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This paper is concerned with the study of six rules from the family  of
square Boolean cellular automata (CAs) having a neighborhood consist-
ing of four peripheral neighbors and with periodic boundary condi-
tions. Based on intensive computations, we are able to conclude, with
statistical support, that these rules have a common feature: they all
show coexistence of dynamics, in the sense that as the size n of the side
of the square increases with fixed parity, the relative size of the basin of
attraction of the homogeneous final state tends to a constant value that
is neither zero nor one. It is also statistically shown that the values  of
the constant levels—one for n odd and the other for n even—can be
considered as equal for five of the rules, while for the sixth rule these
values are one-half of the others. Some results obtained for the one-
dimensional CAs with four peripheral neighbors are also reported, to
support our claim that with periodic boundary conditions, the coexis-
tence of dynamics can only appear for automata with dimension higher
than one.

Introduction1.

Elementary cellular automata (ECAs)—that is, binary, one-dimen-
sional cellular automata (CAs) in which the state of each cell is up-
dated according to its own state and the states of its two immediate
neighbors—were extensively studied by Wolfram in the 1980s [1–5].
Based on the analysis of the behavior of the patterns generated by the
time evolution of ECAs, Wolfram [2] proposed a classification  of
these automata into four classes. This phenomenological type of classi-
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fication, later refined by Li and Packard [6] and Li [7], was also used
for more general CAs [8]. In these classification schemes, a first class
(class 1) is reserved for those automata that have very simple dynam-
ics: evolution to a homogeneous state for almost all initial configura-
tions.

In the case of finite ECAs with periodic boundary conditions, there
is a clear dichotomy in what concerns the proportion of initial config-
urations that lead to a homogeneous final state as the size of the au-
tomaton increases: it either tends to one, for class 1 automata, or to
zero, for all other automata. This means that either “almost all” or
“almost no” initial configurations evolve to a homogeneous final
state. As we will show, the situation is, however, totally different
when dealing with two-dimensional CAs: the family of binary square
automata with a neighborhood consisting of four peripheral neigh-
bors and with periodic boundary conditions contains six rules, for
which the proportion of initial configurations leading to a homoge-
neous final state stabilizes at two values (one for automata with even
side and the other for automata with odd side) that are neither zero
nor one. This means that for these rules, we can have “homogeneous
dynamics” coexisting with other dynamics. We should mention that
the peculiar behavior of these rules has already been  observed—
although not fully studied—by Freitas and Severino [9].

The main purpose of this paper is to study in a thorough way these
six exceptional rules. Based on a large number of computations, we
are able to statistically determine the values of the constant levels for
the proportions of initial configurations leading to a homogeneous
final state and to show that for five of the rules these values can be
considered as equal, while for the sixth rule these values are one-half
of the others. We also describe results obtained for the family of one-
dimensional CAs with four peripheral neighbors that support our con-
viction that with periodic boundary conditions, the coexistence  of
dynamics can only appear for automata with dimension higher than
one.

The paper proceeds as follows: Section 2 presents the main defini-
tions and notations; Section 3 contains the first computational results
obtained for each of the six rules that enable us to conclude, with sta-
tistical support, that all these rules show coexistence of dynamics; Sec-
tion 4 describes the study conducted to determine the values of the
constant levels for the proportions of initial configurations leading to
a homogeneous final state; in Section 5 we perform some compar-
isons on the basins of attraction of the homogeneous final state for
the six rules; Section 6 discusses some results to support our  belief
that coexistence does not exist for one-dimensional CAs with periodic
boundary conditions; finally, Section 7 concludes.
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Definitions and Notations2.

We consider finite square n⨯n synchronous Boolean CAs with a four-
neighbor peripheral neighborhood, that is, a neighborhood of von
Neumann type with the center cell not considered, and with periodic
boundary conditions. If we denote by

�(t)  ci, j(t); i, j  1, … , n,

the system state configuration at time t, then the state of the cell ci, j at

time t + 1 is given by the value that a Boolean function ϕ of four vari-
ables—the local update rule—takes on the 4-tuple consisting of the
states of the up, left, right, and down neighbors of that cell at the pre-
vious time t:

ci, jt + 1  ϕci-1, j(t), ci, j-1(t), ci, j+1(t), ci+1, j(t);

i, j  1, … , n,
(1)

where, for k  1, … , n, we take

ck, 0(t)  ck, n(t), ck, n+1(t)  ck, 1(t),

c0, k(t)  cn, k(t), cn+1, k(t)  c1, k(t).
(2)

Each configuration is, in this case, an n⨯n binary matrix. If we denote
by C the set of all such configurations, equation (1), together with the
prescribed boundary conditions in equation (2), defines the so-called
global transition function Φ :C → C.

A state configuration in which all the cells have the same value is
called a homogeneous configuration. The all-0 configuration will be
denoted by �0 and the all-1 configuration will be denoted by �1.

Since we are considering automata with periodic boundary condi-
tions, all the cells in a homogeneous configuration have their neigh-
bors in the same state and, consequently, all the cells are updated by
the automaton rule in the same manner. This means that a homoge-
neous configuration can only be transformed into a homogeneous
configuration, and so there exist only three possible situations for the
dynamics of the homogeneous configurations: (i) �0 and �1 form a

2-cycle; (ii) both �0 and �1 are fixed points; and (iii) one of the two

homogeneous configurations is a fixed point and the other is mapped
into it by applying the automaton rule once.

It happens that for the six rules analyzed in this paper, only situa-
tions (i) and (ii) occur.

We will denote by ℬh the set of all configurations that evolve to a

homogeneous configuration. In case (i), ℬh is simply the basin of at-

traction of the 2-cycle attractor, while in case (ii), ℬh is the union  of

the basins of attraction of �0 and �1, which we will denote by ℬ0 and

ℬ1, respectively. With a slight abuse of notation, even in this last situ-
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ation we will refer to ℬh as the basin of attraction of the homoge-

neous final state.
When ℬh is not the union of two basins—that is, when �0 and �1

form a 2-cycle—we will still be interested in partitioning it into two
sets that will play a role identical to the basins of attraction of �0 and

�1 in case (ii): the set consisting of the configurations for which the

first homogeneous configuration reached by the automaton is �0 and

the set of configurations for which the first homogeneous configura-
tion attained is �1. Although in this case these sets are not basins  of

attraction of any attractor, we will still denote them by ℬ0 and ℬ1, re-

spectively.
The symbol rh will be reserved for the proportion of configurations

that belong to ℬh, that is, for the number given by

rh 
ℬh

2n⨯n
,

where we use the notation S for the number of elements in a set S.

We will frequently refer to rh as the relative size of ℬh. Similar nota-

tions, r0 and r1, will be used for the proportion of elements in ℬ0 and

ℬ1, respectively. Note that since ℬ0 and ℬ1 form a partition of ℬh, we

always have rh  r0 + r1. (Naturally, ℬh, rh, etc. are functions of n,

but in general we will not explicitly state this dependency unless it is
strictly necessary.)

For convenience, we will follow the usual procedure of associating
a code number Nϕ with each automaton ϕ. The numbering scheme

considered here is the one used in [9] and is defined as follows.

To each neighborhood state �, �, �, �; �, �, �, � ∈ 0, 1, we asso-

ciate the number whose binary representation is �, �, �, �2, and the

16 different neighborhood states �k; k  0, … , 15 are ordered

according to these numbers; that is, �0  0, 0, 0, 0,

�1  0, 0, 0, 1, … , ��15  1, 1, 1, 1. The integer code Nϕ corre-

sponding to the rule ϕ is then given by the formula

Nϕ  
k0

15

ϕ(�k)2
k. (3)

In what follows, we will indiscriminately refer to a cellular automaton
(CA) by the associated  Boolean function ϕ, the global function Φ, or
the integer code Nϕ.

As already mentioned, a detailed study of the dynamics of the two-
dimensional-binary four-neighbor CAs, in a manner similar to what
was done by Wolfram  for the case of ECAs, was initiated in [9]. In
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particular, the authors have identified all the CAs for which homoge-
neous final states play a significant role and, among these, called at-
tention to the special behavior of the following six rules: 383, 575,
831, 43240, 59624, and 60072, which we now investigate more
deeply.

Coexistence of Dynamics3.

In this section, we report the first computational results obtained for
the six rules.

We should note that with respect to the dynamics of the homo-
geneous configurations, the situation is the following: for the odd-
numbered rules, that is, for rules 383, 575, and 831, the configura-
tions �0 and �1 form a 2-cycle, while the even-numbered rules, that

is, rules 43240, 59624, and 60072, have �0 and �1 as fixed points.

The first automaton considered was rule 383. To compute approxi-
mations rh(n) to rh(n), we randomly generated 10 000 initial configu-

rations and counted the number of those configurations that evolved
to the 2-cycle homogeneous final state. The results for the values  of

the size n of the automaton n  204500 and n  214501 are dis-

played in Figure 1. This figure, obtained by allowing values of n up to
501, reinforces a claim made in [9] that was based on a study with n
taking the maximum value of 140: the relative size of the basin of at-
traction of the homogeneous final state tends to a constant, as n
increases with fixed parity. Before we give statistical arguments to
mathematically support this statement, we present graphics illustrat-
ing some aspects of the behavior of this rule.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■
■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■■

��� ��� ��� ��� ���
���

���

���

���

���

���

Figure 1. Rule 383–Proportion of initial configurations that lead to a homoge-
neous final state, as a function of n: ■ – n odd,  – n even; number of ran-
domly chosen initial configurations: 10 000.
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Figure  2  contains  a  sample  of  20  configurations  belonging  to  the
basin of attraction of the homogeneous final state (Figure 2(a)) and a
sample  of  20  configurations  that  are  not  in  that  basin  (Figure  2(b)),
considering a square of size 9⨯9. 

(a)

(b)

Figure 2. Rule 383–Examples of configurations that (a) lead to the 2-cycle ho-
mogeneous final state and (b) do not lead to the homogeneous final state.  
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The first two lines of Figure 2(a) show configurations with a very
unbalanced number of cells in states 0 and 1, for which a homoge-
neous final state would be easily anticipated. If we compare the con-
figurations in the last two lines of Figure 2(a) with the ones in
Figure�2(b), we see that when the number of cells in states 0 and 1 is
similar, it is impossible to distinguish a priori whether or not the con-
figuration is in the basin of attraction of the homogeneous final state.

Figures 3–5 show the evolution of the automaton starting from
four different well-balanced configurations: the last configuration in
Figure 2(a) (leading to a homogeneous state) and the first three config-
urations in Figure 2(b) (leading to a non-homogeneous final state).
When  the final state is a non-homogeneous cycle, to help to identify
the cycle, we highlight in red the first repeating configurations.

Figure 3. Rule 383–Evolution (left-to-right, top-to-bottom) to the 2-cycle ho-
mogeneous final state of a given initial configuration.

Figure 4 shows the evolution to a cycle of very short length, which
is a typical behavior of Wolfram’s class 2 automata.

Also typical of Wolfram’s class 2 automata, Figure 5 shows the
evolution to a cycle related to shifts of a simple pattern.
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Figure 4. Rule  383–Evolution  (left-to-right,  top-to-bottom)  to  a  non-homoge-
neous 2-cycle of a given initial configuration.  

Figure 5. Rule  383–Evolution  (left-to-right,  top-to-bottom)  to  a  non-homoge-
neous 18-cycle of a given initial configuration.  
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Figure 6 shows a more curious kind of behavior: we still identify a
cycle related to shifts, but in this case, the pattern involved is not so
simple.

Figure 6. Rule 383–Evolution (left-to-right, top-to-bottom) to a non-homoge-
neous 18-cycle of a given initial configuration.

Returning to the computational results obtained for the values  of
rh(n) as approximations to rh(n), we now describe the statistical study

conducted to support the claim of a constant limit for rh(n) as n in-

creases with fixed parity. We begin by fitting a classical simple linear
regression model to the observed values rh as a function of n with

fixed parity. We then test the null hypothesis of zero slope, and if this
hypothesis is not rejected, then our claim is sustained. We report the
p-value of the test, which leads to no rejection at the usual 5% signifi-
cance level if it exceeds 0.05. The classical assumptions of normal er-
rors with a constant variance (homoscedasticity) for this regression
model are also checked by performing quantile–quantile plots and
residuals plots, respectively.
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For n odd, there is no evidence to reject zero slope (p-value
0.1813), and thus it is statistically reasonable to assume a constant
limit value for the relative size of ℬh. The same conclusion holds for n

even (p-value 0.5419). An analogous behavior was observed for all
the other rules. The smallest p-value observed when testing the hy-
pothesis of zero slope was obtained for rule 59624, n odd, and was
equal to 0.1573. Quantile–quantile plots show no deviations from
normality, and residuals plots indicate no heteroscedasticity.

For each of the rules, there are always two values for the constant
limits for rh, depending on whether we are considering automata with

even or odd size length. For simplicity of notation, we will use the
same symbol ℓh for these limiting values. In what follows, when com-

paring values of ℓh for different rules it should always be understood

that the comparison is made for automata of the same kind of parity.

Values of ℓh for the Six Rules4.

In order to find more precise estimates for the values of ℓh, for each

rule we computed the proportion of initial configurations that
evolved to a homogeneous final state using a much larger number,
20 000 000, of random initial configurations. The computational ef-
fort of dealing with such a large number of initial configurations,
however, imposed a severe limitation on the size of the automata con-
sidered: in this case, the maximum value of n used was n  72, except
for rule 43240, for which we used n up to 88.

Rules 383, 831, 59624, and 600724.1

We now analyze the results obtained with the procedure described
above for a first set of four of the rules: rules 383, 831, 59624, and
60072. The respective values for rh are given in Tables A.1, A.2, A.3,

and A.4 in Appendix A.
By observing these tables, it is natural to conjecture that the values

of ℓh are the same for the four rules. Here we apply the classical analy-

sis of variance (ANOVA) technique to test for equality of those val-
ues. The classical framework assumes that the four samples are
normally distributed with common unknown variance. The ANOVA
applied to the data for n odd allowed us to conclude that there is no
evidence to reject the null hypothesis of equality of the four ℓh values

(p-value 0.211) and led to a common estimated value  of
ℓh  0.6322657 ± 0.0000292, corresponding to a 95% confidence

value for the true common value of ℓh. Notice that the four datasets

were consistent with normal distributions (all p-values above 0.524)

10 R. Severino, M. J. Soares, and M. E. Athayde

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.1.1



with equal variances (p-value 0.298 for the Bartlett test), thus support-
ing the classical ANOVA assumptions. 

A similar test applied to the values corresponding to n even also en-
abled us to conclude that it is statistically reasonable to assume equal-
ity  of  the  ℓh  for  the  four  rules  (p-value  0.744),  with  a  common  esti-

mated  value  of  ℓh  0.11311135 ± 0.0000143  (all  p-values  were

above  0.192  for  normality  tests,  and  the  p-value  for  the  Bartlett  test
for  equality  of  variances  under  normal  populations  was  equal  to
0.794). 

We  now  give  a  result  concerning  the  relative  sizes  of  ℬ0  and  ℬ1,

valid  for  the  four  rules  considered  in  this  section.  The  significance  of
this result will be clarified later on. 

Proposition 1. For rules 383, 831, 59624, and 60072, we have r0  r1.  

Proof.   From the binary representation of equation (3) of each of the
rules  and  by  a  simple  inspection,  we  can  conclude  that  all  the  rules
satisfy the following relation 

ϕ�, �, �, �  ϕ�, �, �, �; �, �, �, � ∈ 0, 1.

It  thus  follows  that  given  any  configuration  � ∈ C,  we  have

Φ(�)  Φ�, and hence, that Φk(�)  Φk� for any k ∈ ℕ. So we can

conclude that  

∀ k ∈ ℕ, Φk�  �0 ⟺ Φk(�)  �1,

from which the assertion of the proposition immediately follows. □

In view of Proposition 1, it makes sense to consider the limiting val-
ues  for  r0  and  r1  which,  with  an  obvious  adaptation  of  notation,  we

denote by ℓ0  and ℓ1, respectively, and also to conclude that, for these

four rules, we have ℓh  ℓ0 + ℓ1  2ℓ0. 

Rule 43240  4.2

The  results  of  the  computational  experiments  conducted  for  rule
43240  are  given  in  Table  A.5.  At  a  first  glance,  a  striking  difference
from  the  rules  studied  so  far  is  immediately  apparent:  although  the
numbers  still  indicate  the  existence  of  two  plateaus,  one  for  n  even
and  the  other  for  n  odd,  the  relative  size  of  ℬh  seems  to  stabilize  at

values  that  are  about  one-half  of  the  corresponding  values  for  the
other four rules.

Actually,  the  hypothesis  that  for  rule  43240,  ℓh  is  one-half  of  the

common  value  for  the  other  four  rules  was  not  rejected  for  either  n
odd or even (p-values 0.711 and 0.873, resp.). In both cases, the data
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was  consistent  with  two  normal  populations,  which  is  commonly  as-
sumed for the test about the true means. 

It should be noted that the result of Proposition 1 is no longer true
for rule 43240. In this case, there exists exactly one pair of conjugate
neighborhood  states  whose  images  by  ϕ  are  not  conjugate  numbers:

we  have  ϕ1, 1, 1, 0  ϕ0, 0, 0, 1  0.  From  this  asymmetry  in  fa-

vor  of  a  zero  output,  it  is  clear  that  we  now  must  have  r1 < r0.  For

very  small  values  of  n,  namely  for  n  4  and  n  5,  it  is  possible  to
explicitly analyze the behavior of the automaton for all the initial con-
figurations  and  determine  with  exactitude  the  values  of  ℬ1.  The

results for n  4 are ℬ1  25, and for n  5, ℬ1  11. These num-

bers  show  that  the  proportion  of  configurations  that  lead  to  �1  is

extremely  small.  We  have  r1 ≈ 0.38⨯10-3  for  n  4  and

r1 ≈ 0.33⨯10-6  for  n  5.  For  larger  values  of  n,  it  is  not  feasible  to

do a complete scrutiny of the evolution of the automaton for all possi-
ble initial configurations, and as before, we have to rely on a statisti-
cal  approach.  For  n  6,  the  number  of  initial  configurations  is

236 > 1010.  Using  20 000000  randomly  chosen  initial  configurations,
we  did  not  obtain  a  single  configuration  leading  to  �1,  and  so  it

seems reasonable to conjecture that the limiting value of r1  is equal to

zero, and hence, that in this case, we have ℓh  ℓ0. 

Rule 575  4.3

The last rule studied in detail was rule 575. The corresponding compu-
tational results obtained to determine ℓh are given in Table A.6.  

Here, as with rule 43240, there exists exactly one pair of neighbor-
hood states that are conjugate with each other but have zero as com-

mon  output:  we  have  ϕ1, 0, 0, 0  ϕ0, 1, 1, 1  0  in  this  case.  A

similar  study  to  the  one  conducted  for  rule  43240  has  shown  that,
here also, it is reasonable to assume that r1 tends in a very fast way to

a limiting value of zero, and so we can say that ℓh  ℓ0. However, this

rule behaves in a different manner from rule 43240: as the numbers in
Table  A.6  show,  in  this  case  the  values  for  ℓh  are  no  longer  one-

half of the ones obtained for the four initial rules but seem to be equal
to  those  values.  This  equality  was  statistically  supported  based  on  a
test for equality of means (p-values 0.711 and 0.873, respectively, for
n odd and n even), under the normality assumptions described before,
which were once again consistent with the data. 

Overview for the Six Rules  4.4

Table 1 summarizes the results for ℓh  and its relation to ℓ0  for the six

rules  studied.  Here  the  estimated  ℓh  values  are  based  on  95%  confi-
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dence intervals under the usual normality assumptions that were actu-
ally consistent with the data.

ℓh

Rules n odd n even

383, 831, 59624, 60072 0.6322657 ±

0.0000292
0.1311135 ±

0.0000143
ℓh  2ℓ0(ℓ0  ℓ1)

43240 0.3161242 ±

0.0000450
0.0655550 ±

0.0000207
ℓh  ℓ0(ℓ1  0)

575 0.6322371 ±

0.0000501
0.1311203 ±

0.0000267
ℓh  ℓ0(ℓ1  0)

Table 1. Estimated values of ℓh and relation to ℓ0 for the six rules.

Finally, we conclude that it is reasonable to assume that the values
ℓh are the same for all the rules, with the exception of rule 43240, and

are given by:

ℓh 
0.6322600 ± 0.0000253, for� n�odd,

0.1311149 ± 0.0000125, for�n�even.

For rule 43240, the values of ℓh can be  considered as equal to one-

half of the values of the other five rules.  On the other hand, we can
also say that all the rules, with the exception of rule 575, have the
same values of ℓ0, while for this rule, these values are twice the values

of the others.

Basins of Attraction of the Homogeneous Final State5.

The purpose of this section is to clarify  the relation between the
basins of attraction of the homogeneous  final state for the various
rules.

We first considered CAs of size 20⨯20  and randomly selected 400
initial configurations. For each of these configurations and for each of
the six rules, we determined whether or not there was evolution to the
homogeneous final state. The results are shown in Figure 7, where the
convergence to the homogeneous final state is indicated with a bullet.
In the graphic we only show the cases where at least one of the rules
reached a homogeneous final state.

Figure 7 shows some unexpected regularity. In fact, the configura-
tions that evolve to a homogeneous final  state under rules 383 and
60072 are exactly the same, and this happens also for rules 575, 831,
and 59624; furthermore, the set of configurations that lead to a homo-
geneous final state under rule 43240 is a  subset, with about one-half
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of the elements, of the corresponding set for rules 575, 831, and
59624. The experiments were repeated for a much larger number  of
initial configurations (2 000 000), and the conclusions were the same
as above. Furthermore, for rules 43240 and 59624 (both of which
have �0 and �1 as fixed points), we observed that the configurations

that evolved to the fixed point �0 are exactly the same. We did a simi-

lar study for CAs with odd size 21⨯21 and obtained the same type of
conclusions.

� �� �� �� �� ���

�

�

�

�

�

�

Figure 7. On the x axis: different initial configurations (from a set of 400 ran-
domly chosen initial configurations) for which at least one of the six rules
evolved to the homogeneous final state; y axis: different rules. Convergence
for the homogeneous final state is indicated with a bullet.

For automata of very small sizes 4⨯4 and 5⨯5 it was possible to
do a complete scrutiny of the behavior of the automata for all the dif-
ferent initial configurations. The conclusions confirm what we had ob-
served considering 2 000000 initial configurations and lead us to the
following conjecture.

Conjecture 1.

Rules 383 and 60072 have the same basin of attraction ℬh of the homo-

geneous final state.

1.

Rules 575, 831, and 59624 have the same basin of attraction ℬh of the

homogeneous final state.

2.

Rules 43240 and 59624 have the same basin of attraction ℬ0 of the

fixed point �0.

3.

We should note that the above equality of basins of attraction must
be understood simply as an equality of sets and not as an equality  of
graphs; in fact, the kind of dynamics that the rules show when they
start from the same initial configuration leading to a homogeneous
state can be different. Figure 8 illustrates this fact for the case  of
rules�383 and 60072.
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(a)

(b)

Figure 8. Evolution to the homogeneous final state of rules (a) 383 and
(b) 60072, starting from the same initial configuration.
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Two Dimensions versus One Dimension  6.

To  our  knowledge,  the  type  of  behavior  of  the  six  rules  considered
here—what  we  have  called  coexistence  of  dynamics—was  never  re-
ferred  to  for  any  one-dimensional  CA.  It  is  our  conviction  that  when
periodic  conditions  are  used,  this  phenomenon  can  only  occur  if  the
automata have dimension higher than one.  

We  considered  the  family  of  one-dimensional  Boolean  four-neigh-
bor  peripheral  automata  with  periodic  boundary  conditions.  It  is  a
simple  matter  to  show  that  there  are  16704  dynamically  nonequiva-
lent  such  automata.  A  detailed  study  conducted  for  these  rules  en-
abled  us  to  conclude  that  in  what  concerns  the  proportion  of  initial
configurations  that  evolve  to  a  homogeneous  final  state,  all  of  these
automata still have a behavior similar to ECAs: this proportion either
tends  to  one  or  to  zero.  This  reinforces  our  belief  that  coexistence
does  not  appear  in  one-dimensional  automata.  To  illustrate  this  in  a
different  way,  we  considered  again  the  two-dimensional  rule  59624
and  computed  approximations  to  rh  for  rectangular  systems  of  size

n⨯15, with increasing values of n. The results, given in Figure 9, sup-
port  our  conviction:  as  the  rectangles  become  thinner,  that  is,  as  the
two-dimensional  systems  get  closer  to  a  line,  the  relative  size  of  ℬh

tends to zero. 

� �� ��� ���
���

���

���

���

���

���

Figure 9.  Rule  59624–Proportion  of  initial  configurations  that  evolved  to  a
homogeneous final state, as a function of n, for systems of size n⨯15; number
of initial configurations used: 20 000.  

Conclusion7.

In this paper we studied in detail six rules from the family of Boolean
square cellular automata (CAs) with a four-neighbor peripheral neigh-
borhood  and  periodic  boundary  conditions:  rules  383,  575,  831,
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43240,  59624,  and  60072.  We  concluded,  with  statistical  support,
that all these rules have a common feature: if we consider CAs whose
side length n is of fixed parity (always odd or always even), then as n
increases,  the  proportion  of  configurations  that  evolve  to  a  final  ho-
mogeneous  state  tends  to  a  constant  value  that  is  neither  one  nor
zero.  Moreover,  this  constant  value  ℓh  is  the  same  for  all  the  rules,

with  the  exception  of  rule  43240,  for  which  it  can  be  considered  as
equal to one-half of the value for the others.  

Some comparisons made on the basins of attraction of the homoge-
neous  final  state  of  the  six  rules  led  us  to  conjecture  the  equality  of
these sets for some of the rules. 

We  also  described  briefly  results  obtained  for  a  family  of  one-
dimensional  CAs  with  a  neighborhood  with  a  radius  larger  than
elementary  cellular  automata  (ECAs),  more  precisely,  with  a  four-
neighbor  peripheral  neighborhood.  These  results  support  our  conjec-
ture  that  for  automata  with  periodic  conditions,  the  phenomenon
exhibited  by  the  rules  here  studied—what  we  called  coexistence  of
dynamics—cannot occur for one-dimensional automata. 

Finally,  we  would  like  to  mention  that  some  work  with  the  family
of  two-dimensional  CAs  with  a  full  five-cell  von  Neumann  neighbor-
hood  has  already  been  conducted;  the  preliminary  results  obtained
seem  to  indicate  that  in  this  wider  family  of  automata,  there  exist
rules  showing  coexistence  of  dynamics  with  values  of  ℓh  different

from the ones obtained in this paper. 

Acknowledgments

This  work  was  partially  supported  by  FEDER  funds  through  Pro-
grama Operacional Factores de Competitividade – COMPETE and by
national  funds  through  FCT  –  Fundação  para  a  Ciência  e  Tecnologia
within  the  remits  of  projects  PEst-OE/MAT/UI0013/2014  and
FCOMP-01-0124-FEDER-037268 (PEst-C/EGE/UI3182/2013). 

We  would  like  to  thank  the  anonymous  referee  for  many  valuable
suggestions. 

Appendix

Tables  A.

In  this  appendix  we  present  the  tables  with  approximate  values  for
the  relative  size  of  ℬh  for  each  of  the  rules  studied.  Each  table  con-

tains  the  proportion  rh  of  initial  configurations  that,  from  a  total  of

20 000000  initial  configurations,  led  to  a  homogeneous  final  state,
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for different values of n. 

n r

h n r


h

21 0.63250405 47 0.63198800
23 0.63246340 49 0.63219220
25 0.63257230 51 0.63238375
27 0.63243530 53 0.63223945
29 0.63238665 55 0.63219555
31 0.63244675 57 0.63210865
33 0.63214195 59 0.63226600
35 0.63227580 61 0.63222105
37 0.63234710 63 0.63212150
39 0.63230295 65 0.63202320
41 0.63226475 67 0.63224535
43 0.63235485 69 0.63204095
45 0.63235005 71 0.63226570

n r

h n r


h

22 0.13112230 48 0.13108145
24 0.13118795 50 0.13104350
26 0.13117710 52 0.13120515
28 0.13112705 54 0.13111365
30 0.13107245 56 0.13105605
32 0.13107825 58 0.13111595
34 0.13110725 60 0.13102290
36 0.13119645 62 0.13101170
38 0.13110935 64 0.13107045
40 0.13096805 66 0.13101770
42 0.13106870 68 0.13121885
44 0.13116430 70 0.13099020
46 0.13108720 72 0.13127985

Table A.1 Rule 383.    

n r

h n r


h

21 0.63255560 47 0.63204770
23 0.63264620 49 0.63226580
25 0.63249625 51 0.63229275
27 0.63240225 53 0.63241935
29 0.63254050 55 0.63218600
31 0.63249610 57 0.63203740
33 0.63241480 59 0.63234845
35 0.63225965 61 0.63197705
37 0.63223845 63 0.63221705
39 0.63223220 65 0.63210390
41 0.63247520 67 0.63212325
43 0.63229085 69 0.63227155
45 0.63215455 71 0.63216015

n r

h n r


h

22 0.13122340 48 0.13112200
24 0.13121510 50 0.13108150
26 0.13117635 52 0.13113135
28 0.13118605 54 0.13112360
30 0.13096990 56 0.13111380
32 0.13108475 58 0.13119885
34 0.13120600 60 0.13110360
36 0.13105795 62 0.13122660
38 0.13113740 64 0.13103100
40 0.13120780 66 0.13104330
42 0.13107560 68 0.13108625
44 0.13115865 70 0.13106995
46 0.13107365 72 0.13105850

Table A.2 Rule 831.    
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n r

h n r


h

21 0.63250695 47 0.63234350
23 0.63248935 49 0.63227795
25 0.63238374 51 0.63228580
27 0.63229035 53 0.63208580
29 0.63247490 55 0.63223650
31 0.63231077 57 0.63218545
33 0.63222110 59 0.63220850
35 0.63251685 61 0.63221720
37 0.63224725 63 0.63218720
39 0.63244120 65 0.63197130
41 0.63225780 67 0.63202405
43 0.63233500 69 0.63205270
45 0.63242970 71 0.63233240

n r

h n r


h

22 0.13115760 48 0.13113155
24 0.13112455 50 0.13100860
26 0.13119370 52 0.13112765
28 0.13118475 54 0.13115020
30 0.13123490 56 0.13107415
32 0.13122870 58 0.13105255
34 0.13113710 60 0.13115345
36 0.13114210 62 0.13101470
38 0.13104565 64 0.13102720
40 0.13109645 66 0.13107345
42 0.13120980 68 0.13106574
44 0.13103325 70 0.13108375
46 0.13103140 72 0.13101260

Table A.3 Rule 59624.    

n r

h n r


h

21 0.63217445 47 0.63227700
23 0.63237285 49 0.63225515
25 0.63233800 51 0.63222485
27 0.63220575 53 0.63217250
29 0.63230225 55 0.63214215
31 0.63225480 57 0.63229200
33 0.63225355 59 0.63210050
35 0.63213885 61 0.63193885
37 0.63228220 63 0.63206735
39 0.63232575 65 0.63218455
41 0.63203060 67 0.63221050
43 0.63252560 69 0.63218965
45 0.63209800 71 0.63217625

n r

h n r


h

22 0.13135765 48 0.13113545
24 0.13122415 50 0.13105940
26 0.13123890 52 0.13107930
28 0.13110165 54 0.13105940
30 0.13119760 56 0.13114325
32 0.13101015 58 0.13113860
34 0.13107535 60 0.13117050
36 0.13111145 62 0.13102565
38 0.13114490 64 0.13112420
40 0.13117940 66 0.13103985
42 0.13116205 68 0.13110645
44 0.13095880 70 0.13113585
46 0.13105190 72 0.13112365

Table A.4  Rule 60072.    
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n r

h n r


h

17 0.31641345 53 0.31591780
19 0.31626700 55 0.31604220
21 0.31628450 57 0.31609890
23 0.31638440 59 0.31615095
25 0.31611410 61 0.31598130
27 0.31616185 63 0.31627940
29 0.31638995 65 0.31593965
31 0.31602650 67 0.31619210
33 0.31613925 69 0.31608420
35 0.31613905 71 0.31584750
37 0.31614435 73 0.31618065
39 0.31607500 75 0.31603735
41 0.31603275 77 0.31619285
43 0.31610125 79 0.31609550
45 0.31615545 81 0.31624085
47 0.31621440 83 0.31596995
49 0.31603735 85 0.31600945
51 0.31595295 87 0.31617575

n r

h n r


h

18 0.06554450 54 0.06549985
20 0.06548615 56 0.06553715
22 0.06565500 58 0.06551935
24 0.06561730 60 0.06560750
26 0.06562320 62 0.06559645
28 0.06566555 64 0.06553250
30 0.06565455 66 0.06560865
32 0.06554155 68 0.06551425
34 0.06554945 70 0.06553820
36 0.06557370 72 0.06553110
38 0.06558840 74 0.06551845
40 0.06551125 76 0.06546320
42 0.06556440 78 0.06549560
44 0.06554360 80 0.06561705
46 0.06565425 82 0.06554765
48 0.06545670 84 0.06543905
50 0.06553815 86 0.06553950
52 0.06564255 88 0.06546545

Table A.5 Rule 43240.    

n r

h n r


h

21 0.63246910 47 0.63219795
23 0.63246590 49 0.63234765
25 0.63236015 51 0.63210440
27 0.63227290 53 0.63209875
29 0.63234905 55 0.63219755
31 0.63232840 57 0.63220200
33 0.63234180 59 0.63207400
35 0.63228955 61 0.63219545
37 0.63215325 63 0.63209600
39 0.63227005 65 0.63205750
41 0.63234055 67 0.63200390
43 0.63224780 69 0.63234930
45 0.63217235 71 0.63218040

n r

h n r


h

22 0.13115020 48 0.13111355
24 0.13104800 50 0.13117210
26 0.13119405 52 0.13112515
28 0.13102370 54 0.13111180
30 0.13117040 56 0.13122840
32 0.13115590 58 0.13115140
34 0.13122000 60 0.13118720
36 0.13104350 62 0.13103665
38 0.13104515 64 0.13110000
40 0.13101875 66 0.13112140
42 0.13113825 68 0.13098895
44 0.13108920 70 0.13118970
46 0.13115630 72 0.13114740

Table A.6 Rule 575.    
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