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Abstract 

 

Multi-component probability distributions such as the two-component Gumbel distribution 

are sometimes applied to annual flood maxima when individual floods are seen as belonging 

to different classes, depending on physical processes or time of year. However, hydrological 

inconsistencies may arise if only non-classified annual maxima are available to estimate the 

component distribution parameters. In particular, an unconstrained best fit to annual flood 

maxima may yield some component distributions with a high probability of simulating floods 

with negative discharge. In such situations multi-component distributions cannot be justified 

as an improved approximation to a local physical reality of mixed flood types, even though a 

good data fit is achieved. This effect usefully illustrates that a good match to data is no 

guarantee against degeneracy of hydrological models.  
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1. INTRODUCTION 

 

It is often convenient to classify individual floods into different subsets to reflect different 

causal effects. For example, different flood types might be modelled by different probability 

distributions depending on runoff mechanisms. Whatever the classification, if it happens that 

N different flood types occur as independent events in every year, then the annual maxima 

may be viewed as the largest of N random variables, being themselves the largest magnitudes 

of each of the N flood types in a given year. 

 

If ( )iF x  denotes the distribution function of the annual maxima of the i th flood type, then the 

distribution function of the annual maxima without regard to type can be written: 
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Probably the best-known flood distribution of this form is the two-component distribution 

introduced by (Rossi et al., 1984). In this case the annual maxima were viewed as the larger 

of two maxima, which themselves were the largest members from two samples drawn from 

two different exponential distributions, with the sample sizes being Poisson random variables. 

In that particular model the Poisson component (with nonzero probability of zero floods) 

implies that some years might have only one flood type, and some years may have no floods. 

 

When applying Equation (1), the different flood types may be identifiable by time of year or 

by observed runoff mechanism so the parameters of the component distributions can be 

estimated sequentially using the recorded discharges of the respective flood types (Waylen 

and Woo, 1982; Gioia et al., 2008, Strupczewski et al., 2012). However, in the event of non-

identifiability it is necessary to estimate the component parameters simultaneously from the 

annual maxima record alone, even though it is recognised that different flood types do in fact 

occur within a given year.   

 

The purpose of this brief communication is to illustrate via the two-Gumbel distribution that 

fitting G(x) from annual maxima alone may result in some component flood distributions 

having non-hydrological properties. This arises when the maxima cannot be categorized 
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individually for whatever reason.  The effect should be obvious normally but sometimes 

could be hidden to some degree if an alternative parameterisation is employed.   

 

2. THE TWO-GUMBEL DISTRIBUTION 

 

The two-Gumbel distribution is defined here as the distribution of the maxima of pairs of 

independent random variables, respectively arising from two different Gumbel distributions. 

From Equation (1), the two-Gumbel cumulative distribution function can be written: 

 

 

2

1

( ) exp{ exp[ ( ) / ]} 0i i

i

G x x   


          (2) 

  

where i  and i  are respectively the modal values and scale parameters of the two Gumbel 

component distributions. An alternative parameterisation is: 
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where exp( / )i i i  . 

 

Two-Gumbel distribution can arise as limit distributions of the two-component model of 

Rossi et al., (1984), as defined by their Equation (15). A requirement here is that the two 

Poisson expected values are both sufficiently large. More generally, the two-Gumbel 

distribution will arise when individual floods of the two different types occur in every year 

and there must be sufficiently large numbers of both types per year to enable the asymptotic 

extreme value conditions to apply for their respective annual maxima. In addition, the 

probability distributions of the two flood types must both be in the extreme value domain of 

attraction of the Gumbel distribution.  
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3. POTENTIAL ANOMALIES FROM DATA FITTING 

 

Two-Gumbel parameter estimation procedures via maximum likelihood and least-squares are 

given respectively by Rossi et al., (1984) and Canfield (1979). It is conceptually possible, 

however, for flood models structured as per Equation (1) to yield good fits to data from 

parameter estimation while at the same time being inconsistent with hydrology. 

 

The potential for inconsistency is illustrated in Figure 1a, showing a plot of two hypothetical 

Gumbel component distributions and the associated probability distribution of the complete 

two-component distribution. The two-component distribution in fact differs in this case only 

slightly from component distribution with the larger mean because the maxima of the pair of 

variables will in this case very often come from the component distribution with the larger 

mean. However, for the smaller-valued maxima the component distribution here with the 

smaller mean may sometimes provide the maxima.  

 

In this hypothetical example the influence of the smaller-mean component distribution could 

result in a slightly better fit to the smallest recorded annual maxima. However, the price to be 

paid is that the modal value of the smaller-mean component flood distribution is located at 

zero discharge, which has no hydrological interpretation. 

 

 Figure 1b shows the corresponding cumulative distribution functions. There is evidently a 

relatively high probability (0.37) that a negative discharge value will arise from a random 

flood event generated from the component flood distribution with lower mean. However, the 

model as a whole has only a very small probability of generating a negative flood discharge 

and so might yield a good fit to annual maxima.  

 

A similar effect is shown from a set of recorded flood data in Figures 2 and 3, as a result of 

least-squares fitting the two-Gumbel distribution of Equation (2) to a set of uncategorized 

annual flood maxima from the Orari River in New Zealand. Again, the modal value of the 

smaller-mean component flood distribution is close to zero discharge. The component 

distribution with the smaller mean provides some extra flexibility here through slightly better 

fitting the smaller annual maxima, but at the expense of loss of hydrological reality. 
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This type of anomalous fitting result should normally be obvious from unexpected estimated 

parameter values. However, if the parameterisation of Equation (3) was employed in a fitting 

process then it might not be appreciated that a resulting parameter combination could imply 

one of the component distributions is inconsistent with hydrology. The present paper was 

motivated in fact by such a condition becoming evident in the course of a review a flood 

analysis report. The two-Gumbel distribution could still be employed in such circumstances 

as a flexible four-parameter empirical flood distribution. However, it would be incorrect to 

assume at the same that it had physical justification based on a supposed better representation 

of a two-component hydrological reality. 

 

3. CONCLUSION 

 

It would be desirable to check previous two-Gumbel fits applied to unclassified annual 

maxima to ensure the component flood distributions have hydrological consistency. In fact, 

this is unlikely to involve many past analyses.  The message here is more to do with the 

philosophy of hydrological modelling generally. Any multi-component hydrological model is 

only valid if all its components are valid. If the process of fitting to data causes unrealistic 

parameterisation of a model component then the hydrological model as a whole fails, even if 

it gives excellent matching to data. 
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Figure 1. Plot of a two-Gumbel distribution, with component distribution parameters 

respectively 1  = 0, 1  = 1, and 2  = 2, 2  = 1, as defined in Equation (2). Probability 

density functions and cumulative distribution functions are shown in (a) and (b) respectively. 

The component distributions are graphed in black. The red plots denote the distribution for 

maxima of pairs if random variables from the two component distributions.  
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Figure 2. Least-squares fit of the two-Gumbel distribution to 63 annual maxima of the Orari 

River, Canterbury, New Zealand. The data includes both recorded and historic floods. 

  



 

 
This article is protected by copyright. All rights reserved. 

 

 

Figure 3. Plot of the two component Gumbel distributions from the component parameter 

values obtained from the fit to annual maxima shown in Figure 2. 


