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Abstract 

A novel chelating resin functionalized with serine diacetic acid moiety was 

synthesized by using chitosan as base material, and applied to the collection/concentration of 

trace elements in environmental water samples, followed by the determination using 

inductively coupled plasma-atomic emission spectrometer (ICP-AES). The synthesized resin, 

crosslinked chitosan serine diacetic acid (CCTS-SDA), showed good adsorption behavior 

toward trace amounts of Cd, Pb, Cu, Ni, V, Ga, Sc, In, and Th in a wide pH range. 

Additionally, rare earth elements also can be retained on the resin at neutral pH region. The 

adsorbed elements can be easily eluted with 1 mol L-1 of nitric acid, and their recoveries were 

found to be 90-100%. The CCTS-SDA was packed in a mini-column, which was then 

installed in a computer-controlled auto-pretreatment system (Auto-Pret System) for on-line 



L. Hakim et al. 2
 

trace elements collection and determination with ICP-AES. Experimental parameters which 

related to the improvement of sensitivity and reproducibility were optimized. The limit of 

detections (LOD) for 13 elements were found to be in sub-ppb level. The proposed method 

with CCTS-SDA resin was successfully applied to the determination of trace elements in river 

water samples. The method was validated by determining a certified reference material of 

river water, SLRS-4. 

 

Keywords: Chelating resin; Chitosan; Serine diacetic acid moiety; Trace elements; On-line 

Pretreatment; Computer control; Inductively coupled plasma-atomic emission spectrometry; 

SLRS-4;  

 

1 Introduction 

Heavy metal ions in natural water can bring harmful effect to human health, as well as 

to animal and plants in aquatic environment. Therefore, monitoring these metals in 

environmental water samples at trace levels is very important. Accurate analysis of various 

complex samples containing elements at trace levels is one of the most challenging analytical 

tasks. Despite the rapid development of instrumentation which opens new path to trace 

analysis, accurate quantitative determination of a number of elements is still impaired to a 

greater or lesser extent by matrix and spectral interferences [1]. Moreover, some analytical 
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techniques, such as flame atomic absorption spectrometry (FAAS) and inductively coupled 

plasma-atomic emission spectrometry, do not have enough sensitivity to directly determine 

certain elements in a relative clean environmental water sample, and thus a preconcentration 

step is required before applying them to trace metal analysis. 

In recent years, the importance of separation and concentration technique involving 

chelating sorbent in trace analysis has risen substantially. The pretreatment of aqueous 

solution by sorption technique not only can increase analyte concentration to detectable level, 

but also can eliminate matrix effects [2]. 

Several materials have been proposed as a sorbent for the collection/concentration of 

trace elements using solid phase extraction technique, such as activated carbon [3-5], 

Amberlite XAD [6-12], Diaion [13], Chromosorb [14], silica [1], and alumina [15]. Activated 

carbon may provide economical advantage. However, physical loading of a complexing agent 

on activated carbon suggested that such sorbent may have less durability due to the loss of 

complexing agent during sorption-desorption processes. The addition of a complexing agent 

to each sample prior to column treatment is considered to be disadvantageous due to high 

reagent consumption and more organic waste will be generated [3]. The utilization of 

p-dimethylamino-benzaldehyde-modified nanometer SiO2 prior to ICP-AES measurement 

allows simultaneous determination of trace amount of Cu(II) and Pb(II) [1]; the detection 

limit indicates that the sensitivity of this method is not sufficient to measure Cu(II) and Pb(II) 
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in relatively clean environmental water. The preconcentration method using Chromosorb-103 

[13] provided a better detection limit for Pb(II). However, sample pretreatment by using 

8-hydroxyquinoline is required before the preconcentration procedure can be carried out.  

Though the pretreatment method which utilize a sorbent mentioned above can 

improve sensitivity in trace metal analysis, the operation of pretreatment step is usually 

tedious and time consuming because it must be carried out by manual batch-wise procedure, 

where stringent control of the laboratory environment is required to avoid sample 

contamination, especially if the determination of trace level of analytes is attempted. Such 

drawback can be overcome by utilizing an automated on-line preconcentration procedure, 

where less contamination and less reagent consumption can be done [15-19].  

Chitosan, an N-deacetylated product of chitin which can be obtained in large quantity 

from crustacean shells, has become an important natural polymer because of its unique 

properties, such as higher chelating ability compared to other natural polymers obtained from 

seafood-industries waste, easy derivatization, and biodegradability [20]. The reactive amino 

group in chitosan can provide easy-derivatization of this material with some chelating moiety 

for wider application in solid phase extraction. Compared to other synthetic polymers, 

chitosan possesses higher hydrophilicity thus providing faster adsorption rate in aqueous 

medium. 

Several researchers have reported the synthesis of cross-linked chitosan to improve its 
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chemical durability against acid medium along with its application [21-25]. Cross-linked 

chitosan itself has been derivatized with several functional groups, and has been applied to 

solid phase extraction techniques; For example, cross-linked chitosan derivatized with serine 

moiety for U collection [26], leucine moiety for Mo collection [27], dithiocarbamate [28] and 

iminodi(methylphosponic acid) [29] moieties for trace elements collection,  

N-methyl-D-glucamine moiety for B collection [30], 3,4-diaminobenzoic acid moiety for As 

and Se collection [31], and ethylenediamine moiety for Ag collection [32]. 

In this work, cross-linked chitosan (CCTS) was chemically functionalized with serine 

diacetic acid moiety through the extension arm of chloromethyloxirane. The synthesized resin 

was then packed in a mini-column, and the mini-column was installed in 

laboratory-assembled auto-pretreatment system (Auto-Pret AES System) coupled with 

inductively coupled plasma-atomic emission spectrometer (ICP-AES) for the 

collection/concentration and determination of 13 trace elements. Experimental variables of the 

system and pretreatment procedure, which are related to the improvement of sensitivity and 

reproducibility, have been optimized. The proposed method provides effective automated 

on-line preconcentration with high sensitivity (ppt level for several analytes), good 

reproducibility, less reagent consumption, less waste, and less time-consuming. 

 

2 Experimental 
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2.1 Instruments 

The adsorption behavior of cross-linked chitosan functionalized with serine diacetic 

acid (CCTS-SDA) resin toward various trace elements was examined by inductively coupled 

plasma mass spectrometer (ICP-MS) SPQ8000H System Seiko Instruments (Chiba, Japan). 

Infrared spectra (4000–400 cm−1) were recorded on Jasco FT/IR-4100 Jasco International Co. 

Ltd. (Tokyo, Japan). A modular digital syringe pump Cavro (San Jose, CA, USA), a selection 

valve and a switching valve Hamilton (Reno, NV, USA) were used as a part of Auto-Pret AES 

system. This Auto-pret AES system was coupled with ICP-AES Vista-pro Seiko Instruments 

(Chiba, Japan). The operating condition of ICP-AES is shown in Table 1. 

 

2.2 Reagents 

Flake type chitosan with 80% deacetylation degree was purchased from Tokyo Kasei 

Co. Ltd. (Tokyo, Japan). All other reagents used for the synthesis of CCTS-SDA resin were of 

analytical reagent grade. 

Multi-element standard solutions were prepared from several kinds of single element 

standard solution for atomic absorption (1000 μg mL−1) purchased from Wako Pure 

Chemicals (Osaka, Japan). Two multi-element stock solutions for ICP-MS, XSTC-13 and 

XSTC-1 provided by Spex CertiPrep Inc. (Metuchen, NJ, USA) were mixed with the single 

element solutions to give a multi-element standard solution containing 63 elements. The 
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XSTC-13 contains 10 μg mL−1 of 31 elements, namely Th, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, 

Cr, Cs, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, TL, V, Zn, U, and Hg, and 

XSTC-1 contains 10 μg mL−1 of 16 elements, namely Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, 

Sm, Sc, Tb, Tm, Yb, and Y.  The mixed solution was diluted with 1 M nitric acid before 

column pretreatment to give a solution containing 10 ng mL−1 of each element. Accurate 

dilution of the standard solution was carried out by weight. 

Ultrapure grade nitric acid (60%, density 1.38 g mL−1) Kanto Chemicals (Tokyo, 

Japan) was diluted with ultrapure water to give 1 M and 2 M nitric acid. Acetic acid 

(minimum 96%) and ammonia water (29%), which were used for preparing ammonium 

acetate buffer solutions, were electronic industrial reagent grade Kanto Chemicals (Tokyo, 

Japan). Ultrapure water (18.3 MΩ cm−1 resistivity) prepared by Elix 3/Milli-Q Element 

system Nihon Millipore (Tokyo, Japan) was used throughout. 

 

2.3 Synthesis of CCTS-SDA 

The CCTS-SDA was synthesized in three major steps. First, in order to improve the 

mechanical and chemical durability of chitosan, a cross-link structure of chitosan was made 

with ethyleneglycoldiglycidylether (EGDE) as the cross-linker. The procedures are as follow 

[21]: chitosan with 100-300 μm of diameter was prepared by mechanical grinding and sieving. 

Smaller-size chitosan provides higher surface area, and thus can improve the adsorption 
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performance. However, in practical use, small size chitosan particle may reduce the flow rate 

of solutions in the column since internal pressure will become higher. Among two reactive 

groups in chitosan, hydroxyl and amino group, the amino group was preserved for further 

derivatization due to its reactivity, and thus the hydroxyl group was used as terminal for 

cross-link structure. Before cross-link structure was made, chitosan was reacted with 

benzaldehyde (80 g) in order to protect the amino group. The protected-chitosan was then 

filtered by using filter paper, and washed with ethanol to remove the remaining benzaldehyde, 

followed by washing with water. The cross-link structure was made by refluxing the 

protected-chitosan with EGDE (30 g). The product was then filtered and washed with ethanol 

and water, respectively. The Schiff base was cleaved to recover amino group by stirring the 

product in 0.5 M hydrochloric acid (500 mL). The cross-linked chitosan was then filtered and 

washed three times with water. 

In the second step, the cross-linked chitosan was modified by introducing serine 

moiety through chloromethyloxirane extension arm . The cross-linked chitosan (5 g) was 

reacted with chloromethyloxirane (10 g) in order to attach the extension arm. The product was 

then filtered using filter paper, and washed each three times with ethanol and water to remove 

the remaining chloromethyloxirane. In separated beaker, serine (10 g) was reacted with 

benzaldehyde (30 g) to protect its amino group. The cross-linked chitosan, which has 

chloromethyloxirane as an extension arm, was then coupled with the protected-serine. The 
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product was then filtered and washed with ethanol, followed by water. The amino group was 

recovered by stirring the product in 1 M HCl (500 mL), followed by filtration. The product 

was washed with ethanol, followed by water. 

In the final step, the cross-linked chitosan with serine moiety was reacted with 

bromo-acetic acid solution (20 g) to convert serine moiety into serine diacetic acid moiety. 

The product was then filtered and washed three times with water. The synthesis scheme of 

CCTS-SDA is shown in Fig. 1. 

 

2.4 Batch wise mini-column procedure for metal collection  

One milliliter (wet volume) of CCTS-SDA resin was packed in a small polypropylene 

column (5.0 mm i.d. × 50 mm) Muromachi Chemical (Kyoto, Japan). The resin was washed 

by passing 10 mL of HNO3 solution through the column, followed by passing 10 mL of 

ultrapure water. The resin was then conditioned to appropriate pH by using 5 mL of 

ammonium acetate solution. Sample solution (10 mL), whose pH was adjusted with the same 

buffer solution for column conditioning, was passed through the column. Then, 5 mL aliquot 

of 0.2 M ammonium acetate solution was passed through the column to remove un-adsorbed 

metal ions, mainly hard cations such as alkaline and alkaline earth metals. The remaining 

buffer solution in the column was washed out by passing 5 mL of ultrapure water. Finally, 10 

mL of 1 M HNO3 was passed through the column for recovering metal ions which were 
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adsorbed on the resin. The effluents were collected, and analyzed by ICP MS. 

 

2.5 On-line metal collection and determination procedure 

The manifold of Auto-Pret AES system is shown in Fig. 2. The system was composed 

of a syringe pump (SP) with volume capacity of 2.5 mL, a six-port selection valve (SLV), and 

a six-way switching valve (SWV). CCTS-SDA resin was packed in polytetrafluoroethylene 

(PTFE) column (2 mm i.d x 4 cm), and the column was installed on SWV in the position as 

shown in Fig. 2. PTFE tubing with 0.8 mm of inner diameter was used for all connecting lines, 

except for holding coil where PTFE tubing with 2 mm of inner diameter was used. The 

on-line pretreatment procedure was carried out in four major steps: column conditioning, 

preconcentration, washing, and elution.  

In the first step, namely column conditioning step, 1 mL of 0.5 M ammonium-acetate 

solution (pH 7) was aspirated into holding coil at flow rate of 100 μL s-1 through port 3 of 

SLV. While SWV was kept in load-position, the solution in holding coil was injected at flow 

rate of 30 μL s-1 into the column in order to adjust the pH of the resin.  

In the preconcentration step, 2.5 mL of sample was aspirated into holding coil at flow 

rate of 100 μL s-1 through port 2 of SLV. The aspirated sample was then injected into the 

column at flow rate of 20 μL s-1 for the adsorption of target elements on the resin as well as 

the removal of matrices. This process was repeated two times to have 5 mL of sample passed 
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through the column.  

The washing step was carried out by aspirating 1 mL of ultrapure water into syringe 

pump at flow rate of 100 μL s-1, and then the aspirated-water was injected into the column at 

flow rate of 30 μL s-1. This process will force the sample which remained in the 

connecting-line to pass through the column, and at the same time removes the remaining 

matrices and un-adsorbed metal ions.  

Finally, in the elution step, 10 μL of air was aspirated at flow rate of 10 μL s-1 from the 

port 6 of SLV, followed by aspiration of 0.5 mL of 2 M nitric acid into holding coil at flow 

rate of 100 μL s-1 from the port 5 of SLV, and then 10 μL of air was aspirated again at flow 

rate of 10 μL s-1 from the port 6 of SLV, hence the eluent was sandwiched with air bubbles. 

The position of syringe pump was set to 2.5 mL by aspirating ultrapure water into the syringe 

pump at flow rate of 100 μL s-1. This step was made to ensure that the next injection will 

completely transport the eluent through the column and reach ICP-AES nebulizer. After the 

eluent preparation was done, the position of SWV was turned to inject-position, and the eluent 

was injected into the column at flow rate of 30 μL s-1, and the effluent zone moved to the 

ICP-AES for measurement. 

The entire sequence described above was automatically controlled with home-made 

software developed by the authors, using Microsoft Visual Basic 6. 
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2.6 Samples 

The certified reference material of river water, SLRS-4, was purchased from Chemical 

Metrology, Institute for National Measurement Standards, National Research Council of 

Canada (Ottawa, Ontario, Canada). 

River water samples were collected from Zasu and Asahi River which flow through 

Okayama City. These samples were acidified to about pH 1 by adding concentrated nitric acid, 

followed by filtration with 0.45 μm membrane filter before storage. 

 

3 Results and Discussion 

3.1 Characteristics of CCTS-SDA resin 

The products from each synthesis step were characterized by measuring their IR 

spectra. The result is shown in Fig. 3. The peak at 894 cm−1 in the spectrum of cross-linked 

chitosan confirms N–H wagging of the amino group. This peak intensity was decreased 

when chloromethyloxirane was attached to chitosan through the amino group. The appearance 

of C-Cl bonding in CCTS-chloromethyloxirane, however, is not reliable to be distinquished 

from CCTS since C-Cl adsorption peak falls in the region of C-H and C-C adsorption peak. 

The alteration of CCTS-chloromethyloxirane to CCTS-serine was marked by the appearance 

of sharp peak in 1743 cm-1, which represents the carbonyl group from serine moiety. Another 

sharp peak in 1560 cm-1 confirms the existence of N-H scissoring of primary amine in serine 
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moiety. The reaction between CCTS-serine with bromo acetic acid caused the amino group in 

serine moiety altered to tertiary amine. This reaction was confirmed by the disappearance of 

peak in 1560 cm-1 which correspond to N-H scissoring of the primary amine. 

 

3.2 Adsorption of various elements on CCTS-SDA 

The result of adsorption behavior study is summarized in Fig. 4, expressed as recovery 

of each 10 μg L-1 of 57 elements at pH 1 to 9 using batch-wise mini-column procedure. The 

synthesized resin shows good adsorption toward Cd (pH 6-9), Pb (pH 6-9), Cu (pH 2-9), Ni 

(pH 3-9), V (pH 6-9), Ga (pH 2-9), Sc (pH 6-9), In (pH 2-9), and Th (pH 3-9). Rare earth 

elements (REE), sharing their similar properties, were adsorbed on the resin at neutral pH 

region. Almost all of the adsorbed metal ions can be quantitatively recovered with 1 M HNO3.  

It was reported that cross-linked structure of chitosan may hinder metal ions from 

accessing functional groups which bound directly to the chitosan, and therefore adsorption 

capability of cross-link chitosan may possibly inferior than chitosan itself [20]. However, in 

the present study, the serine diacetic acid functional group was introduced to the chitosan 

through the extension arm of chloromethyloxirane, thus providing better access for metal ions 

to the functional group. The proposed CCTS-SDA resin possesses three acetic acid groups 

which bound to the terminal of the moiety, and thus enhance chitosan capability in chelating. 

Additionally, a combination between chelating and ion exchange mechanism was expected to 
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be active since vanadium as an oxoanion can be adsorbed on the resin through ion exchange 

mechanism, while other elements were adsorbed through chelating mechanism. Several 

chelating groups which were attached on the adjacent chitosan-monomer may also coordinate 

metal ions. The proposed structure of metal chelation by CCTS-SDA is shown in Fig. 5:  

 

3.3 Optimization of the auto-pretreatment system 

3.3.1 Column dimension 

The synthesized resin was packed in a PTFE column (2 mm i.d. x 4 cm) and the 

column was installed in the Auto-Pret System. The utilization of line-filter (6 mm i.d. x 4 mm 

packing length) as an alternative for resin packing was also studied. The result showed that 

the longer PTFE column is preferred, since it gave higher sensitivity, rather than the short 

line-filter with the nearly same amounts of packed-resin. Although it might be a good idea to 

keep extending the length of column, the increase of column length will lead to an increase of 

internal pressure inside the column, which will become one of serious drawbacks in the 

system. 

 

3.3.2 Effect of sample pH and sample flow rate 

In solid phase extraction studies which involve chelation, influence of aqueous 

solution pH is one of the important factors for quantitative collection/concentration and 
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recoveries of target analytes. The influence of pH in the collection and recovery of 57 

elements was investigated in the ranges of 1 – 9 as described in section 3.2: the results are 

shown in Fig. 4. For further experiment, pH 7 was selected since it allows simultaneous 

determination of 13 trace elements, Cd, Pb, V, Cu, Ni, Sc, Dy, Er, Eu, Lu, Yb, Gd, and Ho. 

Among these metal ions, Cd, Pb, V, and Cu are toxic heavy metal ions and requisite for metal 

analysis in environmental water samples, and lanthanoid metals are interesting in the field of 

earth science. 

Sample flow rate determines the contact duration between sample solution and resin in 

the column. If the resin adsorption rate toward analytes is fast enough, then the required 

contact time to achieve good adsorption efficiency will be lesser. In general, longer contact 

time will lead to better adsorption efficiency of the analytes on the resin. However, a 

compromise between sample flow rate and sample throughput should be considered. In the 

present study, the effect of sample flow rate on the collection of metals was examined in the 

ranges of 15 – 30 μL s-1. Sample flow rate greater than 20 μL s-1 was found to cause lower 

peak height of the observed signal, if compared to those obtained by using flow rate lower or 

equal to 20 μL s-1. Practically, it is preferred to have faster analysis time, thus sample flow 

rate of 20 μL s-1 was selected for further study. 

 

3.3.3 Effect of concentration, volume, and flow rates of eluent 
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Nitric acid was used as the eluent in this study, and its concentration and flow rates 

were optimized to improve the sensitivity. 

The concentration of nitric acid affects the effectiveness of desorption process, and 

also affects the desorption rate of adsorbed elements. Since in an on-line preconcentration 

system the desorbed-analytes is concentrated in a zone of eluent, rapid elution would allow 

analytes to be desorbed in a narrow eluent zone, and thus improve the sensitivity of the 

system. In contrast, less rapid elution will cause the analytes to be distributed in a wider 

eluent zone, and consequently decreasing the sensitivity of the system. The effect of nitric 

acid concentration was studied in the range of 0.5 M to 3 M. It was found that 0.5 M was not 

effective to elute the adsorbed elements and gave the lowest sensitivity among the 

concentrations studied. Quantitative recovery of the adsorbed elements can be carried out by 

using 1 M of nitric acid. However, related to the elution rate which affects the distribution of 

desorbed elements in the eluent zone, 2 M nitric acid was found to give better sensitivity than 

1 M of nitric acid. Further increase in nitric acid concentration, such as 3 M of nitric acid, was 

found to give insignificant improvement in sensitivity compared to 2 M of nitric acid. 

Therefore, 2 M nitric acid was selected for further experiments.  

The volume of the eluent (2 M HNO3) was examined by varying its value from 0.25 to 

0.75 mL to ensure complete elution of the analytes and provide the highest sensitivity. It was 

found that the peak height of obtained signals increased with the increase of eluent volume, 
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up to 0.5 mL. The elution with more than 0.5 mL of 2 M nitric acid, however, showed a 

decreasing trend in peak height. This is because an internal dispersion occurred in the eluent 

zone, as the eluent zone became longer with the increase of eluent volume. Therefore it is 

preferred to trap the eluent in a shorter zone. As a compromise, 0.5 mL was selected as the 

optimal volume. 

The flow rate of eluent determines the contact time between eluent and resin, and 

longer contact time is supposed to give a better desorption efficiency. The effect of eluent 

flow rate (2 M HNO3) was examined by varying eluent flow rate from 12 to 45 μL s-1. It was 

found that flow rate lower than 20 μL s-1 resulted in lower peak height, due to dispersion of 

desorbed-analytes in the eluent zone during its flow to ICP-AES, and flow rate larger than 30 

μL s-1 caused decreasing in peak height because of insufficient contact time. Considering the 

analysis time, the eluent flow rate of 30 μL s-1 was selected as the optimal condition for eluent 

flow rate. 

The effect of reversion eluent flow, in which the direction of eluent flow is opposite to 

the direction of sample flow, was also examined to improve the sensitivity of the system. The 

application of reversion eluent flow rate in Auto-pret system was found to give higher peak 

height, compared to the result obtained when the elution direction was the same with the 

sample flow. Therefore, reversion eluent flow was carried out in this work, by attaching the 

mini-column on port 2 and 6 of SWV, as shown in Fig. 2, thus the eluent flow will become 
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reversed when SWV is switched to inject position. 

 

3.3.4 Effect of air bubbles for sandwiching eluent zone 

Air bubbles was used in the elution process in order to prevent the dispersion of eluent 

zone during its flow in the holding coil, through the column, and finally reach ICP-AES, 

which results in higher sensitivity. In this process, the eluent zone formed by 0.5 mL of 2 M 

HNO3 was sandwiched at both ends with air bubbles and flowed through the column. A 

significant improvement of peak height was observed. The peak height increase 10 – 22% 

compared to the elution without air bubbles. The volume of air bubbles in both ends of the 

eluent zone was examined by varying the volume from 8 to 30 μL: 10 μL of air bubbles was 

sufficient for sandwiching the eluent zone. 

The optimized parameters of Auto-Pret System were summarized in Table 2, and an 

example of flow signal of Cd in ppt levels is shown in Fig. 6. 

 

3.4 Analytical figures of merit 

The performance of the proposed method was evaluated by examining sensitivity 

enhancement factor and detection limits. Linear equations from the calibration graph of trace 

elements, which were mainly constructed in sub-ppb levels to ppt level, showed good 

correlation coefficient for the examined elements. These values are summarized in Table 3. 
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 level. 

The sensitivity enhancement factor was calculated from the ratio of peak height 

obtained by using Auto-pret system under the optimal condition, to those obtained by directly 

injecting the samples into ICP-AES. The sensitivity enhancement factors can vary due to the 

difference in the desorption rate of each element. An element which can be desorbed in higher 

desorption rate will be concentrated in a narrower eluent zone, and thus give a higher 

sensitivity enhancement factor. 

Limits of detection (LOD), for each examined analytes, is defined as the concentration 

corresponding to the three times of signal-to-noise ratio. These results are also summarized 

in Table 3: LODs are varied from 0.002 μg L-1 (Cd) to 0.095 μg L-1 (Ni). Lower LOD value 

can be expected by increasing sample volume. From these results, the proposed method 

provides a significant improvement in sensitivity and enables the measurement of heavy metal 

ions in sub-ppb and ppt

 

3.5 Application to real river water samples 

The applicability of the proposed method was verified by determining a certified 

reference material of river water, SLRS-4. The obtained result demonstrates that the 

concentration of trace elements obtained by using the proposed method is in good agreement 

with the certified values. Moreover, this result suggests that common matrices in river water 

do not interfere with the determination. Further, the method was applied to the determination 
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of trace elements in water samples taken from Asahi River and Zasu River, which flow 

through Okayama city, Japan. The result of trace elements determination by the proposed 

method, using 5 ml of river water sample, is shown in Table 4. The concentrations of metal 

ions were found to be higher than the LOD of measurement shown in Table 3, and good 

reproducibility was obtained, except for Cu. This is because copper cone was used in 

ICP-AES in this study, thus the reproducibility and LOD of Cu were inferior compared to the 

result of other metal ions. 

 

4 Conclusion 

A novel chitosan resin functionalized with serine diacetic acid moiety was synthesized 

and examined. The synthesized resin showed good adsorption behavior toward 13 trace 

elements: Cd, Pb, V, Cu, Ni, Sc, Dy, Er, Eu, Lu, Yb, Gd, and Ho. It was found that common 

matrices which exist in environmental water samples do not interfere with the determination.  

The utilization of auto-pretreatment system, combined with the synthesized resin,  

provides fast analysis, good sensitivity, and excellent detection limit. The method was 

successfully applied to the determination of trace elements in river water samples, verified 

with a certified reference material. 
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Figure captions 

Fig. 1 Synthesis scheme of CCTS-SDA. (A) Synthesis of CCTS (B) Protection of amino 

group in serine (C) Synthesis of CCTS-SDA. 

CCTS: Crosslinked chitosan 

CCTS-SDA: Crosslinked chitosan functionalized with serine diacetic acid moiety 

 

Fig. 2 Laboratory-assembled auto-pretreatment system manifold for on-line preconcentration 

and determination of trace elements. 

SP: Syringe pump; V1: Syringe valve; SLV: Six-port selection valve; SWV: Six-way 

switching valve; MC: Mini column; 

 

Fig. 3 FT-IR spectra; (A) CCTS (B) CCTS-chloromethyloxirane (C) CCTS-serine (D) 

CCTS-SDA. 

 

Fig. 4 Adsorption behavior CCTS-SDA resin toward various elements. 

Samples: 10 mL of solution containing 10 μg L-1 various elements; eluent: 10 mL of 1 M 

HNO3 

 

Fig. 5 Proposed structure of metal chelation on serine diacetic acid moiety. 
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Fig. 6 Example of flow signals of Cd at ppt level. 

Sample volume: 5 mL; other conditions are the same as summarized in Table 2. 
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Fig. 1 Synthesis scheme of CCTS-SDA. (A) Synthesis of CCTS (B) Protection of amino group 
in serine (C) Synthesis of CCTS-SDA. 
CCTS: Crosslinked chitosan 
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Fig. 2 Laboratory-assembled auto-pretreatment system manifold for on-line preconcentration 
and determination of trace elements. 
SP: Syringe pump; V1: Syringe valve; SLV: Six-port selection valve; SWV: Six-way switching 
valve; MC: Mini column; 
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Fig. 3 FT-IR spectra; (A) CCTS (B) CCTS-chloromethyloxirane (C) CCTS-serine (D) 
CCTS-SDA. 
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Fig. 4 Adsorption behavior CCTS-SDA resin toward various elements. 
Samples: 10 mL of solution containing 10 �g L-1 various elements; eluent: 10 mL of 1 M 
HNO3 
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Fig. 5 Proposed structure of metal chelation on serine diacetic acid moiety. 
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Fig. 6 Example of flow signals of Cd at ppt level. 
Sample volume: 5 mL; other conditions are the same as summarized in Table 2 
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List of Tables 

Table 1 Operating conditions of ICP-AES 
Spectrometer  VISTA PRO 
Plasma conditions  

RF power 40 MHz , 1.2 kW 
Plasma gas flow rate (L min-1) Ar 15.0 
Auxiliary gas flow rate (L min-1) Ar 1.50 
Nebulizer gas flow rate (L min-1) Ar 0.75 
Spray chamber Glass cyclonic spray chamber 
Nebulizer K-style concentric glass nebulizer 
Torch One-piece low flow extended torch in 

the axial view mode 
Data acquision  

Measurement mode Time scan mode 
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Table 2 Optimized conditions for auto-pretreatment system 

 
Parameter Range examined Selected conditions 
pH of sample 1-9 7 
Sample loading flow rate 15-30 μL s-1 20 μL s-1 
Eluent concentration 0.5 – 3 M HNO3 2 M 
Eluent volume (2M HNO3) 0.25 – 0.75 mL 0.5 mL 
Eluent flow rate (2M HNO3) 12 – 45 μL s-1 30 μL s-1 
Volume of air bubbles 0 – 30 μL 10 μL 
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Table 3 Analytical figures of the proposed method with the auto-pretreatment system 

 

Elements  λ (nm) R2 a) SEF b) 
LOD c) 

(μg L-1) 

Cd 214.349 0.999 62 0.002 

Cu 324.754 0.998 61 0.024 

Ni 216.555 0.990 23 0.095 

V 292.401 0.991 25 0.033 

Pb 220.353 0.998 33 0.036 

Sc 361.383 0.994 74 0.005 

Dy 353.171 1.000 84 0.039 

Er 349.910 0.991 82 0.018 

Eu 420.504 0.999 120 0.026 

Lu 261.541 0.999 85 0.003 

Yb 328.937 0.995 79 0.005 

Gd 342.246 0.993 73 0.028 

Ho 345.600 0.996 76 0.019 
a) Linearity of the calibration graph 
b) Sensitivity enhancement factor 
c) Correspond to the three times of signal-to-noise ratio (S/N = 3) 
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Table 4 Analytical results of river water samples and standard reference material 
 

Element Found Certified value 
of SLRS-4 

(μg L-1) 
River water A*1 

(μg L-1) 
River water B*2

(μg L-1) 
SLRS 4*3 
(μg L-1) 

Cd 0.006 ± 0.001 0.003 ± 0.001 0.011 ± 0.001 0.012 ± 0.002 

Pb 0.674 ± 0.017 0.441 ± 0.029 0.082 ± 0.004 0.086 ± 0.007 

V 0.416 ± 0.014 0.490 ± 0.046 0.350 ± 0.011 0.32 ± 0.03 

Cu 0.487 ± 0.026 0.861 ± 0.063 1.67 ± 0.20 1.81 ± 0.08 

Ni 0.487 ± 0.017 0.486 ± 0.030 0.647 ± 0.060 0.67 ± 0.08 

Sc 0.008 ± 0.0001 0.015 ± 0.0005 0.052 ± 0.008  
Dy 0.072 ± 0.001 0.081 ± 0.002 0.160 ± 0.001  
Er 0.120 ± 0.002 0.170 ± 0.030 0.100 ± 0.010  
Eu 0.066 ± 0.003 0.053 ± 0.003 0.050 ± 0.007  
Lu 0.014 ± 0.0002 0.014 ± 0.0004 0.019 ± 0.001  
Yb 0.014 ± 0.0002 0.019 ± 0.0005 0.024 ± 0.002  
Gd 0.075 ± 0.005 0.092 ± 0.008 0.119 ± 0.0008  
Ho 0.039 ± 0.001 0.031 ± 0.006 0.064 ± 0.004  

*1 River water A was sampled at Asahi River, Okayama City, Japan; 
*2 River water B was sampled at Zasu River, Okayama City, Japan; 
*3 Standard reference material of river water;  

Five milliliters of the sample was used, and experimental conditions were the same as 
in Table 2  
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