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Class Conditional Nearest Neighbor and Large 
Margin Instance Selection

Elena Marchiori

Abstract—The one nearest neighbor (1-NN) rule uses instance 
proximity followed by class labeling information for classifying 
new instances. This paper presents a framework for studying 
properties of the training set related to proximity and labeling 
information, in order to improve the performance of the 1-NN 
rule. To this aim, a so-called class conditional nearest neighbor 
(c.c.n.n.) relation is introduced, consisting of those pairs of 
training instances (a, b) such that b is the nearest neighbor of 
a among those instances (excluded a) in one of the classes of 
the training set. A graph-based representation of c.c.n.n. is used 
for a comparative analysis of c.c.n.n. and of other interesting 
proximity-based concepts. In particular, a scoring function on 
instances is introduced, which measures the effect of removing 
one instance on the hypothesis-margin of other instances. This 
scoring function is employed to develop an effective large margin 
instance selection algorithm, which is empirically demonstrated 
to improve storage and accuracy performance of the 1-NN rule 
on artificial and real-life data sets.

Index Terms—Computing Methodologies, Artificial Intelli­
gence, Learning, Heuristics design, Machine learning.

I. INTRODUCTION

In a typical classification problem  we are given a training set 
consisting o f sample points and their class labels. The training 
set is used for predicting the class o f new  sample points. In 
particular, the one nearest neighbor (1-N N ) rule classifies an 
unknown point into the class o f the nearest o f the training 
set points. 1-NN is used in m any applications because o f its 
intuitive interpretation, flexibility, and sim ple im plementation. 
M oreover, for all distributions, the 1-NN  rule’s probability of 
error is bounded above by tw ice the B ayes’s probability o f 
error [11]. However, 1-NN  requires to m em orize the entire 
training set (that is, it is a m em ory-based classifier), and its 
perform ance can be negatively affected by the presence of 
m any input variables (see for instance, [17], [20], [30]) or 
noisy instances (see for instance [8], [37]). In order to tackle 
these problem s, various algorithms have been developed, such 
as those for instance/prototype selection [1], [2], [3], [8],
[19], [22], [31], for feature selection [20], [25], [36], and for 
distance learning [29], [39], [40].

The 1-NN rule does not rely on knowledge o f the underly­
ing data distribution (non-param etric classification), but uses 
directly proxim ity followed by class labeling inform ation for 
classifying new points. This paper focusses on the representa­
tion and analysis o f proxim ity and labeling properties o f the 
training set related to the perform ance o f the 1-NN rule.

To this aim, we introduce a relation called class conditional 
nearest neighbor (c.c.n.n. in short), defined on pairs of points
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from  a labeled training set as follows. A pair o f points (a, b) of 
the training set satisfies c.c.n.n. if  b is the nearest neighbor of 
a among those points (different from  a) in one o f  the classes o f  
the training set. This relation describes proxim ity inform ation 
conditioned  to the class label, for each class o f the training 
set.

A graph-based fram ework representing c.c.n.n., called Hit 
Miss N etw ork (HMN) [27], is used for analyzing and applying 
c.c.n.n. as follows.

• HMN is partitioned into a so-called hit- (HN) and miss- 
(MN) network, characterizing the nearest neighbor relation 
w ithin and between classes, respectively. These graphs 
are used to study the relation between c.c.n.n. and the 
two popular proxim ity concepts o f nearest neighbor and 
nearest unlike neighbor [13].

• The in-degree o f points in HN and MN are used to analyze 
how rem oving one instance from  the training set affects 
the (hypothesis) m argin o f other instances.

• This analysis is used to introduce a scoring function, 
called H M sc o re , which assigns a high score to points 
w hose rem oval is likely to decrease the m argin o f m any 
other points.

• H M sc o re  is used to develop a new algorithm  for large 
m argin instance selection. Experim ents on artificial and 
real-life data sets, and a com parative analysis o f the re­
sults with those obtained by two state-of-the-art instance 
selection algorithms, show that c.c.n.n.-based instance 
selection is an effective approach for improving storage 
and test accuracy perform ance of the 1 - n n  rule.

These results show the usefulness o f c.c.n.n. for defining 
properties o f training set instances to be used for improving 
the perform ance o f the 1 - n n  rule.

Related Work

To the best o f our knowledge, the graph-based analysis of 
c.c.n.n. by means of HMN’s and the large m argin approach for 
instance selection provide two original contributions of this 
paper.

HMN’s have been introduced in [27]. In that paper it 
was shown that structural properties o f HMN’s correspond to 
properties o f training points related to the decision boundary 
o f the 1-NN  rule, such as being border or central point. 
This observation was used to introduce an instance selection 
heuristic algorithm  for the 1-NN rule based on HMN’s.

H ere HMN’s are used for analyzing the c.c.n.n. relation, for 
studying how rem oval o f points affect the hypothesis m argin of 
other points, and for perform ing large m argin-based instance 
selection.

http://www.cs.ru.nl/~elenam
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Graph representations in the context o f 1-NN -based classi­
fication m ainly use proxim ity graphs. Proxim ity graphs are 
defined as graphs in which points close to each other by 
some definition o f closeness are connected [4]. The nearest 
neighbor graph (NNG) is a typical example o f proxim ity graph, 
where each vertex is a data point that is joined by an edge 
to its nearest neighbor. Representations o f a data set based 
on proxim ity graphs have been used w ith success to define 
algorithms for improving storage and accuracy of the nearest 
neighbor rule. For a thorough survey o f graph-based m ethods 
for nearest neighbor classification, the reader is referred to 
[37].

A popular relation involving both proxim ity and class 
labeling inform ation is the nearest unlike neighbor (NUN) [13], 
which links one point w ith its nearest neighbor am ongst those 
points with different class label. NUN has been used in [15] 
to provide a  m easure o f confidence in the decisions m ade by 
the 1-NN  based decision systems, and em ployed in [14] for 
defining hybrid condensing algorithms.

c.c.n.n. contains both types o f label-independent (nearest 
neighbor) and label-dependent (nearest unlike neighbor) in­
formation, as proven in Section II using our graph-based 
framework.

The proposed application o f c.c.n.n. to analyze the effect o f 
one point rem oval on the hypothesis m argin o f other points, 
is inspired by works on large m argin analysis o f prototype 
selection [12], [6], and feature selection [20]. In [12] the 
notion o f hypothesis m argin is introduced and used to provide 
a large m argin bound for the generalization error o f a family 
o f prototype selection algorithms. In [20] hypothesis m argin is 
used to define a loss function for perform ing feature weighting, 
and to introduce a large m argin bound o f the generalization 
error for the 1 - n n  rule, which uses a set o f selected features.

Here we use the bound given in [12] as guideline for 
developing a large m argin instance selection algorithm, called 
HMSC. The m ain differences between HMSC and prototype 
selection algorithms, such as those analyzed in [12], is that 
in HMSC prototypes are m em bers o f the training set, and 
the num ber o f prototypes is autom atically com puted. Indeed, 
HMSC belongs to the family o f instance selection algorithms 
(see for instance [2], [37], [42]). It differs from  previously 
proposed algorithms for instance selection m ainly because it 
tries to directly enlarge the hypothesis margin. HMSC can 
be also interpreted as a large m argin procedure for training 
Voronoi networks [24].

The rest o f the paper is organized as follows. After p re­
senting the notation used throughout the paper, Section II 
introduces the c.c.n.n. relation, its graph-based representation 
by means of HMN’s, and a com parative analysis o f HMN’s 
with NNG and NUN. In Section III c.c.n.n. is applied to 
analyze the effect o f removing one instance from  the training 
set on the hypothesis-m argin, and used to define an instance 
scoring function. This scoring function is used in Section 
IV to develop a large m argin instance selection algorithm, 
whose perform ance is com paratively analyzed experimentally 
in Section V on a large collection of data sets. We conclude 
in Section VI w ith a summary o f the contributions, and point 
to future work.

Notation

The following notation are used throughout the paper.

- (A, L):  a  training set, consisting o f instances in A  with 
labels in L  =  (li , . . .  , l n ) from  c different classes.
- A i  : the set o f elements o f A  with class label i, i e  { 1 , . . . ,  c}.
- (S , L S ): a collection o f pairs o f the training set.
- a, b: elements o f A, called instances, or points.
- l(a): the class label o f a.
- 1-N N (a): the nearest neighbor of a.
- 1-N N (a, l): the nearest neighbor o f a among those points 
in Ai  different from  a.
- 1-N N (a, L i)  (with L i C L): the nearest neighbor o f a 
among those points in UleLl A l different from  a.
- G: a directed graph w ith nodes representing elements of A.
- e =  (a,b):  an edge o f G, with a the vertex from  which e is 
directed and b the vertex to which e is directed.
- deg(a):  the num ber o f edges where a occurs (the degree of 
a).
- deg(G):  the total num ber o f edges o f G  (the degree o f G).
- in-degree o f a in G  (in_deg (a, G )): the num ber o f edges of 
G  pointing to a .
- |S  |: the num ber o f elements (cardinality) o f a  set S .
- eS : here called training or em pirical error o f S . It is the 
leave-one-out error o f (A, L )  calculated using the 1-NN  rule 
w ith S  as training set; that is, if  a e  A  is also in S , then it is 
classified by the 1-NN  rule using as training set S  w ithout a.

In the sequel we assum e for sim plicity that 1 -N N (a), and 
1-N N (a, l) are unique, that is, each point has exactly one 
nearest neighbor (different from  a) in A, and in A l, for each 
class Al  o f the training set.

II. C l a s s  C o n d it io n a l  N e a r e s t  N e ig h b o r  w it h  H it  
M is s  N e t w o r k s

W ith the aim  to analyze class and proxim ity inform ation 
contained in a  training set in an integrated fashion, the 
following relation is introduced.

Definition 2.1 (Class Conditional Nearest Neighbor (c.c.n.n.)): 
The class conditional nearest neighbor relation on (A,L) is 
the set

{(a, b) I a ,b  e  A ,  3l e  {1, ..., c} (b =  1-N N (a, l ) )} .

■
We use the following graph-based characterization of

c.c.n.n., called H it Miss Networks [27]. Consider a set of 
instances A  w ith labels L  from  c different classes. In an HMN 
of (A ,  L ), for each label l in L , there is a directed edge from  
point a to b, its nearest neighbor com puted among those points, 
different from  a , having label l . Thus a has c outgoing edges, 
one for each label. W hen the labels of a and b are the same, 
we call (a, b) hit-edge and a a  hit o f  b, otherw ise we call (a, b) 
a miss-edge and a a  miss o f  b. The nam e hit m iss network is 
derived from  these terms.

Definition 2.2 (Hit Miss Network):  The Hit Miss Network  
o f ( A , L ) ,  denoted by hmn (A, L ),  is a directed graph G  =  
( V ,E )  with
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Fig. 1. HMN of a toy data set with two classes, with number of incoming hit and miss edges reported near each node.

• V  =  A  and
• E  =  { (a , 1-N N (a, l)) for each a e  A  and l e  { 1 , . . . ,  c}}.

■
Com puting the HMN of a given data set requires quadratic 

tim e com plexity in the num ber o f points. Nevertheless, by 
using m etric trees or other spatial data structures this bound 
can be reduced [21], [23]. For instance, using k d  trees, whose 
construction takes tim e proportional to n log (n ) ,  nearest neigh­
bor search exhibits approxim ately O ( n 1/2) behavior [21].

Figure 1 shows the HMN o f the training set for a toy 
binary classification task. Observe that the two points with 
no incoming edges are relatively far from  points o f the other 
class. M oreover, points with a high num ber of miss-edges are 
closer to the 1-NN decision boundary.

In [27] it was shown that the topological structure of HMN’s 
provides useful inform ation, about points o f the training set, 
related to their vicinity to the decision boundary.

Here we use HMN’s for studying class conditional proximity. 
We start by analyzing the relation between HMN and the 
popular nearest neighbor graph and nearest unlike neighbor 
concept. Specifically, we consider the following graphs.

• The h it and miss graphs, which describe the ’w ithin class’ 
and ’between classes’ com ponent o f c.c.n.n., respectively.

• The nearest neighbor graph, which describes the ’class 
independent’ com ponent of c.c.n.n..

• The nearest unlike neighbor graph, which coincides with 
the m iss graph for binary classification problem s.

A. Hit and Miss Networks

Let G  =  hm n(A , L ).  The hit network, denoted by h n (A , L),  
consists o f all the nodes o f G  and its hit edges. Analogously, 
the miss network, denoted by MN (A, L ),  consists o f all the 
nodes o f G  and its miss edges . We refer to the in-degree of 
nodes a in the h it and m iss network as hit and miss degree, 
denoted by hit_deg(a,G) and miss_deg(a,G), respectively.

Two subgraphs o f a graph are orthogonal if  they have 
disjoint sets o f edges. The following properties follow directly 
from  the definition o f hit and m iss network.

Property 2.3: L et G  =  hm n(A , L )  and a e  A .
1) h n (A , L )  and mn(A, L)  are orthogonal subgraphs of G.
2) G  =  h n ( A , L )  U m n(A ,L ).
3) in_deg (a, G) =  hit_deg (a, G) +  miss_deg (a, G).
4) £  aeA( m iss_deg(a , G) — (c — 1)hit_deg(a, G))  =  0.

■
Figure 1 shows h it and m iss degree, plotted on the left- and 

right-hand side of each point, o f a toy training set.

B. Nearest Neighbor Graph

The (directed) nearest neighbor graph (in short NNG(A)) is a 
popular representation o f the nearest neighbor relation over a 
set o f points A, which has been applied with success in studies 
and applications o f the nearest neighbor rule (see, e.g., [37]). 
For a training set (A, L ),  such proxim ity graph consists o f A  
as set o f vertices and {(a, 1 -N N (a)) | a  e  A }  as set o f edges.

The following statements relating NNG and HMN can be 
directly derived from  their definition.

Proposition 2.4: Let (A ,  L )  be a training set.
1) n n g (A )  ç  hm n(A , L).
2) n n g (A )  =  hm n(A , L)  if  and only if  c =  1.
3) n n g ( a )  =  h n (A , L)  if  and only if eA =  0.
4) n n g (A )  represents the label independent com ponent 

o f c.c.n.n., that is, (a, b) e  n n g (A )  if  and only if 
(a, b) e  hm n(A , L ')  for each L '  obtained by applying a 
perm utation to L .

■
We now turn to analyze the relation between HMN and 

another popular neighbor-based concept, the nearest unlike 
neighbor.

C. Nearest Unlike Neighbor Graph

The nearest unlike neighbor (NUN) is a  useful concept used 
since decades in diverse application domains, for instance
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Fig. 2. NUN graph (Figure (A)) and HMN (Figure (B)) of a 3-classes classification problem. NUN and miss points are circled.

geology [28], for detecting border points. Here we consider 
the NUN concept as defined in [13] in the m achine learning 
community. This concept was further analyzed and applied in
[15] to provide a m easure o f confidence in the decisions m ade 
by the 1-NN  based decision systems, and em ployed in [14] 
for defining hybrid condensing algorithms.

Using our notation, a point b is the nearest unlike neighbor  
(NUN) o f a if  b =  1-N N (a, Ul= l(a){l}). A point is called NUN 
point  if  it is the nearest unlike neighbor o f at least one point. In 
graph terms, one can define the NUN graph of (A,L), denoted 
by NUN(A,L), as the directed graph G  =  (V, E ) such that

• V  =  A  and
• E  =  { (a , b) I a e  A, b is the NUN o f a}.

Thus a point a e  A  is a NUN point if  and only if 
in_deg(a,  NUN(A, L ))  > 0.

If we now call M is s  the set o f m iss points o f HMN(A,L), 
consisting o f the set o f its vertices with positive m iss degree, 
then exam ple o f F igure 2 shows that, for m ore than two 
classes, M is s  provides m ore precise inform ation about the 
1-NN  decision boundary than NUN. Indeed, the F igure shows 
points o f three classes. Part (A) and (B) o f the figure shows 
the NUN and HMN graphs, respectively. Points in NUN and 
M is s  are circled. N ote that none of the ’triangle’ class points 
is a NUN. Hence, the NUN set provides a  partial description 
o f the 1-NN  decision boundary for this training set.

Formally, one can easily verify the following relation be­
tween n u n (A , L)  and hm n(A , L).

Proposition 2.5: For i , j  e  [1, c],i  =  j , let A ij  =  A i U A j  
denote the sequence o f points o f A  with class label either i 
or j , and let L i j  the corresponding sequence of class labels. 
Then

MN (A, L) =  UiJ e [ i,c],i=j NUN (A ij, L i j  ).

■
This equality shows in particular that NUN and MN graphs 

coincide for binary classification problems.
The above results show that class conditional nearest neigh­

bor integrates two useful class label independent (n n g ) and 
dependent (NUN) relations.

We turn now to analyze the relation between hit and miss 
degree of an instance and hypothesis margin, the latter a useful 
concept used in particular to bound the generalization error o f

nearest neighbor based classifiers and to develop algorithms 
for prototype and feature selection (see [12], [20]).

III. H it  M is s  D e g r e e  a n d  H y p o t h e s is -M a r g in

M argins play an im portant role in m achine learning re­
search, as a tool for perform ing theoretic analysis [5], [34], 
for developing new m achine learning algorithms [10], and for 
improving the accuracy perform ance o f nearest neighbor based 
classifiers [12], [20].

There are two m ain definitions o f m argin o f an instance with 
respect to a classification rule: sample-margin, which measures 
the distance between the instance and the decision boundary 
induced by the classifier, and hypothesis-margin , which is the 
distance between the hypothesis and the closest hypothesis that 
assigns alternative label to the given instance. For the 1-NN 
rule, in [12] it was shown that the hypothesis-m argin lower 
bounds the sample-margin, and that the hypothesis-m argin of 
an instance a w ith respect to a training set (A ,  L )  can be easily 
com puted as follows:

0a (o>) =  II a  — n e a r e s tm is s (a ) I I  — IIx — neares th i t (a )I I ,

where n e a r e s th i t (a )  and n e a r e s tm is s (a )  are the nearest 
neighbors o f a with equal and different class label, and II • II 
denotes the Euclidean norm.

Sample- and hypothesis- margins have been used for con­
structing theoretic generalization bounds as well as for devel­
oping m achine learning algorithms (see for instance [5], [12],
[18], [20]).

H ere we use margins for the latter task, nam ely as guideline 
for developing an instance selection algorithm  for the 1-NN 
rule as follows.

We seek a ’sim ple’ hypothesis (S, L S ), consisting o f a  small 
subset o f points o f A  and its labels, yielding a 1 - n n  large 
hypothesis-m argin. We start from  the biggest possible hypoth­
esis, nam ely A , and m easure the effect on the hypothesis- 
m argin o f rem oving each point from  A . Then we use the 
resulting m easurem ents for ranking instances, and use the 
ranking to construct a small ( S , L S ), incrementally.

The procedure employs hit and miss degrees as follows. 
We begin by showing how the hit and m iss degree o f an 
instance can be used to quantify the effect o f its rem oval on 
the hypothesis-m argin o f the rem aining instances. Recall that
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Fig. 3. Plot of HMscore(t, 1 — t), with t € [0, 1].

here the m argin o f a point is calculated with respect to the 
training set by excluding that point (’leave-one-out m argin’), 
as in [20].

Proposition 3.1: Let G  =  hm n(A , L)  and a e  A .  The 
following m utually exclusive statements hold.

1) If  hit_deg (a ,G )  =  0 and miss_deg (a ,G )  > 0 
then deleting a will increase the hypothesis-m argin of 
miss_deg (a, G)  other points.

2) If  in_deg(a, G) =  0 then rem oving a will not affect the 
hypothesis-m argin of any other point.

3) If  h i t_deg (a ,G )  > 0 and m iss_ d e g (a ,G )  > 0 then 
removing a will increase the hypothesis-m argin o f some 
points and decrease the one of others.

4) If  hit_deg (a ,G )  > 0 and miss_deg (a ,G )  =  0 
then deleting a w ill decrease the hypothesis-m argin of 
hit_deg(a, G)  other points.

Proof: L et L ( A )  = J 2 a E A  dA (a). One can easily check 
the validity of the following equality.

L (A )  =  ^2  aEAs.t. ^2  bEA s.t. Hb — a  ̂ —
miss_deg(a)>0 (6,a)eMN(A,L)

y , aEA s.t. y ] cEA s.t. IIc a H .
hit_deg(a)>0 (c,a)eHN(A,L)

Then the claims follow directly from  such equality. ■
This case analysis motivates the introduction o f the follow­

ing scoring function, which scores each point according to 
how its rem oval influences the hypothesis-m argin o f the other 
training set points. If  the removal o f one point from  the training 
set yields a decrease o f the hypothesis-m argin of m any other 
points, then that point is considered relevant and will receive 
a large score.

Definition 3.2 (Hit-Miss Score): Let a in ( A , L ) .  The h it­
m iss score o f a is

H M score (^ ,_p™ ) -Pha log Pa Pm

2 P i
—Pm log '1 h +  1 m  >

1 Pa +  1 Pm

where P}h and p m are the hit and m iss degree o f point a divided 
by the total degree o f HN and MN, respectively. ■

Figure 3 shows a p lot o f the hit-m iss score function for

(Ph ,Pmm) =  ( t  1 — tS) with t  e  [0,1].
The proposed definition o f hit-miss score is related to a 

directed inform ation theoretic divergence m easure based on 
the Shannon entropy, known as K-divergence (see for instance

[26]). Indeed, when taking the sum over a e  A  o f the hit-miss 
scores, one obtains the difference of the K-divergences o f the 
(normalized) hit and m iss degrees o f the points, that is,

£  H M sc o re (p i,p m )  =  K (ph ,p m ) — K ( p m , p h ),
aEA

where p h =  (ph , . . .  , p 1n), Pm =  (p T ,  . . .  ,Pm)  and

K ( p h , p T ) =  Y,Ph log

2)

3)

1 ph +  1 p t  '
2 p i ' 2 p i

Observe that the K-divergence is a non-sym m etric, bounded 
divergence m easure [26]. The above difference o f K- 
divergences can be interpreted as a global m easure o f relevance 
o f a training set, w ith respect to the effect o f point removal 
on the hypothesis-margin.

Figure 4 shows the H M sc o re  o f instances for a toy training 
set.

The following observations can be derived directly from  the 
definition of hit-miss score.

1) A point w ith zero hit-degree (cases 1 or 2 of Proposition 
3.1) has zero or negative hit-miss score; 
points with zero m iss-degree and positive hit-degree 
have positive hit-miss score (case 4); 
points with higher hit- than m iss- degree have positive 
score, while points with higher m iss- than hit- degree 
have negative hit-m iss score (case 3).

These observations justify the application o f hit-miss scores 
for ranking points in order to select a small subset o f ’relevant’ 
points, forming a large m argin hypothesis. In the next section 
we introduce an heuristic algorithm  based on such a ranking.

IV. LARGE MARGIN INSTANCE SELECTION WITH
H it -M is s  S c o r e s

In large m argin classifiers, such as support vector machines, 
one aims at finding an hypothesis yielding m axim al (sample) 
m argin and low training error. In particular, in [12] it is shown 
that a  popular prototype selection algorithm, Learning Vector 
Quantization  (LVQ), belongs to a  family o f m axim al m argin 
algorithms [18], [38], w ith different instances obtained by 
different choices o f loss functions.

hP
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Fig. 4. A training set and HMscore of its points.

An LVQ-based algorithm  seeks a set o f prototypes o f a given 
size in the input space, typically by m inim izing a suitable 
loss function using gradient search. In instance selection, 
prototypes are constrained to be m embers o f the training 
set, and the selection process is typically based on heuristic 
search (see for instance [42]). N ote that instance selection can 
be interpreted as training process for a family o f learning 
machines, also known in the literature as Voronoi networks 
[24]. Since LVQ and Voronoi networks are different, and we 
are not aware of large m argin bounds results for Voronoi 
networks, we use theoretical results on LVQ as ’guideline’ 
for developing a m argin-based instance selection algorithm.

Specifically, the following large m argin bound on the 
generalization error provides the guideline for developing a 
large-m argin based algorithm  for instance selection. Below, 
m arginß (a ) denotes the sam ple m argin o f a.

Theorem 4.1 ([12]): Let (A, L)  be a training set drawn 
from  som e underlining distribution D  on R m , with |A| =  n. 
Assum e that | |a || <  R . Let w be a set o f prototypes with k  
prototypes for each class. L et 0 < 9 < l / 2. Let a ^A,L)(w) =  
n |{ a  | m a r g in ^ (a )  < 9}|. L et eD (w) be the generalization 
error. Let S > 0.

Then with probability 1 -  S over the choices o f the training 
set:

a , . 18 /  o 32n  " 4\"
eD W  < a {A, L ) W  +  y  n l d g g S J ’

where d  is the VC dim ension

/  64R2 \  
d =  m in  [ m  +  1, ^  j  2 k c \o g (ek2).

In [6] a large m argin bound was given for a m ore general 
class o f LVQ classifiers with adaptive metric.

From  the above result it follows that if  a  prototype selection 
algorithm  selects a small set o f prototypes with large margin
9 and small 9-error, the bound guarantees that the resulting 
1-NN  rule will generalize well [12].

In our approach to instance selection, the three objectives, 
nam ely small num ber of instances, large hypothesis-margin, 
and small 9-error, are incorporated into the search strategy of 
the algorithm  as follows.

• Sm all n u m b e r  o f instances. The algorithm  expands an 
initial small core S  o f points by adding incrementally 
to S  one point at each iteration until a suitable stopping 
criterion is met.

• L a rg e  hypo thesis-m arg in . The order in which instances 
are selected is the one induced by the sorted (in descen­
dent order) list of hit-miss scores.

• Sm all 9 -error. The iterative process continues while the 
em pirical error eS decreases, until eS becomes sufficiently 
small.

Figure 5 shows the pseudo-code o f the algorithm, called 
H M sc o re  selection. The training error eS is considered suffi­
ciently small if  it is sm aller than eA. The core subset used to 
initialized S  is set to the first k 0 points o f the sorted sequence, 
with k 0 > c. This param eter allows the user to set a reasonable 
low er bound on the hypothesis size.

The algorithm  is applied to c pairs o f classes selected as 
follows, and the union o f the resulting selected instances is 
given as final result o f H M sc o re  selection. For each class 
i, the class j  m ost sim ilar to i is selected. H ere similarity 
between class i and j  is defined as the correlation between the 
hit- and m iss- degrees o f class i in HMN(Ajj, L i j ). This defini­
tion is based on the observations on topological properties of 
HMN’s shown in [27]. From  hm n(A , L )  =  HMN(Aij  , L ij ), 
it follows that c suitable com ponents o f c.c.n.n. are used by 
H M sc o re  selection.

Figure 6  (left plot) illustrates the effect o f the algorithm  on 
a training set o f the XO R classification problem . In particular, 
it shows that H M sc o re  selection discards isolated instances 
(with zero in-degree, see line 7 o f the code) as well as 
instances close to the 1-NN decision boundary.

In order to sim plify the output hypothesis, that is, reduce
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Fig. 6. Application of HMscore selection (left plot) and of Carving (right plot). The points selected have filled markings.
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1: Set the value o f k0;
2 ( a i , . . . ,  an ) = points o f A  

: sorted in decreasing order o f H M sc o re ; 
S  =  (ai,  . . . , a ko );
L s  =  ( l (a i ) , . . . ,  I(ako)); 
i =  ko +  1; 
go_on =  1;
ub =  n  — |{a s.t. H M sc o re (a )  <  0}|; 
w hile i < ub  and go_on  do 

T e m p  =  S  U {ai};  
if  eS < eA then  

0;go_on -­
end  if
if eTemp < eS and go_on  th en  

S = Temp;
Add l (a i ) to L s ; 
i =  i +  1;

else
go_on =  0; 

end  if 
end  w hile

network o f the previous iteration, that is, they had positive 
in-degree in HMN (Sprev , L Sprev ) (see line 6). The process is 
iterated while the em pirical error o f S o decreases and the size 
S o increases (line 7).

The effect o f the C a r v i n g  on the X O R exam ple is 
illustrated in the right part o f F igure 6, w hich shows the neat 
carving effect o f the procedure.

Fig. 5. Pseudo-code of HMscore selection. Input: training set (A,L). 
Output: subset (S, L s ) of the training set.

the num ber of selected instances, we propose in the sequel a 
procedure, called C a r v i n g .

A. Hypothesis Carving

Pseudo-code o f C a r v i n g  is given in F igure 7.
The algorithm  takes as input the set (S, L s ) o f in­

stances produced by H M sc o re  selection, and outputs the set 
( S o, L So ) constructed as follows.

S o is initially equal to those points close to the 1-NN 
decision boundary of S , that is, having positive miss degree in 
hm n(S, L s ). Layers consisting of points close to the decision 
boundary are then iteratively added to So (lines 5-13), where 
a layer is obtained as follows.

First rem ove the actual set So from  S  (the resulting set 
is denoted by S i  , initialized in line 3, and updated in line
11), next select those points with positive miss degree in 
hm n(S 1, L Si ) which were not ’isolated’ in the h it miss

5 0 =  {a G S  I m iss_deg(a,  HMN(S, L s )) > 0};
S prev S ;
51 =  S  \  So ; 
go_on =1; 
w hile go_on do

S t =  {a G S i I m iss_deg(a , HMN(Si, L s 1 )) > 0 
and m _deg(a ,  HMN(Sprev, L s prev )) > 0}

„s0u Stgo_on = e* ° 
if  go_on then

So =  So U S t;

<  eSo and ISt I > 0;

o o
Sprev
S i

en d  if 
en d  w hile

S  \  So;

Fig. 7. Pseudo-code of Carving. Input: the set (S, L s ) of instances selected 
by HMscore. Output: set (So,L s o) of instances from (S ,Ls ).

1) Computational Complexity: Constructing HMN and sort­
ing the hit-miss scores takes tim e proportional to n  log (n ). 
The iterative process, in the worse case, amounts to calculate 
at each iteration eS , where at each iteration one point is added 
to S .

The com putation o f eS requires n  tests. indeed, suppose for 
each b G A, we m em orize its nearest neighbor in S  \  {b}, say 
bS . Let a be the new point added to S  and let S '  =  S  U {a}. 
Then for each b G A  \  {a}, if  IIbS — b|| >  ||a  — b|| then set 
bS> =  a, otherw ise bS> =  bS .

Thus the algorithm  perform s at m ost n  — k o +  1 itera­
tions. Then the worse case run tim e com plexity o f H M sc o re  
selection is O ( m a x ( n ( n  — k 0 +  1 ) , n lo g (n )). The carving 
procedure does not increase the com putational com plexity of 
the algorithm. Experim ental evidence on real-life data sets 
shows that a small num ber o f iterations is perform ed in
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practice.

V. E x p e r im e n t s

In order to assess the perform ance o f the proposed in­
stance selection algorithm, experiments on artificial and real- 
life data sets are conducted, publicly available at Raetsch’s 
benchm ark repository 1, C hapelle’s repository 2, and UCI 
M achine Learning repository 3. In all the experiments we 
set k 0 =  m a x ( c , \0.5eA +  1 ]), that is, we choose an initial 
core o f instances o f size proportional to the difficulty of 
the task, as m easured by the em pirical error o f (A, L ).  This 
choice is heuristic. Application o f autom atic param eter tuning 
procedures, for instance internal cross validation, m ay possibly 
improve the perform ance o f the algorithm.

Data CL VA TR Cl.Inst. te Cl.Inst.
B.Cancer 2 9 200 140-60 77 56-21
Diabetis 2 8 468 300-168 300 200-100
German 2 20 700 478-222 300 222-78
Heart 2 13 170 93-77 100 57-43
Image 2 18 1300 560-740 1010 430-580
Ringnorm 2 20 400 196-204 7000 3540-3460
F.Solar 2 9 666 293-373 400 184-216
Splice 2 60 1000 525-475 2175 1123-1052
Thyroid 2 5 140 97-43 75 53-22
Titanic 2 3 150 104-46 2051 1386-66
Twonorm 2 20 400 186-214 7000 3511-3489
Waveform 2 21 400 279-121 4600 3074-1526
Coil20 20 1024 1440 70 40 2
Text 2 7511 1946 959-937 50 26-24
Uspst 10 256 2007 267-201

-169-192
137-171
169-155-175

50 6-5-9-4-3
3-4-5-5

Iris 3 4 120 40-40-40 30 10-10-10
Bupa 2 6 276 119-157 69 26-43
Pima 2 8 615 398-217 153 102-51
Breast-W 2 9 546 353-193 137 91-46

A. Artificial Data Sets

We consider three artificial data sets w ith different char­
acteristics (see Table I). The Banana data set from  Raetsch’s 
benchm ark repository, consisting of 100 partitions o f the data 
set into training and test set. Two data sets from  Chapelle’s 
benchm ark data [9]: g 5  0 c  and g 1 0 n , generated from  two 
standard norm al m ulti-variate Gaussians. In g 5  0 c , the labels 
correspond to the Gaussians, and the means are located in 50­
dim ensional space such that the B ayes’ error is 5%. In contrast, 
g 1 0 n  is a determ inistic problem  in 10 dim ensions, where the 
decision function traverses the centers o f the Gaussians, and 
depends on only two o f the input dim ensions. The original
10 partitions of each data set into training and test set from  
C hapelle’s repository are used.

Data CL VA TR Cl.Inst. te Cl.Inst.
Banana 2 2 400 212-188 4900 2712-2188
g50 2 50 550 252-248 50 23-27
g10n 2 10 550 245-255 50 29-21

TABLE I
Characteristics of artificial data sets. CL = number of
CLASSES, TR = TRAINING SET, TE = TEST SET, VA = NUMBER OF
variables, Cl.Inst. = number of instances in each class.

B. Real-life Data Sets

The following 19 publicly available real-life data sets are 
used, whose characteristics are shown in Table II.

• 12 data sets from  R aetsch’s repository, already used in 
[32], collected from  the UCI, DELVE and STATLOG 
benchm ark repositories. For each experiment, the 100 (20 
for S p l i c e  and Im a g e )  partitions of each data set into 
training and test set contained in the repository are used.

• 3 data sets from  Chapelle’s repository previously used 
in [9]: C o i l 2  0, consisting of gray-scale images o f 20 
different objects taken from  different angles, in steps of 
5 degrees, U s p s t ,  the test data part o f the USPS data 
on handw ritten digit recognition, and T e x t  consisting of

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm 
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/ 
http://mlearn.ics.uci.edu/MLRepository.html

TABLE II
Characteristics of real-life data sets. CL = number of classes,

TR = TRAINING SET, TE = TEST SET, VA = NUMBER OF VARIABLES,
Cl.Inst. = number of instances in each class.

the classes ’m ac’ and ’m sw indow s’ o f the Newsgroup20 
data set. For each experiment, the 10 partitions o f each 
data set into training and test set from  the repository are 
used.

• 4 standard benchm ark data sets from  the UCI M a­
chine Learning repository: I r i s ,  B u p a , P im a , and 
B r e a s t - W .  For each experiment, 100 random  partitions 
o f each data set into training (80% o f the data) and test 
(20% o f the data) set are used.

C. Results

We perform  experiments on these data sets w ith four algo­
rithms:

• the 1-N N  that uses the entire training set,
• HMSC, consisting o f H M sc o re  selection followed by

C a r v i n g ,
• Iterative Case Filtering  (IC F ) introduced in [7],
• the best perform ing o f the Decremental Reduction Opti­

mization  algorithms, DROP3 [41], [42].

We refer the reader to [27], [42] for a description of IC F  
and DROP3 and the motivation for choosing these two algo­
rithms as representatives o f state-of-the-art instance selection 
methods.

Cross validation is applied to each data set. For each 
partition o f the data set, each editing algorithm  is applied to 
the training set from  which a subset S  is returned. 1-NN  that 
uses only points o f S  is applied to the test set. A ll algorithms 
are tested using one neighbor. The average accuracy on the 
test set over the given partitions is reported for each algorithm 
(see Table IV). The average percentage o f instances that are 
excluded from  S  is also reported under the column with label 
R .

Results o f experiments on artificial data sets are shown in 
Table III.

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/
http://mlearn.ics.uci.edu/MLRepository.html
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Data 1-NN HMSC r ICF r DROP3 r
Banana 86.4 + 87.6 70.5 86.1 + 79.2 - 87.6 68.2 +
g50c 79.6 + 86.0 89.7 82.2 + 56.3 + 82.8 + 77.7 +
g10n 75.2 + 79.6 88.2 73.0 + 53.9 + 75.0 + 71.4 +

TABLE III
Results of experiments on artificial data sets.

Data 1-NN HMSC r ICF r DROP3 r
B.Cancer 67.3 + 72.3 83.1 67.0 + 79.0 + 69.7 + 72.9 +
Diabetis 69.9 + 72.6 84.4 69.8 + 83.1 + 72.3 73.4 +
German 70.5 + 73.6 84.6 68.6 + 82.2 + 72.0 + 74.3 +
Heart 76.8 + 80.9 86.3 76.7 + 80.9 + 80.2 + 72.1 +
Image 96.6 - 88.9 74.1 93.8 - 80.3 - 95.1 - 64.9 +
Ringnorm 65.0 - 64.8 81.4 61.2 + 85.5 - 54.7 + 80.6 +
F.Solar 60.8 + 64.3 87.1 61.0 + 52.0 + 61.4 + 93.8 -
Splice 71.2 + 72.4 85.6 66.3 + 85.5 67.6 + 79.01 +
Thyroid 95.6 - 93.0 80.3 91.9 + 85.6 - 92.7 + 65.7 +
Titanic 67.0 + 76.9 85.9 67.5 + 54.3 + 67.7 + 94.3 -
Twonorm 93.3 + 95.2 91.9 89.2 + 90.7 94.3 + 72.7 +
Waveform 84.2 + 85.8 89.3 82.1 + 86.8 + 84.9 + 73.6 +
Coil20 100 - 99.0 46.1 98.5 + 42.6 + 95.5 + 64.4 -
Text 92.8 - 89.2 56.3 88.2 + 68.8 - 88.0 + 66.7 -
Uspst 94.6 - 91.6 57.7 86.2 + 87.8 - 91.4 67.3 -
Iris 95.5 - 94.7 79.0 95.3 - 69.7 + 95.5 - 66.4 +
Breast-W 95.9 + 96.4 91.9 95.4 + 93.8 - 96.8 74.2 +
Bupa 61.7 + 65.8 83.1 60.9 + 74.3 + 63.1 + 73.8 +
Pima 67.3 + 71.5 83.4 67.9 + 78.7 + 69.4 + 73.3 +
Average 80.3 81.5 79.6 78.3 76.9 79.6 73.9
Median 78.2 80.9 83.4 76.7 80.9 80.2 73.3
Sig.+/- 12/6 n/a n/a 17/2 11/6 14/2 14/5

Wilcoxon + n/a n/a + + + +

TABLE IV
Results of experiments on real-life data sets. Average and 

median accuracy and training set reduction percentage for 
each algorithm over all the data sets is reported near the

BOTTOM OF THE TABLE.

On these data sets h m sc  achieves highest average accuracy, 
significantly better than that o f the other algorithms. On these 
types o f classification tasks, the results indicate robustness o f 
HMSC with respect to the presence o f noise (on g5  0 c  data) 
and o f irrelevant variables (g 1 0 n  data).

On real-life data sets, we com pare statistically hm sc  with 
each of the other algorithms as follows.

• A paired t-test on the cross validation results on each data 
set is applied, to assess whether the average accuracy 
for HMSC is significantly different than each o f the 
other algorithms. In TablelV a ’+ ’ indicates that HMSC’s 
average accuracy is significantly higher than the other 
algorithm  at a 0.05 significance level. Similarly, a ’-’ 
indicates that HMSC’s average accuracy is significantly 
lower than the other algorithm  at a 0.05 significance level. 
The row labeled ’Sig.acc.+/-’ reports the num ber o f times 
HMSC’s average accuracy is significantly better and worse 
than each o f the other algorithms at a  0.05 significance 
level. A paired t-test is also applied to assess significance 
o f differences in storage reduction percentages for each 
experiment.

• In order to assess whether differences in accuracy and 
storage reduction on all runs o f the entire group of 
data sets are significant, a  non-param etric paired test, the 
W ilcoxon Signed Ranks test4 is applied to com pare HMSC 
with each o f the other algorithms. A ’+ ’ (respectively 
’-’) in the row labeled ’W ilcoxon’ indicates that HMSC 
is significantly better (respectively worse) than the other 
algorithm.

Results o f the non param etric W ilcoxon test for paired 
samples at a  0.05 significance level show that on on the entire 
set o f classification tasks HMSC is significantly better than 
each o f the other algorithms with respect to both accuracy and 
storage reduction. As shown, for instance, in [16], com parison 
o f the perform ance o f two algorithms based on the t-test is 
only indicative because the assumptions o f the test are not 
satisfied, and the W ilcoxon test is shown to provide m ore 
reliable estimates.

G iven the diversity o f the characteristics o f the data sets 
considered in the experiments, the results provide experim ental 
evidence o f the effectiveness of the proposed large margin 
instance selection algorithm  based on c.c.n.n. for improving 
the perform ance of the 1-N N  rule.

V I. CONCLUSION

This paper proposed c.c.n.n., a  com bined proximity-label- 
based relation over pairs o f instances. The graph-based HMN 
fram ework was used for analyzing its relation with the popular

4Thanks to G. Cardillo for his ’wilcoxon’ Matlab routine.

nearest neighbor and nearest unlike neighbor concepts, and for 
showing how c.c.n.n. can be used to study local properties of 
a  training set, in particular the effect o f instance rem oval on 
the hypothesis-m argin o f the other instances o f the training 
set, in order to improve the perform ance o f the 1-NN  rule.

specifically, a scoring function for measuring the relevance 
o f points with respect to their effect on the hypothesis-m argin 
o f the other points was introduced, and em ployed to develop 
a large m argin based algorithm  for instance selection. An 
extensive com parative experim ental analysis with state-of-the 
art instance selection m ethods provided em pirical evidence of 
the effectiveness o f the proposed technique for enhancing the 
perform ance o f the 1-NN rule.

In general, the results o f this paper show that c.c.n.n. 
provides a useful tool for defining and for analyzing properties 
o f a training set related to the perform ance of the 1-NN  rule.

In future work, we intend to investigate the application of 
the proposed graph-based fram ework for developing novel m a­
chine learning algorithms: for instance, for feature selection, 
by seeking a set o f features that maxim izes a m erit criterion 
based on hit-m iss scores, and for distance learning, in the style 
o f [17], [30].

Furtherm ore, it would be interesting to investigate whether 
the proposed scoring function could be used to define a data 
driven m easure of training set difficulty [33].

The proposed instance selection m ethod can be interpreted 
as a novel large-m argin-based procedure for training Voronoi 
networks [24]. It would be interesting to investigate the 
effectiveness o f such procedure for enhancing training o f large 
m argin classifiers, such as support vector machines, as done, 
for instance, in [35].

Finally, note that the analysis conducted in the present paper 
uses only the h it and miss degree o f HMN’s nodes. It remains
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to be investigated whether other graph-theoretic properties 
o f HMN’s, such as path distance, clustering coefficient and 
diameter, correspond to interesting properties o f the training 
set related to the perform ance o f 1-NN -based classifiers.
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