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Abstract

We examine the performance of the KLT for transform coding applications. The
KLT has long been viewed as the best available block transform for transform coding.
This paper treats fixed-rate and variable-rate transform codes. The fixed-rate approach
uses an optimal fixed-rate scalar quantizer to describe the transform coefficients; the
variable-rate approach uses a uniform scalar quantizer followed by an optimal entropy
code. Earlier work shows that for the variable-rate case there exist sources on which
the KLT is not unique and the optimal transform code matched to a “worst” KLT yields
performance as much as 1.5 dB worse than the optimal transform code matched to a
“hest” KLT. In this paper, we strengthen that result to show that in both the fixed-rate
and the variable-rate coding frameworks there exist sources for which the performance
penalty for using a “worst” KLT can be made arbitrarily large. Further, we demonstrate
in both frameworks that there exist sources for which even a best KLT gives suboptimal
performance. Finally, we show that even for vector sources where the KLT yields
independent coefficients, the KLT can be suboptimal for fixed-rate coding.

I Introduction

The Karhunen-Loeve Transform (KLT) plays a fundamental role in a variety of disciplines,
including statistical pattern matching, filtering, estimation theory, and source coding. In
many of these applications, the KLT is known to be “optimal” in various senses. This
paper investigates the optimality of the KLT for source coding.

The main application of the KLT in source coding is in scalar quantized transform cod-
ing. In this type of transform code, an input vector is linearly transformed into another
vector of the same dimension; the components of that vector are then described to the de-
coder using independent scalar quantizers on the coefficients. We consider both fixed-rate
and variable-rate codes. The fixed-rate code uses an optimal fixed-rate scalar quantizer; the
variable-rate code uses uniform scalar quantization followed by optimal entropy coding.
The decoder reconstructs the quantized transform vector and then uses a linear transforma-
tion to get an estimate of the original input vector. In both cases, the goal is to find the pair
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of linear transforms and the allocation of an average bit budget among the scalar quantizers
that together minimize the end-to-end distortion. In this work, we measure distortion as
mean squared error (mse). Transform codes have served as important models for gaining
an understanding of both optimal quantization and low-complexity code design.

In [1], Huang and Schultheiss show that if the vector source is Gaussian and the bit bud-
get is asymptotically large, then the KLT and its inverse are an optimal pair of transforms
for fixed-rate coding. In a more recent paper, Goyal, Zhuang, and Vetterli (Proof 1 of The-
orem 6 in [2]) and Telatar (Proof 2 of Theorem 6 in [2]) improve that result by showing that
the KLT is optimal for Gaussian inputs without making any high resolution assumptions.
Their result applies to both the fixed-rate and the variable-rate coding models.

The optimality of the KLT in transform coding of Gaussian sources is typically ex-
plained by the assertion that scalar quantization is better suited to the coding of independent
random variables than to the coding of dependent random variables. Thus the optimality
of the KLT for transform coding of Gaussian sources is believed to be a consequence of
the fact that the KLT of a Gaussian vector yields independent transform coefficients. The
application of the KLT in transform coding of non-Gaussian sources is then justified using
the intuition that the KLT’s coefficient decorrelation is, for general sources, the best pos-
sible approximation to the desired coefficient independence. In [3], Koschman shows that
if we forgo optimal bit allocation and instead force a fixed number of the transform coef-
ficients to be quantized at rate zero and the remaining components to be quantized with
infinite accuracy, then for any stationary source the KLT minimizes the mse over all possi-
ble choices of orthogonal transforms (this is known as “zonal coding”). While this result
does not address the bit allocation problem, it seems to further support the above intuition.
Over the years, this intuition has blossomed into folklore, and numerous references to the
“optimality” of the KLT for transform coding appear in texts and scholarly journals.

In this paper, we investigate this intuition piece by piece, demonstrating both its failures
and its successes. All results apply in the high rate limit. First, we consider the question of
sample decorrelation, showing that sample decorrelation is neither sufficient nor necessary
for transform optimality in either fixed-rate or variable-rate transform coding. Then we
show for the fixed-rate case that even for examples where decorrelation yields coefficient
independence, the KLT may fail to yield the optimal performance. Finally, we show for the
variable-rate case that for examples where decorrelation yields coefficient independence,
the KLT guarantees the optimal performance in the high resolution limit for suitably smooth
distributions.

The remainder of this paper is organized as follows. Section II introduces background
material, notation, and definitions. Section 11 lists our main results. The outlines of proofs
of these theorems appear in Sections IV-VL

II Preliminaries

Denote the entropy of a discrete random variable Z taking on outcomes in {z1,22,---}
by! HZ) = - P(Z = z)log P(Z = z) and denote the differential entropy of

1 All logarithms in this paper whose bases are omitted are base 2.
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a continuous random variable Z with probability density function (pdf) f by h(Z) =
— [ f(2)log f(z)dz. If Z" is a continuous random vector with components Z1y ey Zn,
then define the quantity h(Z) = (1/n) Y, h(Z;). Denote a new norm of a pdf f as
Nfllys = ( | ot 3(x)dx)3. The usual notation A (m,a?) denotes the pdf of a scalar
Gaussian random variable with mean m and variance 2.

Let source X" be an n-dimensional random vector with real components X1,y Xne
Without loss of generality, we assume that each component has mean zero, giving covari-
ance matrix ®x = E[X™(X™)!]. Let transform T be an n x n orthogonal matrix with
real elements, and let Y™ = T X™ denote the transformed random vector with coefficients
Yi,..., Y, We restrict attention to orthogonal transforms.

A scalar quantizer with resolution 7 bits is a mapping @ : IR — IR whose range space
(called a codebook) has cardinality 27. The rate of a fixed-rate scalar quantizer @ with reso-
lution 7 is RV (Q) = r. The rate to describe source X; with a variable-rate scalar quantizer
Q is R"(Q) = H(Q(X)))- A transform coder is a system that quantizes X™ by trans-
forming X™ by T and then applies an independent scalar quantizer @Q; to each transform
coefficient Y;, for i € {1,...,n}. Thus the per-symbol expected rate of a transform coder
with transform 7' and quantizers Q" = (Q1, - Qn) is RE(@QM) = (1/n) Ti RE)(Q;)
for fixed-rate transform coding and Ry Q™) = (1/n) Tiz ROM(Q;) for variable-rate
transform coding. The corresponding mse is Dr(Q™) = (1/n)E[||X™ - TtQ™(TX™)|)?],
where for any n-dimensional vector " = (T1,.--» zn)h Q™ (z™) = (@1 (z1),---,Q@n (z,))?
is the vector of scalar quantized components of z" and the Euclidean distance between two
arbitrary n-dimensional vectors z* = (z1,...,%a)  and g™ = (y1, .- ,yn)! is denoted by
lla™ = vl = Ziea (s — %)

Given an average rate budget of R bits per symbol and a fixed transform 7', the op-
erational distortion-rate function for a fixed-rate transform code based on T is defined
as Dg,fr)(R) = inf .. g0 gmy<r Dr(Q"). For variable-rate coding, we restrict attention
to uniform scalar quan{izers.—Thus we define the operational distortion-rate function for
a variable-rate transform code based on T' as Dg' (R) = inf QrenRYI(QM<R Dr(Q"),
where Q" € Qp if and only if for each 1 < i < n, Q; is a uniform scalar quantizer.
When T is the identity matrix I, we drop the subscript and use D) (R) and DY) (R) to
denote the mse corresponding to the classical fixed-rate scalar bit allocation problem and
variable-rate uniform scalar bit allocation problems, respectively.

The optimality of a transform for transform coding is often considered in an asymp-
totic sense (e.g., [4]). Let RY)N(T) = sup{R : D{(R) > 0} and R{™)(T) = sup{R :
DY (R) > 0}. Then R{(T) and R{"(T) give the minimal rate required to perfectly
describe the source, with R((,fr) (T) = R(()") (T) = oo for continuous sources. The fixed-rate
and variable-rate coding gains obtained by using transform T} instead of transform T5 are

defined as
fr . fr T vr . vr vr
G, = lim D (R)/D{Y (R) and Gy, = lim DY (R)/ DY (R),

RoRU(T1) R—R{™(T1)

respectively. Each coding gain describes the asymptotic performance gap (in terms of sqnr)
between the associated optimal transform coders. The gains measured in decibels (dBs) are
101logg Gg,ff?n and 10log;, G%?TQ.
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An orthogonal transform T is said to be optimal for fixed-rate transform coding on
source X™ if Gg?,T > 1 (0 dB) and for variable-rate transform coding on X™ if Gg:'f ,)T >1
(0 dB), for all orthogonal transforms T'. All of the results that follow refer to optimality in
this asymptotic sense.

A Karhunen-Loéve Transform is the linear map givenby ann xXn orthogonal matrix Tt
such that T*® x T is a diagonal matrix. The matrix T decorrelates the random vector X™.

III Summary of Results

We begin by showing, in Theorem 1, that decorrelation is insufficient for optimality in
transform coding. We prove this theorem in Section IV by examining sources for which
the KLT is not unique. While every KLT is, by definition, a decorrelating transform, there
exist sources for which the KLT is not unique and not all KLTs are equally good. In
particular, we show the following result.

Theorem 1 In both fixed-rate and variable-rate transform coding, there exist sources for
which the coding gain of a best KLT for transform coding over a worst KLT for transform
coding can be arbitrarily large.

In contrast, we show that the KLT is optimal for variable-rate coding.

Theorem 2 Ifthe KLT is unique and produces independent transform coefficients, then the
KLT is optimal for variable-rate transform coding.

We then demonstrate that even a best (or only) KLT can be suboptimal in both fixed-rate
and variable-rate transform coding.

Theorem 3 In both fixed-rate and variable-rate transform coding, there exist sources for
which the coding gain of an optimal transform over a best KLT for transform coding is
strictly greater than 1 (0 dB).

Finally, we consider sources for which the KLT is unique and decorrelation yields inde-
pendent transform coefficients. The intuition described in Section I suggests that the KLT
should be optimal in this coding framework. In Theorem 4, we prove this intuition false for
fixed-rate transform coding.

Theorem 4 There exist sources for which the KLT is unique and produces independent
transform coefficients and yet the KLT is not optimal for fixed-rate transform coding.

Note that all of the results refer to optimality in the high resolution sense. The results for
fixed-rate coding also appear in [5].

IV KLTs Are Not Uniformly Good

In this section, we give the proof of Theorem 1. That is, we show in both the fixed-rate and
the variable-rate transform coding frameworks that there exist sources for which the KLT is
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not unique and a “best” KLT yields an infinite coding gain over a “worst” KLT. The results
in both frameworks rely on the following family of examples.

Suppose that source X" = (X1,---» X,)! is defined as X" = BU™. Here the compo-
nents Uy, . . ., Up of vector U™ = U1+ U,)! are independent and identically distributed
(iid) random variables (denoted by U) with reasonably smooth pdfs and positive variances,
and B is an n x n orthogonal matrix.

Let &y and ®x denote the covariance matrices of U™ and X", respectively. Then for
any orthogonal matrix B, ®y = ®x = o*I, where I denotes the n-dimensional identity
matrix. That is, any rotation of U™ creates an uncorrelated random vector X", and thus
any transform matrix T is a legitimate KLT for X™. While the KLT for X™ is not unique,
practical implementations of the KLT (e.g., Householder reduction followed by the QL
algorithm with implicit shifts or Jacobi’s algorithm [6]) gives the identity matrix I as the
KLT for X". Therefore using the KLT in an optimal transform coder for X™ is in practice
equivalent to optimal bit allocation followed by scalar quantization on the original source
X™. We therefore calculate the coding gain of the transform B! relative to the practically
achieved KLT I.2

IfU,, ..., U, are drawn iid according to a reasonably smooth pdf fy with finite variance
o? > 0 and differential entropy h(U), then the fixed-rate coding gain of transform B~ over
transform I is

G = lim D®)(R) — limg o0 D®)(R)2*" _ (ITi=s ”fX,‘“l/ss)l/n
B T RS DI (R)  limpoe Dih (R)22F I full/s

and the corresponding variable-rate coding gain is

G, = Jim D(%r))(R) _ limpoce D(&Y:)’(R)zm _ 2’;‘:(":) _ 2B
' ~oo DU (R)  limp oo Dt (R)227 22h(U™)

where Y* = TX™ and T is the transform matrix. Since Uiy .- -s U, are independent,
y® — TX"™ = TBU", and TB is nonsingular, then R(U™) < h(Y™) by the chain rule.
Thus Ggf)l T2 1 (0 dB) with equality if and only if 3,...,Y, are independent. Here,
a transform that makes the components independent is optimal for variable-rate coding.’
This also proves Theorem 2. Now let us go back to the iid source, where

G(;f)l’, _ 92h(Y™)-h(U™) = 92(R(X™)-h(U)) < glog(2mea?)~2h(U)

with equality if and only if the marginal pdf of each X is N(0,0?). Given any choice of
symmetric fy such that the central limit theorem applies to (1/y/n) ¥i-; Ui, then for suffi-
ciently large n and carefully chosen B, the marginal density of X; can be made arbitrarily
close to the above normal density.*

2In practice, performance problems of the KLT are often exacerbated by the KLT’s sensitivity to errors in
estimating the off-diagonal terms of the covariance matrix when the covariance matrix is close to I [7].

3While Uy, . .., Uy, are iid in this example, the result actually requires only that they be independent. In
addition, this statement is true only under the high-rate assumption. It has been shown that for some sources,
B~1 is suboptimal at certain low rates in variable-rate coding, i.e., a transform that yields independent coef-
ficients is not always optimal for variable-rate coding when the high-rate approximation does not apply (8].

4This can be accomplished, for example, by letting B be 1/y/n times a Hadamard matrix of order n.

Hadamard matrices are known to exist at least for every n that is a power of 2. This would assure that B is

orthogonal and has components all of equal magnitude, on a subsequence of {1,2,..., n}.
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We next bound the coding gains for several example distributions.
Example 1 U; is uniform on [~a,a] witha > 0.

For the fixed-rate coding calculations, if n = 2 and

1 1 1
B=T=—\/§[1 _1], (1)

then Ggr_)l , ~ 2.27dB. If n is large and the marginal density of X; is close to N(0,0%),
then Ggr_)l ; ~ 4.35dB. In this case, B! is not necessarily the optimal transform, so this
is not necessarily the largest possible coding gain.

For variable-rate coding, B! is the optimal transform at high rate as shown earlier, and
the coding gain between the best and worst KLTs for the worst-case B is supg G(};’f)l N

1.5 dB, which is consistent with [71.
Example 2 U is uniform on [—a — 6, —a + §lUla—6,a+ 8] with0 <é <a.

In the fixed-rate coding calculations, if the marginal distribution of X; is close to N (0, a?),
then G(g_)l, |~ (3mV/3/8)((a?/ §2) + (1/3)). The coding gain can be made arbitrarily large
by fixing a and letting 6 — 0.

For variable-rate coding, supp G(I;’f)l , = (me/8)((a*/6%) + (1 /3)), which can again be
made arbitrarily large by fixing a and lefting 4 — 0. a

The problem observed above for reasonably smooth, continuous random variables be-
comes even more pronounced for discrete random variables. For a discrete random vari-
able, the previous high-rate approximation does not apply since the probability mass func-
tion (pmf) is not smooth. It is still relatively easy to calculate the coding gain for certain
discrete random variables, as we show in the following example.

Example 3 U; is discrete.

Consider Uy, . . . , U, drawn iid according to p(10) = p(—10) = 1/2. In both fixed-rate and
variable-rate coding, we can quantize each U, with distortion D = 0 atrate 1 bit per symbol
(bps). Achieving D =0 for each X; generally requires more rate. For example, choose
B so that the marginal distribution of each Xj is the binomial distribution. For n = 64,
achieving D = 0 requires approximately 4 bps in variable-rate coding and log(64 +1) ~ 6
bps in fixed-rate coding. Atrate 1 bps the mse in (either fixed-rate or variable-rate) coding
of U; is approximately 36, giving infinite coding gain for both fixed-rate and variable-rate

coding (supp G(;r_)l,, = supg G(l;'f)l’, = 00). a

V A Best KLT Can Be a Suboptimal Transform

In the previous section, we showed for both fixed-rate and variable-rate transform coding
that when the KLT is not unique the coding gain of a best KLT over a worst KLT can be ar-
bitrarily large. Thus decorrelation is not sufficient for transform optimality. In this section,
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Figure 1: Stationary Markov process Sp-

we prove Theorem 3 by showing that even a best KLT can give suboptimal performance.
We use the following source for both fixed-rate and variable-rate transform coding.

Let {U;}32, be an independent and identically distributed (iid) real-valued random se-
quence with E[U;] = 0 and E[U?] = o for all 4, and symmetric pdf fy. Let {Si}32, be
the stationary 2-state Markov process shown in Figure 1 with A > 0and 0 < le] < 1/2.
That is, S; = A with probability 1/2,and S; = —A otherwise. The value of € determines
the tendency of the process to remain in its current state. Furthermore, assume that the
processes U; and S; are independent of each other. Let X; = U; + S; be a scalar source and
define the 2-dimensional random vector X = (Xi, Xi+1)t. Let T be the matrix defined in
(1). Then the vector Y = (Y3,Y2) = TX (note that T = T?) is a KLT for vector source X,
and T simply rotates X through an angle of 45° clockwise.’

We next show for both fixed-rate and variable-rate transform coding that (in the high-
rate limit) optimal scalar quantization of the components of the correlated random vector
X produces a smaller mse than optimal scalar quantization of the components of the decor-
related vector Y. (Note that Y7 and Y5 are uncorrelated, but they are not independent.)

Since the Markov process S; is stationary, we assume without loss of generality that
X = (X1, Xz)". Notice that by symmetry the scalar components of X are identically
distributed with pdf

Fia(z) = alo) = Shola+ 4) + 3 folz = A) @

We begin by setting up the coding gain calculations for both fixed-rate and variable-rate
coding. We then calculate those coding gains for a variety of examples.

If fy(x) = O forall z ¢ [—A/2, A/2], then the fixed-rate coding gain obtained by
quantizing the correlated scalar components instead of the uncorrelated components is

G(IfrT)‘ — llfu * fullys [(21/3,31/3 + 2a1/3)(21/3a1/3 + 251/3)]3/2 3)
8|l fullys

and the corresponding variable-rate coding gain is

G(Iv;) _ 2h(Y1)+h(Y2)—h(X1)—h(X2) — 22h(fu*fu)+2H(2a)—2h(U)—2 4)

where (fu * fo)(@) = [ fu(?) fu(z — t)dt is the convolution of fu with itself and
H(z) = —zlog(z) — (1 — ) log(1 — ) is the binary entropy function.

5 . _1_ 1 1 1 1 —‘1 1 —1 1
There are 3 other possible KLTs of X, namely == [ PN P 3 IR and 7 11

which all give equal coding gains. Thus we will refer to T as “the” best KLT in this example.
This example also exploits the numerical sensitivity of computing the KLT, since only € = 0 yields the
identity matrix, while all € > 0 lead to 45° rotations.
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Example 4 U; is uniform on [—a, a) with0 < a < A/2.

The solid lines in Figures 2(a) and (b) show the regions of support for the two-dimensional

|

(a) (b)

Figure 2: (a) The two-dimensional pdf of the correlated source X is uniform on each of the four
squares with the heights (142€)/4 as indicated. The dots indicate reproduction locations associated
with using the optimal 16-codeword scalar quantizer on each dimension; (b) The two-dimensional
pdf fy of the uncorrelated source Y = T'X equals the two-dimensional pdf of X rotated 45° about
the origin. The dots indicate reproduction locations associated with using the optimal 16-codeword
fixed-rate scalar quantizer on each dimension.

pdfs of X and Y given a uniform distribution on U. Each pdf is uniform in its marked
regions. The probability of each of those regions is marked in the figure. The dots in each
figure show all possible two-dimensional reproductions when the individual components
of the random vectors are quantized with the optimal fixed-rate scalar quantizers. The
quantizer associated with the decorrelated random vector Y (shown in Figure 2(b)) is very
inefficient and thus leads to higher mse than the quantizer associated with the correlated
random vector X (shown in Figure 2(a)).

For the fixed-rate coding calculation, (3) implies that for all e € (0,1/2), G(,frT) =

3/2
(27/64) [(2/28"/° + 201/3)(21/3a/3 + 261/%)] /> \We can show that G{3 > 1 (0 dB)
whenever € < 0.4998, and lim¢o G(Ifr% ~ 5.63 dB.

The results for variable-rate transform coding are similar. Here,

giving Gg‘:}) > 1 (0 dB) whenever € < .4518, and limco G(IV}) =e~4.34dB. a

In the previous example, for both fixed-rate and variable-rate coding, a best KLT is 4-5
dB worse than an optimal transform. In this case, it is better to scalar quantize correlated
data than uncorrelated data. The following example gives a similar outcome.

G(I‘,’;") — 2loge+2’}£(2a)—2,

Example 5 U, is Gaussian with mean 0 and variance o° < A.
Given fy(z) = N(0,0?%), the marginal pdfs of X are again given by (2).

For fixed-rate coding, we can show that (3) holds in the limit as o — 0. Therefore
G&f‘} > 1 (0 dB) whenever € < 0.485, for some o > 0.Fore=0, GS“} ~ 3.36 dB.

For variable-rate coding, (4) holds in the limit as o — 0, so limg_y0 G(Ivr_rp) = 22H(2a)-1,
In this case, GS"}) > 1 (0 dB) whenever € < .3899, and lim_,o lims 0 G(,V}) ~ 3.01dB. O
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Example 6 Ui is a constant.

Let U; = 0 with probability 1. Then the pmfs of X; and X are p(X, = —A) =p(Xi =
A) =p(X; = —A) = p(X, = A) = 1/2. Atrate 1 bps, the mse obtained by using the
transform matrix I is O for both fixed-rate and variable-rate coding. In contrast, Y1 and
Y, are more difficult to compress. For fixed-rate coding, a rate of log3 > 1 is required
to achieve distortion 0 if 0 < € < 1/2. For variable-rate coding, a rate of (H(Y1) +
H(Yy))/2 = 0.5+ H(20) is needed to achieve distortion 0. Here 0.5 + H(2a) > 1if
¢ < .3899. Thus, in either of these cases, the coding gain associated with using transform
[ rather than the KLT T is infinite at rate 1 bps. m]

The next example shows that even for a source whose distribution is very close to
Gaussian, the KLT may still be suboptimal.

Example 7 The source pdf has a simply connected support and is close to normal.

Let us consider a 2-dimensional stationary vector source X = (X1, X2)". Suppose the joint
pdf of (X1, Xz) is f(z1,%2) = afi(z,z2) + (1 — @) f2(z1, 2), where a = .99 and f,
and f, are two 2.dimensional Gaussian pdfs. Let the means of f; and f, be p; = (0, 0)t,
p2 = (.5,3)* and the covariance matrices be

5 0 10
‘I’“[o 2]’*‘“‘1‘1’2‘[0 289.3375]'

It can be shown that Y = TX is aKLT for X, where T is defined in (1), and G(I&} ~ 1.6426
dB, GS"}) ~ 6124 dB. Here f is still close to the Gaussian pdf, e.g., D(f1]lf) = .0109. O

Vvl KLTs with Independent Transform Coefficients
Can be Suboptimal for Fixed-Rate Transform Coding

The previous examples show that even a best KLT can be suboptimal for transform coding.
In those examples, the transform vector Y has coefficients that are decorrelated but not
independent. In this section, we prove Theorem 4 by showing that even when the trans-
form vector has independent coefficients, a KLT can be suboptimal for fixed-rate transform
coding. Notice that this result applies only to fixed-rate coding.

We construct an example by using a two-dimensional Laplacian source X = (X, Xo)t
with independent components. We show that the transform matrix T that rotates the source
by 45° is better for fixed-rate coding on X than the identity matrix I given by the KLT.

Let b and o be positive constants and

1 l.’121|\/§ 1 |.’L‘2|\/—2-
;——ﬂexp (——-a—) , and fx,(z2) = mexp (——b—a—'> :

Further, let the transform matrix 7' be the transform matrix defined in (1). If b = 4/3, then
the coding gain obtained by quantizing Y instead of the independent component source X
is G ~ 0.40 dB > 0 dB.

le ('7"1) =
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Note that the observed problem is not limited to b = 4/3. For example, if b = 1, the
KLT is not unique, and it is still not optimal to quantize the independent components. In
this case, the coding gain obtained by using transform T rather than the KLT I (that is
quantizing Y instead of the independent component source X)is GSE'} ~ 1.33 dB.

VII Summary and Conclusions

In this paper, a family of sources has been demonstrated for which the KLT transform
is suboptimal in a scalar quantized transform coding system (using either fixed-rate or
variable-rate scalar quantizers).

We considered 3 scenarios: there are sources for which the KLT is not unique, and the
worst KLT may be arbitrarily worse than the optimal transform in terms of coding gain
in both fixed-rate and variable-rate transform coding; there are sources for which even a
best (or only) KLT can give suboptimal performance in both fixed-rate and variable-rate
transform coding. An independent work by Goyal also shows this result for variable-rate
transform coding by using a different example [9]; there are sources for which the KLT
that yields independent components is suboptimal in fixed-rate coding. For variable-rate
coding, the transform that yields independent components is generally optimal in variable-
rate coding under the high-rate assumption (note that this is not true at low rates in general).
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