru les ,
one can eit her (A) use the ru le wit h the smallest decimal representation; or

IThe number 88 will be explained in th e appendix.
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Figure 2: An example of the folding for the rule space. T h.ick lines
are mutations by flipping bit to (or t7), t hin lines for mutations at t1
(or t3,t4, t7), and dotted line for bit t2 (or t5)'
(a) All th e 24 null rules and thei r connections. Rules in th e same
shaded area are equivalent by th e left-to-right transformation s.
(b ) Clusters and their connections in the folded hypercubic space.

(B) use the rule with the smallest decimal represent ati on among t hese with
the smaller). value ("south sphere" in the hyp ercube). T he previous st udies
use the first convention, e.g., table 2 of [2], but we adopt conventi on (B ) in
this paper. Rule-62 , 94, 110, 122, 126 in convention (A) become Rule-131,
133, 137, 161, 129 in convention (B).
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0(255),1(127),2(16 ,191,247),3(17,63,119), 4(223) ,5(95),
6(20,159,215),7(21,31 ,87),8(64,239,253) ,9(65,111 ,125),

10(80,175,245) ,11(47,81,117), 12(68,207,221), 13(69,79,93),
14(84,143,213) ,15(85),18(183),19(55),22(151), 23, 24(66,189,231),

25(61,67,103), 26(82,167,181), 27(39,53,83), 28(70 ,157,199),
29(71),30(86,135,149), 32(251),33(123),34(48,187,243),

35(49,59,115) , 36(219), 37(91) , 38(52,155,211), 40(96,235,249),
41(97 ,107,121),42(112,171,241),43(113),44(100 ,203,217),

45(75,89 ,101),46(116,139,209) , 50(179) ,51, 54(147), 56(98,185,227),
57(99) , 58(114,163,177) , 60(102,153,195) , 72(237), 73(109),

74(88,173,229),76(205) ,77,78(92,141,197) , 90(165), 104(233),
105,106(120 ,169,225) ,108(201) ,128(254), 129(126), 130(144,190,246),
131(62,145,118),132(222),133(94), 134(148,158,214) , 136(192,238,252),

137(110,124,193), 138(174,208,244) , 140(196,206,220), 142(212),
146(182) , 150, 152(188,194,230) , 154(166,180 ,210), 156(198),

160(250), 161(122), 162(176,186,242), 164(218) , 168(224,234,248),
170(240), 172(202,216,228), 178, 184(226), 200(236), 204, 232

Table 1: Clusters of all independent elementa ry rules. The rules out­
side the parenthesis are representative rules with the smaller A value
and the smaller decimal rule number. Those inside the parenthesis
are rules equivalent to the representati ve rule.

3. Classification of the cellular automata rule dynamics

In this section, we summarize the classification schemes. A classification
should be specified in order to determine th e structure of the rule space. A
full discussion of the issue of classification will be present ed in [3] . It should
be emphasized th at by "classification of the CA dynamics, " we mean the
charact erization of the rules by the dynamics from typical initi al configura­
tions ("random initial configurati ons"). It is not th e classification according
to the dynamics from all initi al configurat ions [9], nor is it th e mathemat­
ical characterizat ion of the rule tables [10, 11]. In short , it is the typical
phenotyp e rather than the genotype th at is used for our classification.

Since th ere is nothing fundamentally different between th e classification
scheme discussed here as well as in [3] with the originally proposed four
classes [12], the purpose for this section is to clarify a few points that often
cause confusion, as well as to provide a quick reference.

The simplest phenotype classificatio n scheme is to separate CA rul es into
two categories: those with periodic dyn amics an d those with nonperiodic dy­
namics. Since the dynamics for the CA with finit e lattice length is always pe­
riodic (due to Poincare's recurrence tim e), th e criterion becom es whether the
dyn ami cs has "short" or "long" periodicity. The "long" can be understood
as the cycle length being exponentially divergent with the lattice length, and
"short" as th e cycle length being independent of the lat tice width. It can be
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seen that the un certainty in explaining the meaning of the "long" periodicity
leaves room for ambiguity.

This classification scheme is too crude to incorporate the varie ty of the
spat ial configura tions. After th e spatial configur at ion is considere d , we have
the following five classes: (A) null rules: homogeneous fixed-point rules; (B)
fixed-point rules: inhomog eneous fixed-p oint rules; (C) periodic ru les; (D)
locally chaotic rules: chaot ic dynamics confined by the domain walls; and (E)
global cha ot ic rules: ru les with random-looking spatial-temporal pattern s, or
with exponentially divergent cycle lengths as lat t ice length is increased , or a
non-negative spatial response to the pertu rb ations .

The relationship between these five classes (A, B, C, D, E) and the four
classes defined by Wolfram in [12] (I, II , III, IV) is the following: Wolfram's
Class-I ru les are the same as null rules (A); Class-II rules are fixed-point
ru les and periodic rules (B and C); Class-III ru les are global chaoti c rules
(E); Class-TV rules, which typically have long transient s, are difficult to in­
clude in any of these categories. If we choose the spati al response to th e
perturbation as the criterion for non chaoti c or chao tic, th e Class-TV rules
then belong to chaotic ru les. On the other hand, if th e periodicity for the
limiting configurat ion is chosen as th e criterion (suppose the time goes to
infinity while th e lattice length is finite), the Class-IV rules are more app ro­
priately classified as periodic rules.

To classify CA rules with behaviors between simple and random is not
easy. Nevertheless, th e number of such rules is much smaller than those in
other "obvious" groups. For elementary CA rules, only Rule-54 an d Rule­
137 (or Rule-l l O) have th e typical Class-IV behavior s. In this pap er th ey
are classified as global chaoti c rules .

As for th e locally chaot ic rules, only three are ident ified (Rule-26, Rule­
73, and Rule-154). Similar to Class-IV ru les, they can also belong to either
th e periodic class by one classification scheme or th e global chaot ic class by
another. Actually, in counting the stati stics for th e t ransit ion probability in
the next sect ion, th e locally chaotic rules are grouped wit h global chaotic
rules. In section 5, they seem to fit well into the periodic rule class in the
mean-field descrip tion . In any case, the ambiguity in defining these "bound­
ary rules" (Class-IV rules, the locally chaotic rules, etc.) will not affect the
general conclusion ab out th e st ructure of the rule space.

Fin ally, table 2 lists all th e 88 independ ent elementary CA rules in five
classes (A , B, C, D, E) . One thing to rememb er is th at even when th e locally
chaotic rules (D) are combined with th e chaot ic rules (E) , th e result ing four
classes are still not the same as Wolfram's four classes in [12].

4. Structure of the CA rule sp ace: Intra-class an d in t er -class con­
nections

With all th e elementary CA rules being classified in the last sect ion, each
point in the rule space can be "colored" according to its class, and thi s
"colored" ru le space presents a st ruct ure. By th is definiti on , once each rule
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C lass Rule number
null 0, 8, 32, 40, 128, 136, 160, 168
fixed point 2, 4, 10, 12, 13, 24, 34, 36, 42, 44, 46, 56,

57, 58, 72, 76, 77, 78, 104, 130, 132, 138, 140,
152, 162, 164, 170, 172, 184, 200, 204, 232,

periodic 1,3, 5, 6,7,9,11 ,14,15, 19,23, 25, 27,28,
29,33, 35,37, 38,41,43, 50, 51,74 , 108, 131,
133, 134, 142, 156, 178

locally Chaotic 26, 73, 154
chaotic 18,22, 30,45,54,60, 90,105, 106,129,137,146,150, 161

Table 2: Elementa ry cellular automata rules as classified to five
classes.

is classified, the rule st ructure is determined . The problem is how to visualize
the eight- dimensional hyp ercub e and how to describe the ma in features of the
st ructure . In this section , attempts are made to characterize th e rule space
by quantitatively determining the connect ions within th e class and bet ween
the classes. In the next section, we will cluster ru les by their mean-field
paramete rs , especially by usin g the to and t7 bit in the rule t ab le.

Figur e 3 shows the five classes of rules and th e connection within the
class, or intra-class connections. Since t here are only three loca lly chaotic
rul es, they are incorpora ted int o the group with chaot ic rules. The rules in
the picture are arr anged by their A value: small A rules are on the to p and
A is increased while moving down. There is no rule wit h A larger tha n 1/2
in the figure because th ese rules are folded up on the ones on the top with
A< 1/2.

We have t he following observations:

Null rules consist of a cub e.

Fixed-point ru les are almost divid ed int o two parts, with only Rule-172
and Rule-44 bridging them.

Most of the period ic rules are connected to one piece, except Rule-74
and Rule-108, which are disjointed from others .

Most of the chaotic rules are in two clusters , with the exception of
Rule-45 and Rule-105.

Alth ough it is difficult to draw some general conclusions, we postulat e
th at some features mentioned above will preserve in larger CA rule spaces:
for example, null ru les dwindle into a hypercub e with smaller dimensions;
an d chaotic rules scatter into mor e clusters than rules in other classes.

A more comp lete descrip tion of the rule space should also include th e con­
nect ion between different classes, or int er-class connection. Figure 4 shows
such a diagram . It is clear t hat th ere are less connections between classes
wit h completely different behavio rs. There are four connections between null
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rules and the chaotic rules, but peculiarly, all by flipping the bit t 7 (or to)
in the rule table. We will discuss this point in the next section. Notice that
even in lower-dimensional dynamical systems like the logistic maps , there
are also some similar rare transitions from short periodic cycles to chaotic
dynamics by tuning the control parameter (e.g., the "crisis " [13]).

Table 3 lists the number of connections within the classes (Ni i ) and be­
tween the classes (Ni j ) , for both the original rule space and the folded rule
space. We define the average intra-class transition probabilities as

(4.1)

which are the probabilities for each rule in class i to be connected to another
rule in the same class i; and inter-class transition probabilities:

(4.2 )

which are the probabilities for rule in the class i to be connected to rul es in
the class j . The reason to use 2Ni i rather than N i i is because, from the point
of view of each rule in a class rather than the class itself, the link between
two rules in the same class is used twice and so should be N ii .

By the above definition, the average intra-class transition probabilities
{Wii} in the folded rule space are

0.429

0.535

0.508

0.295

(null rules)

(fixed-point rules)

(periodic rules)

(chaotic and locally chaotic rules) (4.3)

and in the original rule space are

0.417

0.526

0.511

0.337

(null rules)

(fixed-point rules)

(periodic rules)

(chaotic and locally chaotic rules) (4.4)

As mentioned befo re, the reason to combine the locally chaotic ru les wit h
the chaotic rules is to remove the boundary classes in order to have a better
statistics.

Roughly speaking, the intra-class transition probabilities are between 0.3
to 0.5. It shows a strong tendency for rules to stick to the rules from the same
class. Although elementary CA rule space maybe too simple to be general,
we speculate that the intra-class probabilities for larger CA rul e spaces are
within the same range.
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null fixed pt. periodic locally c. chaotic total
null 12 24 4 0 4
8 (24) (40) (88) (12) (0) (12)
fixed pt. 57 51 9 15
32 (97) (204) (192) (32) (56)
periodic 50 5 37
31 (89) (182) (18) (126)
locally c. 1 6
3 (10) (4) (22)
chaotic 13
14 (36) (36)
total 288
88 (256) (1024)

Table 3: Numbers of connections between classes for the folded rule
space (first line in every array) and for the original rule space (the
number inside the parentheses in every second line). The number of
rules for each class is listed in the first column. "locally c." refers to
locally chaotic rules.

5. G rouping r u les by mean-field cluster s

For CA, as well as other dynamical systems, some details about the ru le are
not important for the overall behavior of the dynamics. By ignoring these
details, many dynamical rules can be considered to belong to the same group ,
which will be called mean-field cluster in this section.

For example, Ru le-10, 12,24,34,36 map block (000) to 0, map one of the
three blocks containing one 1 to 1, map one of the three blocks containing
two l 's to 1, and map block (Ill ) to O. Following a notation in [11], we
use [n On l n 2n 3] to refer to the mean-field cluster containing ru les mapp ing ni
of the 3-site blocks with iI 's to site value 1. Clearly, nO,n3 E (0, 1), and
nl, n2 E (0,1,2,3). By this notation, the above rules belong to the cluster
[0110].

T he mean-field clusters consist a mean-field cluster space . It is a "hyper­
rectangular-block," because the width of the cluster space is 2 along no and
n3 axes, but 4 along nl and n2 axes . Not ice that the ru les in the same
mean-field cluster will not be next to each other in the original rule space.
For example, the Hamming distance between Rule-2 and Rule-4 (t hey are in
the same cluster [0100]) is 2. On the other hand, two ru les in two nearby
clusters can be next to each ot her in the original rule space. For example,
the Hammi ng distance between Rule-40 and Rule-42 (they belong to clusters
[0020] and [0120] respectively) is 1.

As in the case of rule space, the cluster space can also be folded by
the equivalence between clusters. It is easy to show that (n On ln2n3) and
(1 - n3, 3 - n2, 3 - n l, 1 - no) represent the same dynamics under the 0-to- I
transformation. The 64 clusters are thus reduced to 36 independent ones.
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Figure 3: The intra-class connections for all five classes of rules (note
dotted lines do not have any special meanings): (a) null rules, (b)
fixed-point rules, (c) periodic rules, (d) chaotic and locally chaotic
rules (with circles).

In order to view the space of mean-field cluster, three parts ar e sliced
out: (a) no = n3 = 0; (b) no = 0, n3 = 1; (c) nl = 1, n3 = O. (Those with
no = n3 = 1 can be t ransformed to case (a)) . In each slice of the cluster
space, two ou t of the four n;'s are fixed and the nu mber of free paramet ers
is 2. So t hese subspaces are very easy to visualize . Figure 4(a-c) show these
three subspaces. Each cluster is "colored" by the dynamics of the rules .
Since there are cases that rules in the same clus ter have different dynamics
(in another word, the mean-field theory fails to predict the behavior correctly
by ignoring impor tant details), more than one "color" is used .

In some sense, which site values block (000) and (111) map to is more
crucial. So the bit to and tr in the rul e table ar e more import ant than other
bits (they can be called hot bits). On ce the hot bits are fixed , the fea tures
of the clusters are much easier to summari ze.
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Figu re 4: The inter-class connections. The number on each line is
the number of connections between two clusters. A thick line indi­
cates the number of connections being more than 10. The classes
are aligned from left to right according to the degree of randomness.
Cluster "Periodic(A)" refers to the biggest cluster for perio dic rul es,
"Chao tic(A)" refers to Rule-18,22,30,54,146,15 0. "Chaotic(B)" refers
to Rul e-60,90,106,129,137,162.

The clusters with no = n3 = 0 can be called nonlinear clusters, which are
shown in Figure 4(a), since the X;+I versus XI = xLI + x; + X;+I function is
remin iscent of the nonlinear logistic map. Nonlinear clusters are organized
in such a way that by going down a path in the graph , one can have the
transition from null to fixed point to periodic and then to chaotic ru les.
There are few cases when more random rules make transition to less random
ones (e.g., from [0310J to [0320]), the overa ll tendency is nevertheless similar
to other nonlinear systems with bifurcation phenomena.

The clust ers with n o = 0 and n 3 = 1 (in Figure 4(b )) are called linear
clust ers for the similar obvious reason. Except for two cases (Rule-146 and
Rule-150), most of the rules are null or fixed-poi nt rules as well as a few
periodic ru les. It is consistent with the general consensus that linear systems
would not generate complicated dynamics. Actually, 000 ~. 0 and 111 ~ 1
are necessary condit ions for having fixed-point dynamics .
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Figure 5: The CA rules grouped by the mean-field par ameter
[non! n2n3]. (a) no = n3 = 0: nonlinear clusters. (b) no = 0,n3 = 1:
linear clusters. (c) no = 1, n3 = 0: inversely linear clusters.

The clust ers with no = 1 and n3 = 0 (in Figure 4(c)) are called inversely
linear clust ers, whi ch are domin ated by the periodic rules . T hese rules cannot
have fixed-point dynamics simp ly because both 000 --+ 1 and 111 --+ aviolate
the invariant condition required by a fixed-point dynami cs. It is prob ab ly
somewhat relat ed to the existence of oscilla t ion in sys tems wit h negat ive
feedb ack which might be responsible for the existence of many physiological
rhythms [14].

To summarize thi s section, by fixing the "hot bits" to and t7 , the structure
of the cluster space becomes clear: the linear clusters tend to have ru les wit h
fixed-point dynamics, the inversely linear clusters tend to have rules with
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periodic dynamics, and the nonlinear clusters have the typical bifurcation
transition with the increase of the parameters in the mean-field description .

Conclusion

We have studied the structure of the elementary CA rule space using two
different representations: the original eight-dimensional rule space and the
four-dimensional mean-fie ld cluster space. In both cases, the separation of
simple and random rules and the bifurcation-like phenomena when one moves
around the rule space ar e observed. It is not clear , however , of how some
other repr esentations can change the structure of the ru le space, for examp le,
the one by "ro tating" the eight axe s, i.e., recombining the eight bits of the
ru le table in some symmetric forrn.? It is hoped that some axis transforma­
tion will reshuffle entries in the ru les table in such a way that the separat ion
between ru les with different behaviors is "clean" . The intra-class connection
probability derived in thi s paper measures the st abi lit y of cer tain dynamical
behavior under perturbations in the ru le tabl e. The range of the intra-class
transition probabilit ies for elementary cellular automata (0.3 - 0.5) is amaz­
ing ly close to the probabilit y for an enzyme to preserve its function under
single amino acid substitut ion (0.3 - 0.6) according to Ninio [15J. T his simi­
larity may reveal some deeper principle on how the phenotype is maintained
when genotype is changed.
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Append ix : The num b er of in d ep endent r u les

In this appendix, we will show that 256 elementary rules are reduced to 88
independent ru les under left- to-right , 0-to-1 transformation , and the joint
op eration of the two. For brevi ty, T1 represents the 0-to-1 transformation
and T2 represents the left- to-right transformation. T3 = T1 *T2 is the joint
op eration of the two .

Figure 6 shows all possibilit ies when th e two transformations are applied
to a CA rule R:

1. T1 (R) = T2 (R) = R, consequently T3 (R ) = R.

2. T1(R) = T2(R) =f R, so T3(R) = T1(R) = T2(R) =f R.

3. T1 (R) = R =f T2(R) , so T3(R) = T2 (R) .

2A special case has been studied in [10].
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O T 1
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Figure 6: All possible outcomes of the O-to- 1 transformation (TI ) and
the left-to-right t ransform ation (T2 ) applied on a CA rule. Th e graphs
on the right side also include transformation T3 = TI T2 . Th ere can
only be 1, 2, or 4 rules in one equivalent group .

4. T2(R) = R -=f TI(R), so T3(R) = TI(R).

5. TI(R) -=f T2(R) -=f R, so T3(R) -=f TI(R) -=f T2(R) -=f R. It can b e proved
by the method of contra dict ion , using the fact that Ti(Ti (R)) = R.

Case 1 will give cluster s with 1 rule; Cases 2-4 lead to clus ters wit h 2
rules; Case 5 gives cluster s with 4 rules. Suppose the nu mbers of rules in the
above five types are n l , n2, n3, n4, and ns , then

(5.1)

The total number of the clu st ers , or the number of independent rules , is
n l + (n2 +n3 +n4)/2 +ns/4.



296

Now we determine the n ;'s:

We ntian Li and No rman Packard

1. The rules sa tisfy fa = to, f7 = t7 and t l = t4 = f6 . There are 23 = 8
possibilit ies, so nl = 8.

2. The ru les satisfy TI (R ) = T2 (R ), or f7 = to,f;, = t4 , t-" = t 2 an d t-;' = t l ,

is 24 = 16. Subtracting the case where TI (R ) = T2(R) = R, we get
n2 = 16 - 4 = 8.

3. The rules satisfy TI (R ) = R, which gives 24 = 16 possibilities. Sub­
tracting t he cas e for T2(R ) = TI (R ) = R, we have n3 = 16 - 4 = 8.

4. There are 26 rules wit h T2 (R ) = R (to = to, t l = t 4 , t 2 = t 2 , t 3

te, t s = ts and t 7 = t7 ) . Eight of t hem satisfy TI (R) = R and are
sub tracted , so n4 = 64 - 8 = 56.

5. ns = 256 - 8 - 8 - 8 - 56 = 176.

F inally, the number of indep endent ru les is 8 + (8 + 8 + 56)/2 + 176/4 =
8 + 36 + 44 = 88.
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