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ABSTRACT

Aim The accurate mapping of forest carbon stocks is essential for understanding
the global carbon cycle, for assessing emissions from deforestation, and for rational
land-use planning. Remote sensing (RS) is currently the key tool for this purpose,
but RS does not estimate vegetation biomass directly, and thus may miss significant
spatial variations in forest structure. We test the stated accuracy of pantropical
carbon maps using a large independent field dataset.

Location Tropical forests of the Amazon basin. The permanent archive of the field
plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/
2014_1

Methods Two recent pantropical RS maps of vegetation carbon are compared to
a unique ground-plot dataset, involving tree measurements in 413 large inventory
plots located in nine countries. The RS maps were compared directly to field plots,
and kriging of the field data was used to allow area-based comparisons.

Results The two RS carbon maps fail to capture the main gradient in Amazon
forest carbon detected using 413 ground plots, from the densely wooded tall forests
of the north-east, to the light-wooded, shorter forests of the south-west. The
differences between plots and RS maps far exceed the uncertainties given in these
studies, with whole regions over- or under-estimated by > 25%, whereas regional
uncertainties for the maps were reported to be < 5%.

Main conclusions Pantropical biomass maps are widely used by governments
and by projects aiming to reduce deforestation using carbon offsets, but may have
significant regional biases. Carbon-mapping techniques must be revised to account
for the known ecological variation in tree wood density and allometry to create
maps suitable for carbon accounting. The use of single relationships between tree
canopy height and above-ground biomass inevitably yields large, spatially corre-
lated errors. This presents a significant challenge to both the forest conservation
and remote sensing communities, because neither wood density nor species assem-
blages can be reliably mapped from space.
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INTRODUCTION

Amazonia contains half of all remaining tropical moist forest

(Fritz et al., 2003). The total vegetation carbon storage of

Amazon basin tropical forests has been subject to a wide range

of estimates (Houghton et al., 2001; Malhi et al., 2006; Saatchi

et al., 2007). These have varied from 58 Pg C (Olson et al., 1983)

to 134 Pg C (Fearnside, 1997, scaled to whole basin), although

there is now some general consensus in the middle of this range

[e.g. 93 ± 23 Pg C (Malhi et al., 2006), 86 ± 17 Pg C (Saatchi

et al., 2007) and 89 Pg C (FAO, 2010)]. However, these estimates

of carbon stocks mask large differences at a smaller spatial scale,

as local variations are cancelled out when summing over large

areas: the spatial patterns visible in different maps of above-

ground biomass (AGB) vary greatly, with little consistency even

between studies that use similar methods and input data

(Houghton et al., 2001).

It is of great importance that the distribution of carbon

storage across the Amazon be well-characterized. Although

there are many reasons that make it desirable to protect tropical

forests, the protection of their carbon stocks and potential as a

future carbon sink have made their preservation a current

policy priority. A major initiative in international climate nego-

tiations, Reducing Emissions from Deforestation and forest

Degradation (REDD+), envisages payments in return for forest

conservation. Though REDD+ is not yet operational,

voluntary-sector afforestation/reforestation and REDD+ proj-

ects already exist, with REDD+ credit sales equal to $85 million
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in 2010 (Diaz et al., 2011). Country-to-country cash transfers

have also taken place, with Norway leading the way, commit-

ting US$1 billion to the government of Indonesia, a similar

amount to Brazil’s Amazon Fund, and $250 million to Guyana,

in return for their meeting goals for reducing rates of forest loss

(Caravani et al., 2012). Other sources of conservation and

development funding also assess projects based on their carbon

impact: indeed, one of the stated criteria applied to all USAID

funding (equivalent to US$40 billion in 2012) is to be carbon-

positive where possible (U.S. Agency for International

Development, 2012).

For a wide variety of conservation and sustainable forest

management projects, forest carbon stocks – and changes in

these stocks – must be estimated with confidence. Accurate

estimation, however, still faces major challenges: indeed, in a

comparison of estimates of carbon emissions from deforesta-

tion in the Amazon, the biggest cause of discrepancies between

estimates was found to be due to carbon mapping, higher

than the uncertainty in the mapping of deforestation

(Gutierrez-Velez & Pontius, 2012). AGB is the largest carbon

pool in most tropical forests, and also tends to be the best

characterized because it is relatively easy to measure, with other

carbon pools often estimated as a simple ratio of AGB

(GOFC-GOLD, 2009).

Biomass maps of the Amazon region have been created in a

number of ways. Some have used direct extrapolations from

field-plot measurements, either multiplying the total area of

forest by mean biomass density values (Olson et al., 1983;

Fearnside, 1997; FAO, 2010) or by two-dimensional kriging

(Malhi et al., 2006); others have used environmental gradients

to co-krig field-plot measurements (U.S. Agency for Inter-

national Development, 2012); and others have used remote-

sensing (RS) data (Saatchi et al., 2007). In the absence of

continuous field measurements throughout an area of interest,

RS datasets should provide the most accurate maps, because

every location can be directly observed. Methods based solely on

ground plots will only ever be able to sample a very small per-

centage of the total area, and due to access difficulties, a network

of ground points will normally be biased towards more easily

accessible regions (concentrated near rivers, roads and scientific

field stations). However, using current technology AGB cannot

be directly estimated from space (Woodhouse et al., 2012), and

thus field plots remain essential for calibrating and validating RS

maps. Ground-based estimates, and thereby calibrations of RS

maps, are themselves limited by the small quantity of destructive

biomass data available, which reduces the confidence in

allometric equations used to convert ground data into estimates

of AGB (Feldpausch et al., 2012).

Two recent maps have been published that estimate AGB

across the tropics at 1 km (Saatchi et al., 2011; subsequently

called RS1) and 500 m (Baccini et al., 2012; RS2) resolution,

aimed specifically at providing baseline data for REDD+, with

the data being widely disseminated and used. Both maps use

similar methods and datasets: they take millions of discrete

0.25-ha canopy height estimates from the Ice, Cloud and Land

Elevation Satellite (ICESat) Geoscience Laser Altimeter System

(GLAS) LiDAR sensor, convert these to estimates of AGB using

empirically derived models that relate LiDAR variables to AGB

using field plots located under some GLAS footprints, and use

ancillary full-coverage RS layers to extrapolate these point AGB

estimates across the landscape. The ancillary RS layers are

visual and infra-red spectrum optical data from the Moderate

Resolution Imaging Spectroradiometer (MODIS) sensors,

elevation data from the Shuttle Radar Topography Mission

(SRTM), and, in the case of RS1 only, QuikSCAT radar

scatterometer data. The extrapolation of AGB is performed

using multi-variable nonlinear models, MaxEnt in RS1 and

RandomForests in RS2. Though they use similar input data, the

nominal date of the resulting AGB maps differs between the

two, with RS1 dated as ‘early 2000s’, and RS2 2007–2008. RS1

provides a continuous uncertainty map, giving an uncertainty

of ± 6% to ± 53% associated with every pixel, and assumes

these errors are spatially uncorrelated to give an uncertainty for

the total carbon stock for Amazonia of < ± 1% (Saatchi et al.,

2011). RS2 does not provide a pixel-level uncertainty map but

instead held back some training data, using a Monte Carlo

approach to estimate uncertainty at the level of Amazonia as

± 7% (Baccini et al., 2012).

In both cases, the primary calibration data used to produce

the maps is derived from profiles of tree height from the ICESat

GLAS sensor. Although these data do include some information

about the structural characteristics of the forest within the

LiDAR footprints, canopy height is the principal parameter

detected (Lefsky et al., 2005). However, allometric equations

that relate physical attributes of trees to their above-ground

biomass normally rely on three parameters: in addition to tree

height (H), tree diameter at 1.3 m (D) and wood density (ρ) are

very important (Chave et al., 2005), and mean values and ratios

between these parameters vary significantly between regions

(Chave et al., 2005; Feldpausch et al., 2012; Quesada et al.,

2012), associated with different species communities (ter Steege

et al., 2006). We know that wood density increases from west to

east across Amazonia (Baker et al., 2004; ter Steege et al., 2006),

inversely correlated to stem turnover rate (Quesada et al., 2012).

This gradient is driven by soil fertility, notably total soil phos-

phorus and the concentration of exchangeable potassium ions

(Aragão et al., 2009), and especially by the physical qualities of

the soil. Thus, the fertile but shallower soils of the western

Amazon lead to higher productivity and faster turnover, and a

set of species with low wood density; conversely, the low fertility

but deep and freely-draining soils of the eastern Amazon tend to

have lower productivity and slower turnover, and species with

much higher wood density. The relationship between diameter

and height also varies across the basin, but with more complex-

ity than wood density, mostly related to climatic factors

(Feldpausch et al., 2011). These are approximated into four

zones (Feldpausch et al., 2011, 2012), with the use of a different

D:H model in each zone, greatly reducing the error in the pre-

diction of H from D compared to a pan-Amazonian model

(Feldpausch et al., 2012).

Thus, although D, ρ and H were used in the field-plot

calibration of RS1, and D and ρ for RS2 (with the allometric
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equations used coming from the same study: Chave et al., 2005),

regional differences in D:H ratios and ρ are not detected by

GLAS, and thus the continental-scale GLAS–AGB calibrations

used could smooth out these differences. This is likely to result

in significantly higher regional uncertainties than estimated by

Saatchi et al. (2011) or Baccini et al. (2012).

In order to test this, we use a unique dataset of 413 field

plots located throughout tropical South America, compiled as

part of RAINFOR (Red Amazónica de Inventarios Forestales;

Amazon Forest Inventory Network; Malhi et al., 2002), the

Amazon Tree Diversity Network (ter Steege et al., 2003),

TEAM (Tropical Ecology Assessment and Monitoring) and

PPBio (Brazilian Program for Biodiversity Research) (Fig. 1).

Data in these plots were collected using a consistent method-

ology, and AGB was calculated using a T-SQL query to a single

database. We compare these field plots directly to the two

remote-sensing-derived maps, and additionally create a plot-

based AGB map using simple two-dimensional kriging (KDHρ)

to allow a spatial comparison.

MATERIALS AND METHODS

Details of field methods and error checking procedures involved

in the RAINFOR permanent plot network are discussed in detail

elsewhere (Phillips et al., 2008, 2009a, b). The individual stem

data for every plot used in this study are held in a database

(http://www.forestplots.net/), which allowed us to calculate

plot-level AGB consistently with a single T-SQL query (Lopez-

Gonzalez et al., 2009, 2011). The TEAM plots were downloaded

and added to the database in April 2013, with data set identifier

codes of 20130415013221_3991 and 20130405063033_1587. We

only used plots where data were available for every stem and

trees had been measured consistently above buttresses. Plots

above 1000 m elevation were excluded, as were plots in non-

forest ecosystems. On average across plots, 77% of stems were

identified to the species level, and 92% to the genus level. The

dates at which the plots were most recently measured, and the

number of times they had been re-censused, varied: in order to

dampen the influence of short-term disturbances and to

produce values that most closely represented the landscape AGB

distribution, the value for each plot was calculated as the mean

of all census values, weighted by census interval lengths before

and after each measurement. Censuses collected from 2010

onwards were excluded as these post-date the remote-sensing

data, apart from 41 plots that were only measured for the first

time during or after 2010, in which case the earliest available

census was used.

The principal AGB dataset was calculated using the three-

parameter moist tropical forest model from Chave et al. (2005),

with height estimated from d.b.h. individually for each stem

using the region-specific Weibull models from Feldpausch et al.

(2012), and wood density values estimated for each stem using

the mean value for the species in the Global Wood Density

Database (Chave et al., 2009; Zanne et al., 2009), or the mean for

the genus using congeneric taxa from Mexico, Central America

and tropical South America if no data were available for that

species (KDHρ). For comparison, AGB was also calculated using

the same allometric equation but with the pan-Amazon Weibull

model from Feldpausch et al. (2012) (KDρ), regional height

models but with a dataset mean wood density value of 0.63

applied to every stem (KDH), and with the pan-Amazonian height

model and mean wood density applied to every stem (KD).

In order to compare the AGB dataset directly with the field

plots, we averaged the field plots within 20 km × 20 km boxes

and compared the mean value for these boxes to the mean AGB

of RS1 and RS2. This was intended to reduce the noise involved

in comparing single field plots to their surrounding remote-

sensing pixel. This resulted in comparisons being made with 107

unique points, with a mean of 3.9 field plots in each (range

1–14).

Distance 
from plot (km)

0-100
100-200
200-300
300-400
400-500
500-600

A BField Plot
Intact Forest Landscape
Broadleaved Forest

(GlobCover 2009)

Figure 1 Location of forest field plots in South America. (a) The location of all plots used in the analysis, overlaid on the intact forest
landscape (IFL) and GlobCover broad-leaved forests layers. (b) Map showing the distance from the nearest plot in kilometres.

E. T. A. Mitchard et al.

Global Ecology and Biogeography, © 2014 The Authors. Global Ecology and Biogeography
published by John Wiley & Sons Ltd

4



We attempted to produce the kriged maps using universal

kriging (ter Steege et al., 2003), but this proved impossible

because of high local variation in AGB values of neighbouring

plots, resulting in little spatial autocorrelation. Plots located

within a 250-m search radius were averaged, which reduced the

total number of independent points entering the kriging pro-

cedure from 413 to 378; this assisted matters, but a

semivariogram showed that there was still little spatial

autocorrelation in the dataset (Fig. S1). We therefore used an

inverse distance kernel with a smoothing distance of 100 km,

which removed local variation and produced output layers

showing the broad spatial trends in the dataset. The output

kriged maps were produced at a 500-m resolution using the

MODIS sinusoidal projection, an equal-area projection used in

the creation of RS2.

RS1 was provided by S. Saatchi (NASA Jet Propulsion Labora-

tory, CA, USA) in a geographic projection with a pixel size of

0.00833°; RS2 was provided by A. Baccini (Woods Hole Research

Center, MA, USA) in a MODIS sinusoidal projection at 500 m

resolution. RS1 was warped to the projection of RS2 using an

exact mathematical transformation. Pixel values were assigned

during warping using the ‘nearest neighbour’ algorithm, so no

pixel values were changed by the warping procedure.

The units of the maps were in tonnes of biomass per hectare

(Mg ha−1). Total carbon stocks for subsets of the resulting layers

were calculated by multiplying the mean biomass of a subset by

its area in hectares, and then converting biomass to carbon by

multiplying the result by 0.5 (as dry biomass is assumed to be

50% carbon; Penman et al., 2003).

All the plots entering the kriged map were located in forest

areas with no recent anthropogenic disturbance, but a signifi-

cant proportion of Amazonia is non-forest or degraded forest

(Fig. 1a). Unsurprisingly, KDHρ overpredicted AGB in all areas

dominated by non-forest land-cover types compared to the RS

maps. Therefore the maps are most comparable in undisturbed

forest areas, so all comparisons were performed in Intact Forest

Landscape (IFL) (Potapov et al., 2008) areas only, with the

exception of the analysis of recent deforestation. IFLs are

defined as forest areas minimally influenced by human eco-

nomic activity, with an area of at least 50,000 ha and a minimum

width of 10 km. The IFL layers are kept updated for new infra-

structure, settlements or commercial activities by their develop-

ers using a combination of field data and remote-sensing data

(Potapov et al., 2008).

RESULTS AND DISCUSSION

The field plots with our best estimate of AGB (PDHρ) show a

robust trend of increasing AGB with increasing latitude, longi-

tude and distance along a SW–NE line (Fig. 2a–c; the param-

eters of the best-fit lines are given in Table S1; input plot biomass

data are available in Lopez-Gonzalez et al., 2014). The kriged

map of the same field plots (Fig. 3c) shows that the latitudinal

and longitudinal trends seen in the graphs are clearly driven by

the dominant SW–NE gradient. By contrast, the remote-sensing

layers RS1 and RS2 show significant decreasing trends with dis-

tance along a SW–NE line (Fig. 2c, Table S1). Subtracting the

two RS layers from the plot AGB values emphasizes the trends

described above, with positive differences (i.e. RS1 and RS2

greater than PDHρ) in the south and west, and negative differ-

ences in the north and east (Fig. 2d–f, Table S1).

Two-dimensional kriging of the plot dataset (KDHρ) allows

area-based comparisons to be made between the field-plot and

RS datasets. The total Amazon basin AGB stocks in RS1, RS2 and

KDHρ did not differ greatly for intact forest landscape (IFL) areas

(Potapov et al., 2008) (Table 1), with KDHρ and RS2 having very

similar total stocks, and the RS1 estimate being 11% lower. The

patterns of AGB differ greatly among the maps, however, as

shown in Fig. 3 and demonstrated by the high root mean

squared error (RMSE) values comparing RS1 and RS2 to KDHρ

(Table 1). The two RS maps do not show the strong SW–NE

AGB gradient seen in KDHρ (Figs 2 & 3). RS1 shows similar AGB

in western and eastern Amazon forests, with distinctly lower

AGB in central Amazonia than either of the other maps, explain-

ing its lower total stock estimate. RS2 has less variation in AGB

overall, but with the highest values in the central-western

Amazon, opposite to the pattern seen in the KDHρ map.

We believe that the AGB gradient in the field plots cannot be

an artefact of our analysis: the ground-based estimates use con-

sistent field measurements (Phillips et al., 2008, 2009a) in well-

surveyed plots, with AGB calculated at a stem level using a

trusted allometric equation (Chave et al., 2005) involving tree

diameter, wood density and height. We are confident that diam-

eters are measured to high precision, as a primary purpose of

these plots is to track small changes in diameter through time;

we are confident that our wood density values are accurate due

to careful species identification and the use of a reliable wood-

density dataset (Chave et al., 2009; Zanne et al., 2009); and we

account for spatial variation in stem height (Feldpausch et al.,

2011). While KDHρ is clearly not an accurate spatial map, being

based solely on 413 point measurements, these are well distrib-

uted across the study area and thus should correctly display

broad regional trends in forest structure: every IFL pixel in

Amazonia is within 500 km of at least eight plots (Fig. 1b). A

semivariogram analysis of the field data shows that the spatial

autocorrelation of plots does not start to decrease until they are

about 700 km apart, suggesting this plot network is sufficient to

represent the potential AGB of old-growth forests across the

whole basin (Fig. S1).

It is clear that the use of RS1 or RS2 for carbon accounting

purposes for a subset of this area will produce very different

results from those using KDHρ: the RS maps will underestimate

stocks in the Guiana Shield and overestimate in SW Amazonia

(Table 1). To demonstrate the difference for a relevant example,

we calculated the estimated emissions from deforestation in

Brazil from 2009–2011, after the reported date of either RS map,

using the PRODES dataset (INPE, 2012). We found significantly

higher carbon estimates with KDHρ than with either RS map

(Table 2). It is possible that estimates from the RS maps are

lower because these areas were already degraded at the time the

maps were made, with this perhaps explaining the lower value

for RS2 than RS1, as RS2 is produced for a date c. 5 years later

Divergent forest carbon maps from plots & space
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than RS1. However, this is unlikely to be the case in all areas, and

thus cannot explain the extent of the difference.

It is important to understand the drivers of the AGB gradient

seen in the field plots. From an ecological point of view, AGB is

ultimately a function of net primary production (NPP) and the

turnover rate of the forest. Spatial differences in NPP and turn-

over rates are associated with different species with different

life-history strategies and structures caused by different climatic

conditions and the chemical and physical properties of the soil

(Quesada et al., 2012), with these different floristic communities

associated with different AGB values. The key ecological param-

eters associated with differing AGB are basal area, wood density

and D:H ratios, all of which vary across the basin (Baker et al.,

2004; ter Steege et al., 2006; Banin et al., 2012; Feldpausch et al.,

2012; Quesada et al., 2012), but none of which is directly

detected by RS. Mapping basal area and wood density from the

plots shows that both increase from SW–NE, though wood

density shows a larger proportional trend than basal area

(Fig. 4a,c). It is also known that, in general, tropical South

American trees are shorter for a given diameter than trees from

other tropical regions (Banin et al., 2012), with the exception of

the Guiana Shield where trees are comparatively tall for a given

diameter, with D:H relationships statistically indistinguishable

from the forests of Africa and Southeast Asia (Feldpausch et al.,

2011). In order to assess the relative impact of wood density and

tree height on AGB, we recalculated the AGB values of the 413

field plots using the same three-parameter allometric equations

and diameter information, but applying three different

approaches to the other two variables:

1 KDρ: Using a pan-Amazonian D:H model rather than the four

regional height models (Feldpausch et al., 2012), but the same

wood density values as KDHρ;

2 KDH: Using a constant value of 0.63 as the wood density for

every stem, but the regional height models as in KDHρ;

3 KD: Using a pan-Amazonian D:H model and a constant wood

density value, but the same allometric equations, so AGB varied

between plots solely due to D.

KDρ and KDH both have significant SW–NE AGB gradients,

albeit less marked than for KDHρ (Fig. 4). On average across the

Amazon, the exclusion of wood density (KDH) leads to a small

reduction in predicted AGB compared to KDHρ, but this reduc-

tion is bigger when considering only the Guiana Shield (known
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to have high wood density), and is reversed in SW Amazonia

(known to have lower woody density) (Fig. 4, Table 1). Using a

pan-Amazonian height model (KDρ) leads to a very small reduc-

tion in overall predicted AGB across the Amazon, with a

decrease in the Guiana Shield, and a matching increase in SW

Amazonia. Excluding both height and wood density (KD) again

results in an small reduction in predicted AGB for the whole

basin, with a very large underestimate in the Guiana Shield

(−17.2%), and a smaller overestimate in SW Amazonia (12.5%)

(Fig. 4, Table 1). From this analysis, we conclude that the RS

layers underestimate AGB in the Guiana Shield due to a contri-

bution of using mean wood density (an underestimate) and a

generic pan-Amazonian relationship between diameter and

height (ignoring the fact that trees are taller than would be

expected for a given diameter in this region), with the two

factors having approximately equal contributions. In SW

Amazonia, the difference is caused by the same two factors in the

opposite direction: using pan-Amazonian wood density and

D:H relationships here results in an overestimate of AGB. In SW

Amazonia the two factors are not equal in magnitude, with

wood density causing approximately three times more overesti-

mation than the D:H relationship (Table 1).

Wood density and D:H relationships alone, however, cannot

explain all the differences between RS1/RS2 and KDHρ. In both

the Guiana Shield and the SW Amazon, the difference between

KDHρ and KD is smaller than the difference between KDHρ and

the RS maps. The unexplained difference is over 10% for the

Guiana Shield, and 3–5% for the SW Amazon. There must

therefore either be further factors in the processing chains

involved in developing RS1 and RS2 from their input datasets

that contribute to the over- and under-estimation in these

regions, or the non-random nature of the input field datasets

must be causing this additional difference. We believe the latter

explanation is unlikely, as any bias towards pristine forests

would tend to cause an overestimate in the plot-based estimate,

but instead the field plots estimate lower AGB in SW

Amazonia. Possible explanations for the former include incor-

rect or saturating relationships between GLAS footprints and

AGB, or explanatory variables not fully capturing the spatial

variability in forest structure, causing the resulting maps to

tend towards the mean. The differences between RS1 and RS2

themselves are caused in part by the use of different remote-

sensing datasets, different methods of processing the GLAS

data, and different extrapolation approaches, but also by the

choice of allometric equation to convert their field plot data

into AGB estimates. RS2 uses a two-parameter equation exclud-

ing height, whereas RS1 uses the three-parameter equation we

used to estimate AGB from our plots, albeit with effectively a

pan-Amazonian D:H relationship. The equation excluding

height used in RS2 is known to estimate higher AGB values

than the three-parameter equation used in RS1 (Chave et al.,

2005; Feldpausch et al., 2012), so this choice probably explains

much of the 12% higher total AGB estimate for Amazonia by

RS2 compared to RS1 (Table 1).
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CONCLUSIONS

The two remote-sensing maps, RS1 (Saatchi et al., 2011) and

RS2 (Baccini et al., 2012), show very different spatial patterns of

AGB distribution across Amazonia, compared to each other and

compared to field plots distributed across the region (Figs 2 &

3). In particular, the strong gradient of increasing AGB from SW

to NE Amazonia that we observe in the field data is not repli-

cated in the RS datasets. RS1 and RS2 do have associated uncer-

tainty estimates, but the differences observed between the maps

and field plots considerably exceed the reported uncertainties

over Amazonia in both cases. Our analysis shows that this is

mostly due to neither study accounting for the known regional

variations in wood density and D:H relationships. Specifically,

they do not use any spatial layers corresponding to wood

density, and use only continental (Saatchi et al., 2011) or global

(Baccini et al., 2012) relationships between ICESat GLAS wave-

forms and AGB.

We are not advocating the use of extrapolated AGB maps

derived from sparse field measurements for carbon accounting:

we firmly believe that AGB is best mapped using a combination

of RS data calibrated and validated using a substantial number

of carefully established field plots. It is this step of careful vali-

dation against best estimates from scientific field plots that we

believe was lacking in the RS studies. Looking forward, we

provide the following recommendations to improve AGB esti-

mates. First, regional differences in wood density and D:H rela-

tionships must be considered when mapping AGB. One

universal algorithm predicting AGB from a suite of remote-

sensing variables is not appropriate, as wood density cannot be

detected from space, and the structural parameters of forests

cannot yet be reliably extracted from RS data. Different algo-

rithms should be applied to different regions, potentially based

on maps of soil type or vegetation structure. Alternatively spa-

tially explicit maps of wood density and diameter:height rela-

tionships should be directly incorporated into biomass mapping

Table 1 Comparison of the mean above-ground biomass (AGB) and total above-ground carbon stock contained in two
remote-sensing-derived maps of the Amazon forests (RS1, Saatchi et al., 2011; RS2, Baccini et al., 2012) with a map derived from kriging
413 field plots (KDHρ), and maps derived from these same field plots but excluding wood density, local tree height allometry, or both (KDH,
KDρ and KD, respectively). In all cases, only intact forests are considered (Potapov et al., 2008). RMSE, root mean squared error, is calculated
on a 500 m pixel basis.

Map

Mean AGB

(Mg ha−1)

Total carbon

stock (Pg C)

% difference

from KDHρ

RMSE from

KDHρ (Mg ha−1)

Amazonia (423,869,500 ha)

KDHρ 287.0 60.83 n/a n/a

RS1 255.0 54.05 −11.1% 83.4

RS2 285.5 60.52 −0.5% 77.1

KDH 278.6 59.04 −2.9% 19.3

KDρ 281.8 59.72 −1.8% 40.5

KD 275.6 58.41 −4.0% 45.3

NE Guiana Shield* (32,065,200 ha)

KDHρ 387.9 6.22 n/a n/a

RS1 279.5 4.48 −27.9% 123.6

RS2 278.8 4.47 −28.1% 117.4

KDH 355.0 5.69 −8.5% 33.7

KDρ 350.3 5.62 −9.7% 38.1

KD 321.3 5.15 −17.2% 67.3

SW Amazonia† (43,155,200 ha)

KDHρ 244.3 5.27 n/a n/a

RS1 283.2 6.11 15.9% 66.4

RS2 290.5 6.27 18.9% 64.6

KDH 266.4 5.75 9.1% 22.8

KDρ 251.6 5.43 3.0% 7.7

KD 274.8 5.93 12.5% 31.2

*Guyana, Suriname & French Guiana.
†Acre Basin, Beni Basin, Madre de Dios Basin, Ucayali Basin.

Table 2 Above-ground biomass (AGB) contained in areas
deforested between 2009 and 2011 in Brazil using the PRODES
dataset (INPE, 2012). The total area deforested was 1,853,610 ha.

Map

Mean AGB

(Mg ha−1)

Total carbon

stock (Tg C)

% difference

from KDHρ

KDHρ 275.7 511.0

RS1 206.4 382.6 −25.1%

RS2 176.6 327.4 −35.9%
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algorithms (Asner et al., 2012). There is a clear need for the

ecological community to provide regional and pantropical maps

of basal-area-weighted wood density based on plot data, poten-

tially extrapolated using climate or other layers, as inputs for the

biomass mapping communities. Second, our study demon-

strates the importance of creating and sustaining large networks

of field plots. This analysis was only possible because a sufficient

number of plots have been located across the basin using a

standard methodology, with the data included in a single data-

base allowing identical processing chains to be applied to stem

data. It is important that such networks are maintained and

improved across the tropics, and vital that current spatial data

gaps are filled (Fig. 1b). Third, measuring tree height and

identifying the thousands of Amazon tree species (at least to

genus level, enabling stems to be matched to wood density infor-

mation), were essential components of the field data. Recording

tree diameters alone would not have allowed us to identify these

important regional gradients in AGB: variation in biodiversity

can matter greatly for determining carbon stocks.
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