
Hash Function Design Based on Hybrid

Five-Neighborhood Cellular Automata and

Sponge Functions

Anita John
Jimmy Jose

Department of Computer Science and Engineering
National Institute of Technology Calicut
India

In today’s world of pervasive computing, all the devices have become
smart. The need for securing these devices becomes a need of the hour.
The traditional cryptographic algorithms will not be ideal for small
devices, and this opens a new area of cryptography named lightweight
cryptography, which focuses on the implementation of cryptographic
algorithms in resource-constrained devices without compromise in secu-
rity. Cryptographic hash functions enable detection of message tamper-
ing by adversaries. This paper proposes a lightweight hash function
that makes use of sponge functions and higher radii hybrid cellular
automata (CAs). The proposed hash function shows good crypto-
graphic properties as well as collision resistance and serves as an ideal
hash function for lightweight applications.

Keywords: cryptographic hash functions; cellular automata; 5-neighbor-
hood hybrid cellular automata; sponge functions; omegaflip

permutation

Introduction1.

The last few decades saw a technological boom, and almost all
devices are connected to the internet. While the devices became smart,
the need for secure data storage and transmission gained more impor-
tance. Cryptographic hash functions are used to ensure data integrity
and prevent data forgery. They are one-way functions that produce a
message digest or hash digest from the input message. The hash digest
serves as a unique fingerprint of the message since this short and
secure code reveals any tampering made to that message. Most of the
earlier cryptographic hash functions like MD5 and SHA made use of
Merkle–Damgård [1, 2] and Davies–Meyer [3] schemes in their
designs. But this era of pervasive computing demands lightweight algo-
rithms that can be used in resource-constrained devices. The biggest
challenge in the design of lightweight hash functions is the tradeoff

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

between security and memory requirements. The sponge functions
and cellular automata (CAs) have marked their places in lightweight
applications. We proposed a hash function using three-neighborhood
(3-N) hybrid CAs and sponge functions in [4]. In this paper, we
replace the 3-N cellular automaton (CA) with a higher-radii
hybrid CA.

The paper is organized as follows: Section 2 discusses CAs, five-
neighborhood (5-N) CAs and sponge functions. Section 3 provides
the state of the art in sponge function– and CA-based hash functions,
followed by the working of the proposed hash function. Sections 4
and 5 discuss the design rationale and security analysis of the hash
function, followed by conclusions in Section 6.

Preliminaries2.

This section gives a brief description of CAs and sponge functions,
which serve as the building blocks of our hash function.

Introduction to Cellular Automata2.1

A CA can be viewed as a lattice of cells that stores binary values. The
CA will be initialized with 0s and 1s. The values in the cells get
updated at every clock cycle based on a transition function called the
CA rule. During each cycle, the value of a cell gets updated based on
the values of its neighboring cells, which serve as the input to the CA
rule. So a dependency exists among the neighboring cells in CAs.
Every cell gets updated in parallel during each clock cycle. CA rules
can be classified as linear and nonlinear. The linear rules use only the
XOR operation in their combinational logic, and nonlinear rules use
AND/OR operations in addition to the XOR operation in their logic.
In general, the number of neighboring cells n that are involved in a
CA rule is given by n  2r + 1, where r is the radius of the neighbor-
hood. CAs can further be classified as uniform and hybrid based on
whether all the cells use the same CA rule or different CA rules.

The boundary condition is another factor that decides the proper-
ties of the CA. The boundary conditions decide the leftmost and right-
most neighbor cells of the CA. This paper uses the one null boundary
condition, which takes 1 as the neighbor of the leftmost cell and 0 as
the neighbor of the rightmost cell. This boundary condition was
found to make the hybrid rule set cryptographically robust [5].
This motivated us to use one null boundary condition. The parallel
execution of CAs makes them ideal for lightweight applications. The
neighborhood radii of the CA have an impact on the strength of the

172 A. John and J. Jose

Complex Systems, 32 © 2023

CA when used in secure applications. Most of the work based on CAs
used 3-N CAs, and recently some applications have used 5-N
CA rules.

Five-Neighborhood Cellular Automaton Rules2.1.1

Most of the work related to CAs has used the elementary (3-N) CA.
The rate of diffusion of CA-based pseudorandom number generators
(PRNGs) increases with the increase in neighborhood radii [6]. The
cryptographic properties of bipermutive rules of radius two were
explored in [6] and a study of 5-N linear hybrid CAs is in [7]. A set of
cryptographically suitable 5-N CA rules was selected based on these
studies. The rule numbers are taken from [6]. Figure 1 shows the
neighbors of a cell si in 5-N CA.

Si-2 Si-1 Si Si+1 Si+2

Figure 1. Neighboring cells in five-neighborhood CA.

The algebraic normal form (ANF) of the 5-N CA rules used in our
hash function is

Rule 1721342310: si-2 ⊕ si-1 ⊕ si+1 ⊕ si+2

Rule 2523490710: si-2 ⊕ si-1 ⊕ si ⊕ si+1 ⊕ si+2

Rule 1452976485: si-2 ⊕ si-1 · si ⊕ si-1 · si+1 ⊕ si ⊕ si+2 ⊕ 1

Rule 1520018790: si-2 ⊕ si-1 · si+1 ⊕ si · si+1 ⊕ si+1 ⊕ si+2

where si-2 and si-1 represent the second-left and left neighbor of si,
respectively. si+2 and si+1 represent the second-right and right neigh-
bor of si, respectively. ⊕ represents the XOR operation and · repre-
sents the AND operation.

Rules 1721342310 and 2523490710 are 5-N linear CA rules and
rules 1452976485 and 1520018790 are 5-N nonlinear CA rules.
Here, we have followed a hybrid rule set consisting of linear and non-
linear 5-N CA rules. This paper follows the order of rules in the rule
set from the CSHR algorithm that was proposed for elementary CA
rules in [5]. In [8], Sandip et al. proposed a cryptographically robust
hybrid rule set. Any cryptographic application needs to have proper-
ties like algebraic degree, nonlinearity and correlation immunity. The
nonlinear CA rules help achieve algebraic degree and nonlinearity,
but they lack correlation immunity. Linear CA rules, on the other
hand, are correlation immune, but lack algebraic degree and nonlin-
earity properties. So the linear and nonlinear CA rules, when used

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 173

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

together, are likely to give good cryptographic properties, and an
analytical argument is provided in [8] to show that the introduction
of linear rules helps reduce correlation after some iterations. The
paper considered five rule sets, where every rule set contained the
nonlinear CA rule 30, which showed good pseudorandom properties
in addition to balance. These rule sets incorporated rule 30 with sev-
eral other linear and nonlinear elementary CA rules and analyzed the
cryptographic suitability of all these rule sets using a new test called
the d-monomial test.

In [5] Kaushik et al. proposed an algorithm for generating crypto-
graphically suited hybrid rules (CSHR) using elementary CA rules.
The same algorithm was extended to 5-N CAs to construct a rule set
using cryptographically suitable 5-N CA rules. The rule set thus
formed is

〈1452976485, 1721342310, 2523490710, 1452976485,
1520018790, 1452976485, 1721342310, 2523490710〉.

These rules are expected to exhibit good algebraic degree, nonlinear-
ity and period based on the intuition that the cryptographic properties
will become better with the increase in neighborhood radii. This was
seen after their use in the CA-based stream ciphers CARPenter [9]
and Pentavium [10].

Sponge Functions in the Design of Cryptographic
Hash Functions

2.2

Cryptographic hash functions are one-way functions that serve as a
short compressed string derived from the message that depends on all
the bits of the message in an unpredictable manner. They take an arbi-
trary-length input and produce a fixed-length output. Any crypto-
graphic hash function must satisfy the following properties: collision
resistance, preimage resistance and second preimage resistance. The
hash functions MD5 [11] and SHA [12] used during the early 1980s
and late 1990s made use of compression functions iteratively. They
were later cryptanalyzed and found to be insecure [13]. NIST called
for an open competition for a new and efficient family of hash func-
tions named SHA-3, and in 2012 Keccak [14] was declared the
winner.

While SHA was built on the Merkle–Damgård construction, Kec-
cak was based on a new design approach named sponge functions
developed by Bertoni et al. [15]. In sponge functions, the compression
function is replaced by an internal transformation function. The input
message is first absorbed into the sponge through a series of transfor-
mations and then squeezed out to release the hash digest, hence the
name “sponge” functions. These operations have two phases: the

174 A. John and J. Jose

Complex Systems, 32 © 2023

absorbing phase and the squeezing phase, and the same transforma-
tion function is used in both phases. The input to the transformation
function is split into r and c, where r forms the bit rate and c forms
the capacity. The input message is partitioned into blocks of r bits.
The smaller the value of r, the larger the number of message blocks
getting diffused into the final hash digest will be, and the larger the
number of internal transformations will be. This improves the
strength of the hash function at the expense of more execution time.
The security level that can be attained using sponge functions is depen-
dent on c [16].

Working of Sponge Function2.2.1

The input message is preprocessed and divided into blocks of r bits.
Each of the message blocks passes through the following phases:

Absorbing phase. This phase absorbs all the message blocks into

the sponge. We define an initial state of b zeros where b  r + c. Each

r-bit message block is XORed with r bits of the b state bits and is sub-
jected to the internal transformation function, which executes for nr
rounds. The output of the first transformation function serves as the
state bits for the next iteration of the transformation function. The
second r-bit message block will be XORed with r bits of this state and
executes for the next nr rounds. This continues until all the message

blocks get XORed. So if an input message is divided into d blocks of r
bits during the preprocessing phase, the transformation function will

be invoked d times, and during each invocation, it executes for nr
rounds. The number of transformation steps in the absorbing phase
depends on the value of r; the smaller the value of r, the larger the
capacity c of the sponge, and in turn the larger the number of itera-
tions of the transformation function.

The absorbing phase ensures that all the bits of the input message
are dispersed well among themselves, which ensures the diffusion
of bits. At the end of this phase, all the message blocks will
be “absorbed” into the sponge. This marks the end of the
absorbing phase.

Squeezing phase. This phase “squeezes out” the hash digest. This
phase makes use of the same transformation function F used in the
absorbing phase except the XORing of the message block. The output
of the absorbing phase undergoes transformation of nr rounds, and r
bits will be squeezed out. This continues until the required length of
the hash digest has been squeezed out. The length of the hash digest
will be a multiple of r. The sponge function provides the flexibility of
truncating the same to get the desired length, which is a feature
unique to sponge functions and was not provided by the ear-
lier schemes.

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 175

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

Proposed Hash Function Based on Hybrid Five-Neighborhood

Cellular Automata and Sponge Functions
3.

Hash Functions Based on Cellular Automata and Sponge

Functions: An Overview
3.1

The use of CAs in cryptographic hash functions had been proposed
by Damgård in [2]. This was cryptanalyzed by Daemen [17] and he
proposed Cellhash, which made use of CAs with periodic boundary
conditions. Several other CA-based hash functions were proposed by
Mihaljevic et al. [18], Hanin et al. [19, 20], Jamil et al. [21] and
Sadak et al. [22]. All the hash functions followed the Merkle–
Damgård construction using hybrid CAs inside the compression
function.

Sponge functions have been used in lightweight applications. Some
of the sponge function–based hash functions include Quark [23],
SPONGENT [24] and PHOTON [25]. A detailed description of all
the lightweight cryptographic hash functions is found in B. Hammad
et al. [26]. The strength of sponge functions can be enhanced by
strengthening the internal transformation function. This motivated
researchers to incorporate the lightweight primitive CA into the func-
tion. Keccak [14], the SHA-3 winner, uses a CA-incorporated sponge
function that affects the two neighborhood cells of each cell in its χ

transformation. Another CA-infused sponge function was used in the
CASH [27] family of hash functions. CASH made use of tweakable
parameters, which makes it useful for different applications. Most of
the CA-based sponge function constructions use 3-N CA in uniform
and linear hybrid versions. A 3-N hybrid rule set together with the
omegaflip permutation is used in [4]. The use of a higher-radii CA
inside the sponge function is the first of its kind.

In this paper, we have replaced the 3-N hybrid rule set used in [4]
with a 5-N hybrid rule set, along with a permutation layer that makes
use of the omegaflip permutation [28]. The use of 5-N CA rules
together with permutation should increase the strength of the internal
function and hence add to the strength of the hash function against
attacks. The values of r and c can be decided based on the level of
security and memory requirements of the application. In this paper,
we use r  92 and c  132. Figure 2 shows the structure of the hash
function.

Working of the Proposed Hash Function3.2

The proposed hash function proceeds through the following steps:

Preprocessing phase. This phase includes padding and partitioning
of the input message. The padding step makes the length of the arbi-
trarily long message a multiple of r. The 64-bit representation of the
input message length preceded by “10” serves as the padding bits.

176 A. John and J. Jose

Complex Systems, 32 © 2023

This also helps enhance the collision resistance property. The padded
message is then partitioned into r-bit blocks M1, M2, …, Mi.

Absorbing and squeezing phase. The absorbing phase proceeds by
applying the internal transformation function on each message block

Mi. The state bits of length b are initially set to all zeros. The first mes-

sage block M1 is XORed with the r bits of the b state bits and these
XORed r bits together with c bits will be transformed by the internal
transformation function. The second message block M2 is XORed
with the r bits of the output of the first nr rounds of the transforma-
tion function. This continues for all remaining blocks. After the pro-
cessing of all message blocks, an additional round of transformation
without any XOR input is done to prevent sliding attacks on the hash
function. The block diagram of the internal function F of the sponge
function is shown in Figure 3.

Figure 2. Structure of hash function.

Figure 3. Internal function.

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 177

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

Working of the Internal Transformation Function3.2.1

There are two steps in the transformation function: permutation and
CA-based transformation. We have used the omegaflip permutation
to permute the state bits. The order of performing the omega or flip
operation is decided by the first 16 bits of the message block Mi. The
entire omegaflip permutation is dependent on the message. This is fol-
lowed by the CA-based transformation, where the 5-N hybrid CA
rules are applied on the permuted state bits. The CA evolves through
eight cycles during each round of the internal transformation function
and there are two rounds (i.e., nr  2) for the internal function.

The output from the absorbing phase undergoes two rounds of the
internal transformation function during the squeezing phase. This
function resembles the function in the absorbing phase except the
XOR operation with the message block. The r bits from this function
are “squeezed out” to form part of the hash digest. During this phase,

the b bits of the state are taken as the control bits for the omegaflip
permutation. The number of iterations of the internal transformation
function depends on the expected size of the hash digest. The length
of the hash digest is a multiple of the bit-rate r. If the length exceeds
the desired length, it can be truncated to the required length. The
steps of the hash function are described in Algorithm 1.

Input: Message M

Output: 256-bit message digest

begin

Divide the message M of length L into blocks M1, M2, …Mn of r bits.

If L is not a multiple of r, pad the message with “10” followed by the 64-

bit representation of the message length until L becomes a multiple of r.

Initialize a block b  r || c with zeros, r0  0 and c0  0.

//Absorbing phase

for i  1 to n do
// Single round of internal transformation

ri  Mi ⊕ ri-1

ci  ci-1
bi  omega flip (bi) //Permute the entire b block using omegaflip permuta-

tion

bi  CA5(bi) // Apply the 5-N hybrid CA rules to each of the cells in that
order

end for
Add a Null round, that is, one round of internal transformation without

XORing with any message block.

bn  rn || cn will be the output after the absorbing phase and this will be
given as input to the squeezing phase.

178 A. John and J. Jose

Complex Systems, 32 © 2023

// Squeezing phase
Repeat the steps until 256-bit hash digest is squeezed out.

for i  (n + 1) to (n + 3) do

bi  omega flip (bi)

bi  CA5 (bi)
Append ri to the final hash digest.
end for

Truncate the final output to get the final 256-bit message digest.
end

Algorithm 1. Hash function using 5-N CAs and sponge function.

Design Rationale for Using Cellular Automata in

Sponge Functions
4.

While most of the earlier cryptographic hash functions followed the
Merkle–Damgård (MD) scheme, the last decade ushered in the need
for lightweight functions in place of the traditional compression func-
tion. This helped to thwart the length extension attacks and multicolli-
sion attacks prevalent on MD schemes. The idea of integrating sponge
functions and CAs into the design of our new hash function evolved
as a result of this. The next aim was to add to the strength of the inter-
nal function without compromising the lightweight property of a
sponge function. This resulted in the combination of higher-radii
hybrid CAs and sponge functions.

The motivation for using the sponge function in our design is:

resemblance to random oracle 1.

flexibility in the length of the hash digest 2.

low memory requirements 3.

absence of feed-forward mechanism 4.

Suitability of Five-Neighborhood Cellular Automata inside a

Sponge Function
4.1

Some properties of CAs that make them an ideal primitive for secure
and lightweight hash functions follow.

Chaotic Nature4.1.1

The CA rules were classified into four classes based on the nature of
patterns generated by the rules during time evolution. This shows the
statistical behavior of the rules [29]. Rules 30, 90 and 150 belong to

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 179

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

class 3 and generate chaotic patterns, hence are ideal for pseudoran-
dom number generation. The 5-N CA rules selected in the rule set
used in our hash function are bipermutive rules. These rules are as
good as the elementary rule 30 and in addition, they satisfy the prop-
erty of chaos [6]. This chaotic nature of the CA rules makes them
ideal in the design of hash functions.

Hardware Efficiency and Parallelism4.1.2

All the CA operations execute in parallel and involve only simple logi-
cal operations. This makes CAs suitable in software and hardware
and an ideal lightweight primitive in resource-constrained devices and
applications. Hence CA-based hash functions are likely to gain more
focus in internet of things (IoT) devices, blockchain and elsewhere.

The diffusion rate and other cryptographic properties of the
internal transformation function can be enhanced by the use of higher-
radii CA rules. The properties of sponge function–based hash func-
tions solely depend on the internal transformation function. The hash
digest produced from a message has to be dependent on all the bits of
the message in order to improve its diffusion rate and collision resis-
tance. This motivated us to introduce 5-N linear and nonlinear rules
in place of elementary CA rules. The difference between 3-N and 5-N
CA rules is the number of bits that get involved in the state update
function of a single cell; while 3-N rules depend on 2q + 1 cells in a

single iteration, 5-N CA rules depend on 4q + 1 cells, where q denotes

the number of cycles.
We have used a hybrid rule set that consists of linear and nonlinear

5-N CA rules. The use of 5-N CA rules improves the diffusion rate of
the CA, since during each cycle, the number of bits involved in the
state update function of the CA is more when compared to 3-N CAs.
Cryptographic hash functions are expected to have good crypto-
graphic properties and collision resistance and produce a hash digest
that resembles a random number. The application of higher-radii
hybrid CA rules and permutation in a single internal round of the
sponge function ensures the dependency of all the bits in a single
block of the message. The absorbing phase ensures that the bits
among different message blocks are also mixed well. This high depen-
dency of all the message bits with the output is the major strength of
the hash function against probable collision attacks.

Security and Performance Analysis5.

The security criteria to be satisfied by cryptographic hash functions
that produce an n-bit hash digest are:

180 A. John and J. Jose

Complex Systems, 32 © 2023

Determinism. Each input message should generate the same hash digest
whenever it is subjected to the same hash function.

1.

Collision resistance. It should be computationally infeasible (in less

than 2n/2 work) to find any two random messages that produce the
same hash digest.

2.

Preimage resistance. Given only the hash value, it should not be possi-

ble to find a message that generates that hash in less than about 2n

work.

3.

Second preimage resistance. Given a message m and a hash function H,
it should not be possible to find another message m′

 that yields the

same hash digest in less than about 2n work.

4.

These properties were theoretically evaluated to assess the strength
of the proposed hash function against cryptanalytic attacks.

Confusion and Diffusion Effect5.1

Shannon’s confusion and diffusion were defined for encryption algo-
rithms [30]. The definitions of confusion and diffusion need to be
modified in the case of cryptographic hash functions to make them
suitable for the functions’ design. Confusion ensures that the relation-
ship between the input message and the hash digest is unpredictable.
The diffusion property of the hash function ensures that each of the
input bits is dispersed into the final hash digest such that a change in
a single input bit gets reflected in the hash digest in terms of the num-
ber of altered bits.

In order to assess these properties of our proposed hash function,
we considered a random message and computed its hash digest. A
variant of the original message was made by changing a random bit,
and its hash digest was also computed. The hash digests thus calcu-
lated were compared for the number of bits that were flipped. This
was done for 100 messages, and in all the cases, more than half of the
bits of the hash digest were altered, even with a single bit change.
This property is called the avalanche effect.

Figure 4 illustrates the avalanche effect of the proposed hash func-
tion. The x axis represents the number of bits changed in the input
and the y axis represents the Hamming weight. The graph shows the

number of bits altered in the hash digest when small changes are
made in the input messages. In all cases, more than half the bits of the
hash digest were altered.

A sample of the hash digest computed for an input message and its
variant is as follows:

Input message: This is a new hash function

Hash digest: F0D060228EF61CAF952517E5FC21DC-
CD1E7622E423ABD319E041012032F95A43

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 181

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

We now add a “.” at the end of the previous sentence.

Input message: This is a new hash function.

Hash Digest: B91136FDED5E68C1F030A2E6E2E0521CA8C55F-
B876506721A307D2B7303262A2

Figure 4. Avalanche effect.

Theoretical Security Analysis5.2

The use of sponge functions in the design of hash functions should be
enough to claim collision resistance, preimage resistance and second
preimage resistance, since sponge functions behave like a random ora-
cle. The use of a CA and permutation in the internal transformation
function of a sponge function make it stronger. The security of a hash
function relies on the difficulty for an adversary to find another mes-
sage with the same hash digest with or without the knowledge of the
input message. This attempt will be thwarted firsthand, since the hash
digest is of length 256 bits. As seen in the previous example, a single
change in the input is well reflected in the output, which adds to the
resistance of collision. Moreover, the use of 5-N CAs adds to the diffu-
sion of message bits into the hash digest, since the number of bits
involved during each cycle is more when compared to 3-N CAs.

Given a hash digest output of size n, we need to perform 2n opera-

tions to find a preimage or a second preimage and 2n/2 operations to
find a collision [2]. During the CA-based transformation in the inter-
nal function, each bit becomes dependent on 65 neighboring bits at
the end of 16 CA cycles (8 CA cycles  2 rounds), since we are using
5-N CAs and each bit is dependent on 4q + 1 neighboring bits where

q is the number of cycles of the CA. The hash digest is produced after

many rounds of internal transformation involving CA transformation
and permutation during the absorbing and squeezing phases. This

182 A. John and J. Jose

Complex Systems, 32 © 2023

ensures the diffusion of input into the resultant hash digest and hence
resistance to preimage, second preimage and collision attacks.

Randomness Test Using NIST Statistical Test Suite5.3

Ideally, a hash digest should be a (pseudo) random number, and this
randomness property is necessary for its cryptographic applications.
In order to assess the randomness quality of the generated hash
digest, we have used the NIST Statistical Test Suite [31]. The NIST
test suite consists of 15 empirical tests based on statistical hypothesis
testing. The results of these tests are shown in the form of P-values.
Each P-value is the probability that a perfect random number genera-
tor would have produced a sequence with the same randomness qual-
ity as the sequence that was tested, or with less randomness quality
than the sequence. A P-value of 0 indicates nonrandomness and a P-
value of 1 indicates perfect randomness [32].

The input to the NIST test suite is generated by applying the hash
function H on an initial seed S that is incremented by 1. That is, we
calculate H(S), H(S + 1) and so on until we are able to concatenate
them to get a 100 Mb sequence. The binary stream generated by the
hash function showed good P-values and pass rates for the relevant
tests for hash functions and is shown in Table 1. Assessing the ran-
domness quality of the hash digest affirms the cryptographic strength
of the hash function against known attacks.

SI. No Test Name P-value Status

1 frequency test 0.319084 pass

2 block frequency test 0.162606 pass

3 cumulative sums test 0.145326 pass

4 runs test 0.657933 pass

5 longest runs test 0.096578 pass

6 rank test 0.350485 pass

7 FFT test 0.779188 pass

8 non-overlapping template test 0.779188 pass

9 overlapping template test 0.048716 pass

10 serial 0.058984 pass

11 linear complexity 0.289667 pass

Table 1. NIST test results.

The proposed hash function has been implemented in the C pro-
gramming language, while the performance experiments were done
on an Intel Core i5 (2.3 GHz) microprocessor. The speed of the hash

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 183

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171

function is shown in Table 2. The size of the internal state bits of the
sponge function and the values of r and c are factors that affect the
speed of the hash function. So here we have a tradeoff among secu-
rity, speed and resource requirements. In practical applications, 3-N
CA-based hash functions will be preferable if the hardware is limited.
The use of 5-N CAs helps to reduce the execution time, since the diffu-
sion of bits can be achieved in a smaller number of cycles than 3-N
CAs. A more optimized implementation will definitely help reduce the
memory requirements and also increase the speed.

Parameter 3-N 5-N

execution time (in sec) 171.74 118.492

processing speed (Mb/sec) 0.0569 0.0821

average Hamming distance 134 130

number of cycles 13 8

Table 2. Comparison of speed of 5-N and 3-N hybrid CAs.

Conclusion6.

In this paper, a cryptographic hash function based on sponge func-
tions and higher-radii hybrid cellular automata (CAs) has been
proposed. The design has brought together the best cryptographic
primitives for lightweight applications. We have used cryptographi-
cally suitable linear and nonlinear five-neighborhood (5-N) cellular
automaton (CA) rules and omegaflip permutation in the internal func-
tion of the sponge function construction. We have analyzed the colli-
sion resistance properties of the hash function and found it to
perform well. In addition, we checked the randomness properties of
the hash digest using an NIST test suite and it showed statistical simi-
larity with a random number, which adds to the strength of the func-
tion. There is a tradeoff between security and memory requirements,
and the use of higher-radii CA rules can be decided based on that. As
a future direction, we plan to implement this in hardware and also to
replace the permutation function used in the internal transformation
with a CA-based S-box so as to strengthen the internal function.

References

[1] R. C Merkle, “One Way Hash Functions and DES,” in Advances in
Cryptology (CRYPTO ’89) (G. Brassard, ed.), New York: Springer,
1989 pp. 428–446. doi:10.1007/0-387-34805-0_40.

184 A. John and J. Jose

Complex Systems, 32 © 2023

https://doi.org/10.1007/0-387-34805-0_40

[2] I. B. Damgård, “A Design Principle for Hash Functions,” in Advances in
Cryptology (CRYPTO ’89) (G. Brassard, ed.), New York: Springer,
1989 pp. 416–427. doi:10.1007/0-387-34805-0_39.

[3] B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions Based on
Block Ciphers: A Synthetic Approach,” in Advances in Cryptology: 13th
Annual International Cryptology Conference (CRYPTO’93), Santa
Barbara, CA (D. R. Stinson, ed.), Berlin, Heidelberg: Springer, 1993
pp. 368–378. doi:10.1007/3-540-48329-2_31.

[4] A. John, A. Reji, A. P. Manoj, A. Premachandran, B. Zachariah and
J. Jose, “A Novel Hash Function Based on Hybrid Cellular Automata
and Sponge Functions,” in Proceedings of First Asian Symposium on
Cellular Automata Technology, Kolkata, India (S. Das and G. J. Mar-
tinez, eds.), Singapore: Springer Nature, 2022 pp. 221–233.
doi:10.1007/978-981-19-0542-1_16.

[5] K. Chakraborty and D. R. Chowdhury, “CSHR: Selection of Crypto-
graphically Suitable Hybrid Cellular Automata Rule,” in Cellular
Automata (ACRI 2012) Santorini Island, Greece (G. Ch. Sirakoulis and
S. Bandini, eds.), Berlin, Heidelberg: Springer, 2012 pp. 591–600.
doi:10.1007/978-3-642-33350-7_61.

[6] A. Leporati and L. Mariot, “Cryptographic Properties of Bipermutive
Cellular Automata Rules,” Journal of Cellular Automata, 9(5–6), 2014
pp. 437–475.

[7] S. Maiti and D. Roy Chowdhury, “Study of Five-Neighborhood Linear
Hybrid Cellular Automata and Their Synthesis,” in Mathematics and
Computing, Third International Conference (ICMC 2017), Haldia,
India (D. Giri, R. N. Mohapatra, H. Begehr and M. S. Obaidat, eds.),
Singapore: Springer, 2017 pp. 68–83.
doi:10.1007/978-981-10-4642-1_7.

[8] S. Karmakar, D. Mukhopadhyay and D. Roy Chowdhury, “d-monomial
Tests of Nonlinear Cellular Automata for Cryptographic Design,” in
Cellular Automata: 9th International Conference on Cellular Automata
for Research and Industry (ACRI 2010), Ascoli Piceno, Italy (S. Ban-
dini, S. Manzoni, H. Umeo and G. Vizzari, eds.), Berlin, Heidelberg:
Springer, 2010 pp. 261–270. doi:10.1007/978-3-642-15979-4_28.

[9] R. Lakra, A. John and J. Jose, “CARPenter: A Cellular Automata Based
Resilient Pentavalent Stream Cipher,” in Cellular Automata: 13th Inter-
national Conference on Cellular Automata for Research and Industry
(ACRI 2018), Como, Italy (G. Mauri, S. El Yacoubi, A. Dennunzio,
K. Nishinari and L. Manzoni, eds.), Cham: Springer, 2018 pp. 352–363.
doi:10.1007/978-3-319-99813-8_32.

[10] A. John, B. C. Nandu, A. Ajesh and J. Jose, “PENTAVIUM: Potent Triv-
ium-like Stream Cipher Using Higher Radii Cellular Automata,” in
Cellular Automata: 14th International Conference on Cellular
Automata for Research and Industry (ACRI 2020), Lodz, Poland

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 185

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/978-981-19-0542-1_16
https://doi.org/10.1007/978-3-642-33350-7_61
https://doi.org/10.1007/978-981-10-4642-1_7
https://doi.org/10.1007/978-3-642-15979-4_28
https://doi.org/10.1007/978-3-319-99813-8_32
https://doi.org/10.1007/978-3-030-69480-7_10
https://doi.org/10.25088/ComplexSystems.32.2.171

(T. M. Gwizdałła, L. Manzoni, G. Ch. Sirakoulis, S. Bandini and K. Pod-
laski, eds.), Cham: Springer, 2021 pp. 90–100.
doi:10.1007/978-3-030-69480-7_10.

[11] R. Rivest. “The MD5 Message Digest Algorithm.” 1992.
datatracker.ietf.org/doc/html/rfc1321.

[12] “Secure Hash Standard, FIPS Publication 180-1,” Gaithersburg, MD:
National Institute of Standards and Technology, 1995.
csrc.nist.gov/publications/detail/fips/180/1/archive/1995-04-17.

[13] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,”
in Advances in Cryptology: 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT 2005), Aarhus, Denmark (R. Cramer, ed.), Berlin, Heidelberg:
Springer, 2005 pp. 19–35. doi:10.1007/11426639_2.

[14] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Keccak,” in
Advances in Cryptology: 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT
2013), Athens, Greece (T. Johansson and P. Q. Nguyen, eds.), Berlin,
Heidelberg: Springer, 2013 pp. 313–314.
doi:10.1007/978-3-642-38348-9_19.

[15] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge Func-
tions,” in ECRYPT Hash Workshop 2007, Semantics Scholar, 2007.
pdfs.semanticscholar.org/0338/
0dd678b5dbf37734452ac57f793db1a9620c.pdf.

[16] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On the Indiffer-
entiability of the Sponge Construction,” in Advances in Cryptology:
27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT 2008), Istanbul, Turkey
(N. Smart, ed.), Berlin, Heidelberg: Springer, 2008 pp. 181–197.
doi:10.1007/978-3-540-78967-3_11.

[17] J. Daemen, R. Govaerts and J. Vandewalle, “A Framework for the
Design of One-Way Hash Functions Including Cryptanalysis of
Damgård’s One-Way Function Based on a Cellular Automaton,” in
Advances in Cryptology: International Conference on the Theory and
Application of Cryptology (ASIACRYPT ’91), Fujiyoshida, Japan
(H. Imai, R. L. Rivest and T. Matsumoto, eds.), Springer, 1991
pp. 82–96. doi:10.1007/3-540-57332-1_7.

[18] Y. Zheng, H. Imai and M. Mihaljevic, “A Fast Cryptographic Hash
Function Based on Linear Cellular Automata over GF(q),” in Global IT
Security: Proceedings of the International Federation for Information
Processing TC11 14th International Conference on Information Secu-
rity (SEC ‘98), Austrian Computer Society, 1998 pp. 96–107.
www.researchgate.net/publication/2790711_A_Fast_
Cryptographic_Hash_Function_Based_on_Linear_Cellular_
Automata _over _GFq.

186 A. John and J. Jose

Complex Systems, 32 © 2023

https://doi.org/10.1007/978-3-030-69480-7_10
https://datatracker.ietf.org/doc/html/rfc1321
https://csrc.nist.gov/publications/detail/fips/180/1/archive/1995-04-17
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-642-38348-9_19
https://pdfs.semanticscholar.org/0338/0dd678b5dbf37734452ac57f793db1a9620c.pdf
https://pdfs.semanticscholar.org/0338/0dd678b5dbf37734452ac57f793db1a9620c.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/3-540-57332-1_7
https://www.researchgate.net/publication/2790711_A_Fast_Cryptographic_Hash_Function_Based_on_Linear_Cellular_Automata_over_GFq
https://www.researchgate.net/publication/2790711_A_Fast_Cryptographic_Hash_Function_Based_on_Linear_Cellular_Automata_over_GFq
https://www.researchgate.net/publication/2790711_A_Fast_Cryptographic_Hash_Function_Based_on_Linear_Cellular_Automata_over_GFq

[19] C. Hanin, B. Echandouri, F. Omary and S. El Bernoussi, “L-CAHASH:
A Novel Lightweight Hash Function Based on Cellular Automata for
RFID,” in Ubiquitous Networking, Third International Symposium
(UNet 2017), Casablanca, Morocco (E. Sabir, A. G. Armada,
M. Ghogho and M. Debbah, eds.) Cham: Springer, 2017 pp. 187–298.
doi:10.1007/978-3-319-68179-5_25.

[20] A. Sadak, B. Echandouri, F. E. Ziani, C. Hanin and F. Omary,
“LCAHASH-1.1: A New Design of the lCAHASH System for IoT,”
International Journal of Advanced Computer Science and Applications,
10(11), 2019. doi:10.14569/IJACSA.2019.0101134.

[21] N. Jamil, R. Mahmood, M. Z’aba N. Udzir and Z. A. Zukarnaen, “A
New Cryptographic Hash Function Based on Cellular Automata Rules
30, 134 and Omega-Flip Network.” 2012.
www.semanticscholar.org/paper/A-New-Cryptographic-Hash-Function-
Based-on-Cellular-Jamil-Mahmood/
1563c58daf7a9f63784ee19a98aeb529b7eb66bb.

[22] A. Sadak, F. E. Ziani, B. Echandouri, C. Hanin and F. Omary,
“HCAHF: A New Family of CA-based Hash Functions,” International
Journal of Advanced Computer Science and Applications, 10(12), 2019.
doi:10.14569/IJACSA.2019.0101267.

[23] J.-P. Aumasson, L. Henzen, W. Meier and M. Naya-Plasencia,
“QUARK: A Lightweight Hash,” in Cryptographic Hardware and
Embedded Systems: 12th International Workshop (CHES 2010), Santa
Barbara, USA (S. Mangard and F.-X. Standaert, eds.), Berlin, Heidel-
berg: Springer, 2010 pp. 1–15. doi:10.1007/978-3-642-15031-9_1.

[24] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı and I. Ver-
bauwhede, “SPONGENT: A Lightweight Hash Function,” in Crypto-
graphic Hardware and Embedded Systems: 13th International
Workshop (CHES 2011), Nara, Japan (B. Preneel and T. Takagi, eds.),
Berlin, Heidelberg: Springer, 2011 pp. 312–325.
doi:10.1007/978-3-642-23951-9_21.

[25] J. Guo, T. Peyrin and A. Poschmann, “The PHOTON Family of
Lightweight Hash Functions,” in Advances in Cryptology: 31st Annual
Cryptology Conference (CRYPTO 2011), Santa Barbara, CA (P. Rog-
away, ed.), Berlin, Heidelberg: Springer, 2011 pp. 222–239.
doi:10.1007/978-3-642-22792-9_13.

[26] B. T. Hammad, N. Jamil, M. E. Rusli and M. Reza, “A Survey of
Lightweight Cryptographic Hash Function,” in International Journal
of Scientific and Engineering Research, 8(7), 2017.
www.ijser.org/researchpaper/A-survey-of-Lightweight-Cryptographic-
Hash-Function.pdf.

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 187

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.1007/978-3-319-68179-5_25
https://dx.doi.org/10.14569/IJACSA.2019.0101134
https://www.semanticscholar.org/paper/A-New-Cryptographic-Hash-Function-Based-on-Cellular-Jamil-Mahmood/1563c58daf7a9f63784ee19a98aeb529b7eb66bb
https://www.semanticscholar.org/paper/A-New-Cryptographic-Hash-Function-Based-on-Cellular-Jamil-Mahmood/1563c58daf7a9f63784ee19a98aeb529b7eb66bb
https://www.semanticscholar.org/paper/A-New-Cryptographic-Hash-Function-Based-on-Cellular-Jamil-Mahmood/1563c58daf7a9f63784ee19a98aeb529b7eb66bb
https://dx.doi.org/10.14569/IJACSA.2019.0101267
https://doi.org/10.1007/978-3-642-15031-9_1
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-22792-9_13
https://www.ijser.org/researchpaper/A-survey-of-Lightweight-Cryptographic-Hash-Function.pdf
https://www.ijser.org/researchpaper/A-survey-of-Lightweight-Cryptographic-Hash-Function.pdf
https://doi.org/10.25088/ComplexSystems.32.2.171

[27] S. Kuila, D. Saha, M. Pal and D. Roy Chowdhury, “CASH: Cellular
Automata Based Parameterized Hash,” in Security, Privacy, and Applied
Cryptography Engineering: 4th International Conference (SPACE
2014), Pune, India (R. S. Chakraborty, V. Matyas and P. Schaumont,
eds.), Cham: Springer, 2014 pp. 59–75.
doi:10.1007/978-3-319-12060-7_5.

[28] R. B. Lee, Z. Shi and X. Yang, “Efficient Permutation Instructions for
Fast Software Cryptography,” IEEE Micro, 21(6), 2001 pp. 56–69.
doi:10.1109/40.977759.

[29] G. J. Martínez, J. C. Seck-Tuoh-Mora and H. Zenil, “Wolfram’s Classifi-
cation and Computation in Cellular Automata Classes III and IV,” Irre-
ducibility and Computational Equivalence: 10 Years After Wolfram’s A
New Kind of Science (H. Zenil, ed.), Berlin, Heidelberg: Springer, 2013
pp. 237–259. doi:10.1007/978-3-642-35482-3_17.

[30] C. E. Shannon, “Communication Theory of Secrecy Systems,” The Bell
System Technical Journal, 28(4), 1949 pp. 656–715.
doi:10.1002/j.1538-7305.1949.tb00928.x.

[31] “NIST SP 800-22: Download Documentation and Software.” Gaithers-
burg, MD: National Institute of Standards and Technology.
csrc.nist.gov/projects/random-bit-generation/documentation-and-
software.

[32] “A Statistical Test Suite for Random and Pseudorandom Number Gener-
ators for Cryptographic Applications,” Technical Report NIST Special
Publication (SP) 800-22, Gaithersburg, MD: National Institute of Stan-
dards and Technology, 2010. doi:10.6028/NIST.SP.800-22.

188 A. John and J. Jose

Complex Systems, 32 © 2023

https://doi.org/10.1007/978-3-319-12060-7_5
https://doi.org/10.1109/40.977759
https://doi.org/10.1007/978-3-642-35482-3_17
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://doi.org/10.6028/NIST.SP.800-22

