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In  today’s  world  of  pervasive  computing,  all  the  devices  have  become
smart. The need for securing these devices becomes a need of the hour.
The  traditional  cryptographic  algorithms  will  not  be  ideal  for  small
devices,  and  this  opens  a  new  area  of  cryptography  named  lightweight
cryptography,  which  focuses  on  the  implementation  of  cryptographic
algorithms in resource-constrained devices without compromise in secu-
rity. Cryptographic hash functions enable detection of message tamper-
ing  by  adversaries.  This  paper  proposes  a  lightweight  hash  function
that  makes  use  of  sponge  functions  and  higher  radii  hybrid  cellular
automata  (CAs).  The  proposed  hash  function  shows  good  crypto-
graphic  properties  as  well  as  collision  resistance  and  serves  as  an  ideal
hash function for lightweight applications. 
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Introduction1.

The  last  few  decades  saw  a  technological  boom,  and  almost  all
devices are connected to the internet. While the devices became smart,
the need for secure data storage and transmission gained more impor-
tance.  Cryptographic  hash  functions  are  used  to  ensure  data  integrity
and prevent data forgery. They are one-way functions that produce a
message digest or hash digest from the input message. The hash digest
serves  as  a  unique  fingerprint  of  the  message  since  this  short  and
secure code reveals any tampering made to that message. Most of the
earlier  cryptographic  hash  functions  like  MD5  and  SHA  made  use  of
Merkle–Damgård  [1,  2]  and  Davies–Meyer  [3]  schemes  in  their
designs. But this era of pervasive computing demands lightweight algo-
rithms  that  can  be  used  in  resource-constrained  devices.  The  biggest
challenge  in  the  design  of  lightweight  hash  functions  is  the  tradeoff
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between  security  and  memory  requirements.  The  sponge  functions
and  cellular  automata  (CAs)  have  marked  their  places  in  lightweight
applications.  We  proposed  a  hash  function  using  three-neighborhood
(3-N)  hybrid  CAs  and  sponge  functions  in  [4].  In  this  paper,  we
replace  the  3-N  cellular  automaton  (CA)  with  a  higher-radii
hybrid CA.

The  paper  is  organized  as  follows:  Section  2  discusses  CAs,  five-
neighborhood  (5-N)  CAs  and  sponge  functions.  Section  3  provides
the state of the art in sponge function– and CA-based hash functions,
followed  by  the  working  of  the  proposed  hash  function.  Sections  4
and  5  discuss  the  design  rationale  and  security  analysis  of  the  hash
function, followed by conclusions in Section 6. 

Preliminaries2.

This  section  gives  a  brief  description  of  CAs  and  sponge  functions,
which serve as the building blocks of our hash function.

Introduction to Cellular Automata2.1

A CA can be viewed as a lattice of cells that stores binary values. The
CA  will  be  initialized  with  0s  and  1s.  The  values  in  the  cells  get
updated at every clock cycle based on a transition function called the
CA rule. During each cycle, the value of a cell gets updated based on
the values of its neighboring cells, which serve as the input to the CA
rule.  So  a  dependency  exists  among  the  neighboring  cells  in  CAs.
Every  cell  gets  updated  in  parallel  during  each  clock  cycle.  CA  rules
can be classified as linear and nonlinear. The linear rules use only the
XOR  operation  in  their  combinational  logic,  and  nonlinear  rules  use
AND/OR operations in addition to the XOR operation in their logic.
In  general,  the  number  of  neighboring  cells  n  that  are  involved  in  a
CA rule is given by n  2r + 1, where r is the radius of the neighbor-
hood.  CAs  can  further  be  classified  as  uniform  and  hybrid  based  on
whether all the cells use the same CA rule or different CA rules. 

The  boundary  condition  is  another  factor  that  decides  the  proper-
ties of the CA. The boundary conditions decide the leftmost and right-
most neighbor cells of the CA. This paper uses the one null boundary
condition, which takes 1 as the neighbor of the leftmost cell and 0 as
the  neighbor  of  the  rightmost  cell.  This  boundary  condition  was
found  to  make  the  hybrid  rule  set  cryptographically  robust  [5].
This  motivated  us  to  use  one  null  boundary  condition.  The  parallel
execution  of  CAs  makes  them  ideal  for  lightweight  applications.  The
neighborhood  radii  of  the  CA  have  an  impact  on  the  strength  of  the
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CA when used in secure applications. Most of the work based on CAs
used  3-N  CAs,  and  recently  some  applications  have  used  5-N
CA rules.

Five-Neighborhood Cellular Automaton Rules2.1.1

Most  of  the  work  related  to  CAs  has  used  the  elementary  (3-N)  CA.
The  rate  of  diffusion  of  CA-based  pseudorandom  number  generators
(PRNGs)  increases  with  the  increase  in  neighborhood  radii  [6].  The
cryptographic  properties  of  bipermutive  rules  of  radius  two  were
explored in [6] and a study of 5-N linear hybrid CAs is in [7]. A set of
cryptographically  suitable  5-N  CA  rules  was  selected  based  on  these
studies.  The  rule  numbers  are  taken  from  [6].  Figure  1  shows  the
neighbors of a cell si in 5-N CA.

Si-2 Si-1 Si Si+1 Si+2

Figure 1. Neighboring cells in five-neighborhood CA.

The algebraic normal form (ANF) of the 5-N CA rules used in our
hash function is 

Rule 1721342310: si-2 ⊕ si-1 ⊕ si+1 ⊕ si+2

Rule 2523490710: si-2 ⊕ si-1 ⊕ si ⊕ si+1 ⊕ si+2

Rule 1452976485: si-2 ⊕ si-1 · si ⊕ si-1 · si+1 ⊕ si ⊕ si+2 ⊕ 1

Rule 1520018790: si-2 ⊕ si-1 · si+1 ⊕ si · si+1 ⊕ si+1 ⊕ si+2

where  si-2  and  si-1  represent  the  second-left  and  left  neighbor  of  si,
respectively.  si+2  and  si+1  represent  the  second-right  and  right  neigh-
bor  of  si,  respectively.  ⊕  represents  the  XOR  operation  and  ·  repre-
sents the AND operation.

Rules  1721342310  and  2523490710  are  5-N  linear  CA  rules  and
rules  1452976485  and  1520018790  are  5-N  nonlinear  CA  rules.
Here, we have followed a hybrid rule set consisting of linear and non-
linear  5-N  CA  rules.  This  paper  follows  the  order  of  rules  in  the  rule
set  from  the  CSHR  algorithm  that  was  proposed  for  elementary  CA
rules  in  [5].  In  [8],  Sandip  et  al.  proposed  a  cryptographically  robust
hybrid  rule  set.  Any  cryptographic  application  needs  to  have  proper-
ties  like  algebraic  degree,  nonlinearity  and  correlation  immunity.  The
nonlinear  CA  rules  help  achieve  algebraic  degree  and  nonlinearity,
but  they  lack  correlation  immunity.  Linear  CA  rules,  on  the  other
hand,  are  correlation  immune,  but  lack  algebraic  degree  and  nonlin-
earity  properties.  So  the  linear  and  nonlinear  CA  rules,  when  used
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together,  are  likely  to  give  good  cryptographic  properties,  and  an
analytical  argument  is  provided  in  [8]  to  show  that  the  introduction
of  linear  rules  helps  reduce  correlation  after  some  iterations.  The
paper  considered  five  rule  sets,  where  every  rule  set  contained  the
nonlinear  CA  rule  30,  which  showed  good  pseudorandom  properties
in  addition  to  balance.  These  rule  sets  incorporated  rule  30  with  sev-
eral other linear and nonlinear elementary CA rules and analyzed the
cryptographic  suitability  of  all  these  rule  sets  using  a  new  test  called
the d-monomial test. 

In  [5]  Kaushik  et  al.  proposed  an  algorithm  for  generating  crypto-
graphically  suited  hybrid  rules  (CSHR)  using  elementary  CA  rules.
The same algorithm was extended to 5-N CAs to construct a rule set
using  cryptographically  suitable  5-N  CA  rules.  The  rule  set  thus
formed is 

〈1452976485, 1721342310, 2523490710, 1452976485,
1520018790, 1452976485, 1721342310, 2523490710〉.

These  rules  are  expected  to  exhibit  good  algebraic  degree,  nonlinear-
ity and period based on the intuition that the cryptographic properties
will  become  better  with  the  increase  in  neighborhood  radii.  This  was
seen  after  their  use  in  the  CA-based  stream  ciphers  CARPenter  [9]
and Pentavium [10].

Sponge Functions in the Design of Cryptographic
Hash Functions

2.2

Cryptographic  hash  functions  are  one-way  functions  that  serve  as  a
short compressed string derived from the message that depends on all
the bits of the message in an unpredictable manner. They take an arbi-
trary-length  input  and  produce  a  fixed-length  output.  Any  crypto-
graphic  hash  function  must  satisfy  the  following  properties:  collision
resistance,  preimage  resistance  and  second  preimage  resistance.  The
hash  functions  MD5  [11]  and  SHA  [12]  used  during  the  early  1980s
and  late  1990s  made  use  of  compression  functions  iteratively.  They
were  later  cryptanalyzed  and  found  to  be  insecure  [13].  NIST  called
for  an  open  competition  for  a  new  and  efficient  family  of  hash  func-
tions  named  SHA-3,  and  in  2012  Keccak  [14]  was  declared  the
winner.

While  SHA  was  built  on  the  Merkle–Damgård  construction,  Kec-
cak  was  based  on  a  new  design  approach  named  sponge  functions
developed by Bertoni et al. [15]. In sponge functions, the compression
function is replaced by an internal transformation function. The input
message is first absorbed into the sponge through a series of transfor-
mations  and  then  squeezed  out  to  release  the  hash  digest,  hence  the
name  “sponge”  functions.  These  operations  have  two  phases:  the
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absorbing  phase  and  the  squeezing  phase,  and  the  same  transforma-
tion  function  is  used  in  both  phases.  The  input  to  the  transformation
function  is  split  into  r  and  c,  where  r  forms  the  bit  rate  and  c  forms
the  capacity.  The  input  message  is  partitioned  into  blocks  of  r  bits.
The  smaller  the  value  of  r,  the  larger  the  number  of  message  blocks
getting  diffused  into  the  final  hash  digest  will  be,  and  the  larger  the
number  of  internal  transformations  will  be.  This  improves  the
strength  of  the  hash  function  at  the  expense  of  more  execution  time.
The security level that can be attained using sponge functions is depen-
dent on c [16]. 

Working of Sponge Function2.2.1

The  input  message  is  preprocessed  and  divided  into  blocks  of  r  bits.
Each of the message blocks passes through the following phases:

Absorbing  phase.  This  phase  absorbs  all  the  message  blocks  into

the sponge. We define an initial state of b zeros where b  r + c. Each

r-bit message block is XORed with r bits of the b state bits and is sub-
jected  to  the  internal  transformation  function,  which  executes  for  nr
rounds.  The  output  of  the  first  transformation  function  serves  as  the
state  bits  for  the  next  iteration  of  the  transformation  function.  The
second r-bit message block will be XORed with r bits of this state and
executes  for  the  next  nr  rounds.  This  continues  until  all  the  message

blocks get XORed. So if an input message is divided into d blocks of r
bits  during  the  preprocessing  phase,  the  transformation  function  will

be  invoked  d  times,  and  during  each  invocation,  it  executes  for  nr
rounds.  The  number  of  transformation  steps  in  the  absorbing  phase
depends  on  the  value  of  r;  the  smaller  the  value  of  r,  the  larger  the
capacity  c  of  the  sponge,  and  in  turn  the  larger  the  number  of  itera-
tions of the transformation function. 

The  absorbing  phase  ensures  that  all  the  bits  of  the  input  message
are  dispersed  well  among  themselves,  which  ensures  the  diffusion
of  bits.  At  the  end  of  this  phase,  all  the  message  blocks  will
be  “absorbed”  into  the  sponge.  This  marks  the  end  of  the
absorbing phase. 

Squeezing  phase.  This  phase  “squeezes  out”  the  hash  digest.  This
phase  makes  use  of  the  same  transformation  function  F  used  in  the
absorbing phase except the XORing of the message block. The output
of  the  absorbing  phase  undergoes  transformation  of  nr  rounds,  and  r
bits  will  be  squeezed  out.  This  continues  until  the  required  length  of
the  hash  digest  has  been  squeezed  out.  The  length  of  the  hash  digest
will be a multiple of r. The sponge function provides the flexibility of
truncating  the  same  to  get  the  desired  length,  which  is  a  feature
unique  to  sponge  functions  and  was  not  provided  by  the  ear-
lier schemes. 
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Proposed Hash Function Based on Hybrid Five-Neighborhood 

Cellular Automata and Sponge Functions
3.

Hash Functions Based on Cellular Automata and Sponge 

Functions: An Overview
3.1

The  use  of  CAs  in  cryptographic  hash  functions  had  been  proposed
by  Damgård  in  [2].  This  was  cryptanalyzed  by  Daemen  [17]  and  he
proposed  Cellhash,  which  made  use  of  CAs  with  periodic  boundary
conditions.  Several  other  CA-based  hash  functions  were  proposed  by
Mihaljevic  et  al.  [18],  Hanin  et  al.  [19,  20],  Jamil  et  al.  [21]  and
Sadak  et  al.  [22].  All  the  hash  functions  followed  the  Merkle–
Damgård  construction  using  hybrid  CAs  inside  the  compression
function.

Sponge functions have been used in lightweight applications. Some
of  the  sponge  function–based  hash  functions  include  Quark  [23],
SPONGENT  [24]  and  PHOTON  [25].  A  detailed  description  of  all
the  lightweight  cryptographic  hash  functions  is  found  in  B.  Hammad
et  al.  [26].  The  strength  of  sponge  functions  can  be  enhanced  by
strengthening  the  internal  transformation  function.  This  motivated
researchers to incorporate the lightweight primitive CA into the func-
tion.  Keccak  [14],  the  SHA-3  winner,  uses  a  CA-incorporated  sponge
function  that  affects  the  two  neighborhood  cells  of  each  cell  in  its  χ

transformation.  Another  CA-infused  sponge  function  was  used  in  the
CASH  [27]  family  of  hash  functions.  CASH  made  use  of  tweakable
parameters,  which  makes  it  useful  for  different  applications.  Most  of
the  CA-based  sponge  function  constructions  use  3-N  CA  in  uniform
and  linear  hybrid  versions.  A  3-N  hybrid  rule  set  together  with  the
omegaflip  permutation  is  used  in  [4].  The  use  of  a  higher-radii  CA
inside the sponge function is the first of its kind. 

In this paper, we have replaced the 3-N hybrid rule set used in [4]
with a 5-N hybrid rule set, along with a permutation layer that makes
use  of  the  omegaflip  permutation  [28].  The  use  of  5-N  CA  rules
together with permutation should increase the strength of the internal
function  and  hence  add  to  the  strength  of  the  hash  function  against
attacks.  The  values  of  r  and  c  can  be  decided  based  on  the  level  of
security  and  memory  requirements  of  the  application.  In  this  paper,
we  use  r  92  and  c  132.  Figure  2  shows  the  structure  of  the  hash
function. 

Working of the Proposed Hash Function3.2

The proposed hash function proceeds through the following steps:

Preprocessing  phase.  This  phase  includes  padding  and  partitioning
of  the  input  message.  The  padding  step  makes  the  length  of  the  arbi-
trarily  long  message  a  multiple  of  r.  The  64-bit  representation  of  the
input  message  length  preceded  by  “10”  serves  as  the  padding  bits.
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This  also  helps  enhance  the  collision  resistance  property.  The  padded
message is then partitioned into r-bit blocks M1, M2, …, Mi. 

Absorbing  and  squeezing  phase.  The  absorbing  phase  proceeds  by
applying  the  internal  transformation  function  on  each  message  block

Mi. The state bits of length b are initially set to all zeros. The first mes-

sage  block  M1  is  XORed  with  the  r  bits  of  the  b  state  bits  and  these
XORed r bits together with c bits will be transformed by the internal
transformation  function.  The  second  message  block  M2  is  XORed
with  the  r  bits  of  the  output  of  the  first  nr  rounds  of  the  transforma-
tion  function.  This  continues  for  all  remaining  blocks.  After  the  pro-
cessing  of  all  message  blocks,  an  additional  round  of  transformation
without any XOR input is done to prevent sliding attacks on the hash
function.  The  block  diagram  of  the  internal  function  F  of  the  sponge
function is shown in Figure 3. 

Figure 2. Structure of hash function.

Figure 3. Internal function.
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Working of the Internal Transformation Function3.2.1

There  are  two  steps  in  the  transformation  function:  permutation  and
CA-based  transformation.  We  have  used  the  omegaflip  permutation
to  permute  the  state  bits.  The  order  of  performing  the  omega  or  flip
operation is decided by the first 16 bits of the message block Mi. The
entire omegaflip permutation is dependent on the message. This is fol-
lowed  by  the  CA-based  transformation,  where  the  5-N  hybrid  CA
rules  are  applied  on  the  permuted  state  bits.  The  CA  evolves  through
eight cycles during each round of the internal transformation function
and there are two rounds (i.e., nr  2) for the internal function.

The output from the absorbing phase undergoes two rounds of the
internal  transformation  function  during  the  squeezing  phase.  This
function  resembles  the  function  in  the  absorbing  phase  except  the
XOR operation with the message block. The r bits from this function
are “squeezed out” to form part of the hash digest. During this phase,

the b  bits  of  the  state  are  taken  as  the  control  bits  for  the  omegaflip
permutation.  The  number  of  iterations  of  the  internal  transformation
function  depends  on  the  expected  size  of  the  hash  digest.  The  length
of  the  hash  digest  is  a  multiple  of  the  bit-rate r.  If  the  length  exceeds
the  desired  length,  it  can  be  truncated  to  the  required  length.  The
steps of the hash function are described in Algorithm 1.

Input: Message M 

Output: 256-bit message digest

begin 

Divide the message M of length L into blocks M1, M2, …Mn of r bits.

If L is not a multiple of r, pad the message with “10” followed by the 64-

bit representation of the message length until L becomes a multiple of r.

Initialize a block b  r || c with zeros, r0  0 and c0  0. 

//Absorbing phase 

for i  1 to n do
// Single round of internal transformation

ri  Mi ⊕ ri-1 

ci  ci-1
bi  omega flip (bi) //Permute the entire b block using omegaflip permuta-

tion 

bi  CA5(bi)  //  Apply  the  5-N  hybrid  CA  rules  to  each  of  the  cells  in  that
order 

end for 
Add  a  Null  round,  that  is,  one  round  of  internal  transformation  without

XORing with any message block.

bn  rn || cn  will  be  the  output  after  the  absorbing  phase  and  this  will  be
given as input to the squeezing phase.
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// Squeezing phase 
Repeat the steps until 256-bit hash digest is squeezed out.

for i  (n + 1) to (n + 3) do

bi  omega flip (bi)

bi  CA5 (bi)
Append ri to the final hash digest.
end for

Truncate the final output to get the final 256-bit message digest. 
end 

Algorithm 1. Hash function using 5-N CAs and sponge function.

Design Rationale for Using Cellular Automata in 

Sponge Functions
4.

While  most  of  the  earlier  cryptographic  hash  functions  followed  the
Merkle–Damgård  (MD)  scheme,  the  last  decade  ushered  in  the  need
for lightweight functions in place of the traditional compression func-
tion. This helped to thwart the length extension attacks and multicolli-
sion attacks prevalent on MD schemes. The idea of integrating sponge
functions  and  CAs  into  the  design  of  our  new  hash  function  evolved
as a result of this. The next aim was to add to the strength of the inter-
nal  function  without  compromising  the  lightweight  property  of  a
sponge  function.  This  resulted  in  the  combination  of  higher-radii
hybrid CAs and sponge functions.

The motivation for using the sponge function in our design is:

resemblance to random oracle 1.

flexibility in the length of the hash digest 2.

low memory requirements 3.

absence of feed-forward mechanism 4.

Suitability of Five-Neighborhood Cellular Automata inside a 

Sponge Function
4.1

Some  properties  of  CAs  that  make  them  an  ideal  primitive  for  secure
and lightweight hash functions follow.

Chaotic Nature4.1.1

The  CA  rules  were  classified  into  four  classes  based  on  the  nature  of
patterns generated by the rules during time evolution. This shows the
statistical  behavior  of  the  rules  [29].  Rules  30,  90  and  150  belong  to

Hash Function Design Based on Hybrid 5-N CAs and Sponge Functions 179

https://doi.org/10.25088/ComplexSystems.32.2.171

https://doi.org/10.25088/ComplexSystems.32.2.171


class  3  and  generate  chaotic  patterns,  hence  are  ideal  for  pseudoran-
dom  number  generation.  The  5-N  CA  rules  selected  in  the  rule  set
used  in  our  hash  function  are  bipermutive  rules.  These  rules  are  as
good as the elementary rule 30 and in addition, they satisfy the prop-
erty  of  chaos  [6].  This  chaotic  nature  of  the  CA  rules  makes  them
ideal in the design of hash functions.

Hardware Efficiency and Parallelism4.1.2

All the CA operations execute in parallel and involve only simple logi-
cal  operations.  This  makes  CAs  suitable  in  software  and  hardware
and an ideal lightweight primitive in resource-constrained devices and
applications.  Hence  CA-based  hash  functions  are  likely  to  gain  more
focus in internet of things (IoT) devices, blockchain and elsewhere.

The  diffusion  rate  and  other  cryptographic  properties  of  the
internal transformation function can be enhanced by the use of higher-
radii  CA  rules.  The  properties  of  sponge  function–based  hash  func-
tions solely depend on the internal transformation function. The hash
digest produced from a message has to be dependent on all the bits of
the  message  in  order  to  improve  its  diffusion  rate  and  collision  resis-
tance.  This  motivated  us  to  introduce  5-N  linear  and  nonlinear  rules
in place of elementary CA rules. The difference between 3-N and 5-N
CA  rules  is  the  number  of  bits  that  get  involved  in  the  state  update
function  of  a  single  cell;  while  3-N  rules  depend  on  2q + 1  cells  in  a

single iteration, 5-N CA rules depend on 4q + 1 cells, where q denotes

the number of cycles. 
We have used a hybrid rule set that consists of linear and nonlinear

5-N CA rules. The use of 5-N CA rules improves the diffusion rate of
the  CA,  since  during  each  cycle,  the  number  of  bits  involved  in  the
state update function of the CA is more when compared to 3-N CAs.
Cryptographic  hash  functions  are  expected  to  have  good  crypto-
graphic  properties  and  collision  resistance  and  produce  a  hash  digest
that  resembles  a  random  number.  The  application  of  higher-radii
hybrid  CA  rules  and  permutation  in  a  single  internal  round  of  the
sponge  function  ensures  the  dependency  of  all  the  bits  in  a  single
block  of  the  message.  The  absorbing  phase  ensures  that  the  bits
among different message blocks are also mixed well. This high depen-
dency of all the message bits with the output is the major strength of
the hash function against probable collision attacks. 

Security and Performance Analysis5.

The  security  criteria  to  be  satisfied  by  cryptographic  hash  functions
that produce an n-bit hash digest are:
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Determinism. Each input message should generate the same hash digest
whenever it is subjected to the same hash function. 

1.

Collision  resistance.  It  should  be  computationally  infeasible  (in  less

than  2n/2  work)  to  find  any  two  random  messages  that  produce  the
same hash digest. 

2.

Preimage  resistance.  Given  only  the  hash  value,  it  should  not  be  possi-

ble  to  find  a  message  that  generates  that  hash  in  less  than  about  2n

work. 

3.

Second preimage resistance. Given a message m and a hash function H,
it  should  not  be  possible  to  find  another  message  m′

 that  yields  the

same hash digest in less than about 2n work. 

4.

These properties were theoretically evaluated to assess the strength
of the proposed hash function against cryptanalytic attacks. 

Confusion and Diffusion Effect5.1

Shannon’s  confusion  and  diffusion  were  defined  for  encryption  algo-
rithms  [30].  The  definitions  of  confusion  and  diffusion  need  to  be
modified  in  the  case  of  cryptographic  hash  functions  to  make  them
suitable for the functions’ design. Confusion ensures that the relation-
ship  between  the  input  message  and  the  hash  digest  is  unpredictable.
The  diffusion  property  of  the  hash  function  ensures  that  each  of  the
input bits is dispersed into the final hash digest such that a change in
a single input bit gets reflected in the hash digest in terms of the num-
ber of altered bits.

In  order  to  assess  these  properties  of  our  proposed  hash  function,
we  considered  a  random  message  and  computed  its  hash  digest.  A
variant  of  the  original  message  was  made  by  changing  a  random  bit,
and  its  hash  digest  was  also  computed.  The  hash  digests  thus  calcu-
lated  were  compared  for  the  number  of  bits  that  were  flipped.  This
was done for 100 messages, and in all the cases, more than half of the
bits  of  the  hash  digest  were  altered,  even  with  a  single  bit  change.
This property is called the avalanche effect. 

Figure 4 illustrates the avalanche effect of the proposed hash func-
tion.  The  x  axis  represents  the  number  of  bits  changed  in  the  input
and  the  y  axis  represents  the  Hamming  weight.  The  graph  shows  the

number  of  bits  altered  in  the  hash  digest  when  small  changes  are
made in the input messages. In all cases, more than half the bits of the
hash digest were altered. 

A sample of the hash digest computed for an input message and its
variant is as follows: 

Input message: This is a new hash function 

Hash digest: F0D060228EF61CAF952517E5FC21DC-
CD1E7622E423ABD319E041012032F95A43 
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We now add a “.” at the end of the previous sentence.

Input message: This is a new hash function.

Hash  Digest:  B91136FDED5E68C1F030A2E6E2E0521CA8C55F-
B876506721A307D2B7303262A2 

Figure 4. Avalanche effect.

Theoretical Security Analysis5.2

The use of sponge functions in the design of hash functions should be
enough  to  claim  collision  resistance,  preimage  resistance  and  second
preimage resistance, since sponge functions behave like a random ora-
cle.  The  use  of  a  CA  and  permutation  in  the  internal  transformation
function of a sponge function make it stronger. The security of a hash
function  relies  on  the  difficulty  for  an  adversary  to  find  another  mes-
sage with the same hash digest with or without the knowledge of the
input message. This attempt will be thwarted firsthand, since the hash
digest  is  of  length  256  bits.  As  seen  in  the  previous  example,  a  single
change  in  the  input  is  well  reflected  in  the  output,  which  adds  to  the
resistance of collision. Moreover, the use of 5-N CAs adds to the diffu-
sion  of  message  bits  into  the  hash  digest,  since  the  number  of  bits
involved during each cycle is more when compared to 3-N CAs.

Given a hash digest output of size n, we need to perform 2n  opera-

tions  to  find  a  preimage  or  a  second  preimage  and  2n/2  operations  to
find  a  collision  [2].  During  the  CA-based  transformation  in  the  inter-
nal  function,  each  bit  becomes  dependent  on  65  neighboring  bits  at
the end of 16 CA cycles (8 CA cycles  2 rounds), since we are using
5-N  CAs  and  each  bit  is  dependent  on  4q + 1  neighboring  bits  where

q is the number of cycles of the CA. The hash digest is produced after

many  rounds  of  internal  transformation  involving  CA  transformation
and  permutation  during  the  absorbing  and  squeezing  phases.  This
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ensures the diffusion of input into the resultant hash digest and hence
resistance to preimage, second preimage and collision attacks. 

Randomness Test Using NIST Statistical Test Suite5.3

Ideally,  a  hash  digest  should  be  a  (pseudo)  random  number,  and  this
randomness  property  is  necessary  for  its  cryptographic  applications.
In  order  to  assess  the  randomness  quality  of  the  generated  hash
digest,  we  have  used  the  NIST  Statistical  Test  Suite  [31].  The  NIST
test  suite  consists  of  15  empirical  tests  based  on  statistical  hypothesis
testing.  The  results  of  these  tests  are  shown  in  the  form  of  P-values.
Each P-value is the probability that a perfect random number genera-
tor would have produced a sequence with the same randomness qual-
ity  as  the  sequence  that  was  tested,  or  with  less  randomness  quality
than  the  sequence.  A  P-value  of  0  indicates  nonrandomness  and  a  P-
value of 1 indicates perfect randomness [32].

The  input  to  the  NIST  test  suite  is  generated  by  applying  the  hash
function  H  on  an  initial  seed  S  that  is  incremented  by  1.  That  is,  we
calculate  H(S),  H(S + 1)  and  so  on  until  we  are  able  to  concatenate
them  to  get  a  100  Mb  sequence.  The  binary  stream  generated  by  the
hash  function  showed  good  P-values  and  pass  rates  for  the  relevant
tests  for  hash  functions  and  is  shown  in  Table  1.  Assessing  the  ran-
domness  quality  of  the  hash  digest  affirms  the  cryptographic  strength
of the hash function against known attacks. 

SI. No Test Name P-value Status 

1 frequency test 0.319084 pass 

2 block frequency test 0.162606 pass 

3 cumulative sums test 0.145326 pass 

4 runs test 0.657933 pass 

5 longest runs test 0.096578 pass 

6 rank test 0.350485 pass 

7 FFT test 0.779188 pass 

8 non-overlapping template test 0.779188 pass 

9 overlapping template test 0.048716 pass 

10 serial 0.058984 pass 

11 linear complexity 0.289667 pass 

Table 1. NIST test results.

The  proposed  hash  function  has  been  implemented  in  the  C  pro-
gramming  language,  while  the  performance  experiments  were  done
on an Intel Core i5 (2.3 GHz) microprocessor. The speed of the hash
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function is shown in Table 2. The size of the internal state bits of the
sponge  function  and  the  values  of  r  and  c  are  factors  that  affect  the
speed  of  the  hash  function.  So  here  we  have  a  tradeoff  among  secu-
rity,  speed  and  resource  requirements.  In  practical  applications,  3-N
CA-based hash functions will be preferable if the hardware is limited.
The use of 5-N CAs helps to reduce the execution time, since the diffu-
sion  of  bits  can  be  achieved  in  a  smaller  number  of  cycles  than  3-N
CAs. A more optimized implementation will definitely help reduce the
memory requirements and also increase the speed. 

Parameter 3-N 5-N 

execution time (in sec) 171.74 118.492 

processing speed (Mb/sec) 0.0569 0.0821 

average Hamming distance 134 130 

number of cycles 13 8 

Table 2. Comparison of speed of 5-N and 3-N hybrid CAs.

Conclusion6.

In  this  paper,  a  cryptographic  hash  function  based  on  sponge  func-
tions  and  higher-radii  hybrid  cellular  automata  (CAs)  has  been
proposed.  The  design  has  brought  together  the  best  cryptographic
primitives  for  lightweight  applications.  We  have  used  cryptographi-
cally  suitable  linear  and  nonlinear  five-neighborhood  (5-N)  cellular
automaton (CA) rules and omegaflip permutation in the internal func-
tion  of  the  sponge  function  construction.  We  have  analyzed  the  colli-
sion  resistance  properties  of  the  hash  function  and  found  it  to
perform  well.  In  addition,  we  checked  the  randomness  properties  of
the hash digest using an NIST test suite and it showed statistical simi-
larity with a random number, which adds to the strength of the func-
tion.  There  is  a  tradeoff  between  security  and  memory  requirements,
and the use of higher-radii CA rules can be decided based on that. As
a future direction, we plan to implement this in hardware and also to
replace  the  permutation  function  used  in  the  internal  transformation
with a CA-based S-box so as to strengthen the internal function.
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