
Lehigh University
Lehigh Preserve

Theses and Dissertations

1991

Object-oriented menu-driven front-end for
simulation of manufacturing systems
Pamela S. Woodbury
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Woodbury, Pamela S., "Object-oriented menu-driven front-end for simulation of manufacturing systems" (1991). Theses and
Dissertations. 5428.
https://preserve.lehigh.edu/etd/5428

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F5428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5428&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5428?utm_source=preserve.lehigh.edu%2Fetd%2F5428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

OBJECT-ORIENTED MENU-DRIVEN

FRONT-END FOR SIMULATION OF

MANUFACTURING SYSTEMS

by

Pamela S. Woodbury

A thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

• In

Electrical Engineering

Lehigh University

(October, 1990)

This thesis is accepted and approved in partial fulfillment of the

requirements for the degree of Masters of Science in Electrical

Engineering.

Date

Advisor in C

CSEE Departme t Chairperson

-···

• •
11

--

ACKNOWLEDGEMENTS

Their are many people that I would like to thank for their support

while completing my thesis. First of all is my extremely supportive

husband and my family. With out their encouragement along the

way, this project might not have ever gotten off the ground.

I would also like to thank AT&T Bell Laboratories for their

financial and emotional support. I wish to express thanks to both my

supervisor and my co-workers for all of their uplifting

encouragement.

Finally, I would like to thank my advisor, Professor Edwin Kay, for

his guidance in my work. Thanks to his advice and guidance, this

project was a success.

• • •
111

Table of Contents

Title Page •
.........•.•..•••••••......•......................•..•••••••••.•.. 1

Certificate of Approval .. . ••
.• . 11

Acknowledgements •••
•••.•••••••••••••••••••••.•...•••••••••••••••••••••••.•.......••.••.•...•........................ 111

Table of Contents •
.............•..•.........•..........•.•...•...................................•........•............. 1 V

A b s tr a c t ... 11 • ••••••••.••••• •:• •••••••• 1

I. Introduction ... 2

II. Smalltalk-80 Overview ••••••••••••••• 5

III. Smalltalk-80 Simulation Framework .. 1 1

IV. Scope of Manufacturing System to be Modeled ••••••••••••••••••••••••••••••••••• 1 5

V. Front-End Description ···~········· 1 7

VI. Front-End Imp 1 emen ta ti on ~ 1 9

VI.I. The Model ... 2 4

VI.II The Controller .. ·· 3 3

VI.III The View 4 1

VII. Conclusion .. 4 3

Bibliography ···~················4 5

Vi1'1. ...•............ 4 (5

• IV

Abstract

Computer simulation can be used to asses the performance of

complex production systems and to identify their design flaws and

operating problems. The problem is that simulation systems are

typically very complex and not very user friendly.

This thesis presents a high level design for an object-oriented.

menu driven front-end of a simulation package for one type of

production system. the automated flow line. The front-end is

designed using object classes provided for simulation in the

Smalltalk-80 environment. The focus of the design is on providing a

user friendly means of entering machine and buffer storage data into

the simulation. This was accomplished by the use of menus. The user

first selects an action from the main menu and is then guided

through that selection by the use of menu choices or prompts for

specific information.

1

·v

I. Introduction

In today's factories there are many types of manufacturing

systems. There are high volume production systems which are used

when there is high demand for a product and correspondingly little

variation in production. At the opposite extreme there are flexible

manufacturing systems that must produce a variety of products with

virtually no time Jost for change over from one product to the next.

Computer simulation can be used to assess the performance of these

complex production systems and to identify their design flaws and

operating problems. [Groover. 1987]

One type of mass-production system, known as an automated flow

line. consists of several machines that are linked together by work

handling devices that transfer parts between the machines .. The parts

are transfered automatically and the machines carry out their tasks

automatically. A raw part enters the line at one end and the

processing steps are performed sequentially as the part moves from

one station to the next. It is possible to have buffer storage zones ··

between the machines where parts are stored before being processed

by the next station. It is also possible to include inspection stations

and manual work stations in th·e flow line.[Groover, 1987]

In an automated flow line. it is important to balance the flow in
-

the line so that all process ·steps are of approximately equal capacity,

2

because any additional capacity beyond that of the least productive

step is usually wasted. Computer simulation can aid the system

designer by providing specific information regarding where

machines may need to be added to improve throughput. Simulation

can also provide information about the line such as: reliability, line

performance, and how much improvement might be made by

providing storage buffers.

Simulation systems are typically very complex and not very user

friendly. Because of time constraints present in business today. an

easier and faster method of modeling systems is needed. [Grant.

1988]

A high level design for an object-oriented, menu driven front-end.

of a simulation package for an automated flow line. will be presented

in this paper. The front-end will be designed using the object classes

provided for simulation in the Smalltalk-80 environment [Goldberg &

Robson, 1989]. The design will focus on providing a user-friendly

means of enter·ing machines and buffer storage into the simulatio.Q:,--1.t
. -·~-'."-"',---:. .o\•'

"

will not focus on issues such as simulation suspension or simulation

output since there is a package called SimTalk 1 that provides support

in these areas.

~SimTalk is a simulation package, available from Tektronix, which runs within the
Smalltalk-BO environment. SimTalk defines a large number of predefined object.s for
use in designing complex simulations. This provides the simulation with inherited
capabilities that include graph and histogram displays, animation controllers, random
number generators, and probability distributions. SimTalk lets the user suspend
simulation, modify the definitions of entities within it, then restart the simulation from
the point at which it was suspended. In order to save the results of a simulation, SimTalk

3

I

The design ls based on Smalltalk-80 because of it's extensibility.

In the paper entitled "Object Oriented Simulation of Manufacturing

Systems: A Smalltalk Experience", Lawrence Doe [1989] states that

"The tools used by the [manufacturing system) designer must

provide for ever increasing improvements in productivity". A

package designed using Smalltalk-80 would provide this capability.

since one of the underlying aspects of Smalltalk-80 is it's ability to

add to it's current environment. Individual pieces of the simulation

can be implemented and executed without having other pieces of the

simulation available. Also. a complete simulation package can easily

be enhanced by adding new objects or methods to represent

improvements in a manufacturing system.

··&.,. ..

can write its statistical output to a file. The user may also choose to display the statistics
in one of six kinds of graphs. SimTalk also provides a way of displaying simulation
output in animated form.

4

)

•

II. Sma11talk-80 Overview

The following discussion on Smalltalk-80 is drawn from the book

entitled "SMALLT ALK-80: The Language". [Goldberg & Robson. 1989]

Smalltalk-80 is an environment in which all components are

referred to as objects. Objects are made up of private memory

(instance variables) and a set of operations (methods). Objects

respond to messages. A message is a request. sent by an object, for

another object to execute one of its methods. An important

distinction between a message and a method is that a message

specifies which operation is desired, while a method is the actual

implementation of the operation. It is possible for two different

objects to respond to the same message in entirely different ways.

Objects are organized into classes which in turn are organized in a

hierarchy so that objects in a subclass will have all of the properties

of objects in the superclass. An occurrence of an object described by

a class is referred to as an instance of that class. The class is the
.

description of the instances· instance variables. and methods. All

instances of the same class. therefore. use the same set of methods to

describe their operations.

The subclass hierarchy allows classes to share similar descriptions.

The instances of a subclass are the same as the instances of its

superclass except for explicitly stated differences. In other words.

s

...

-;<'"

the subclass inherits both the variables and methods of its

superclass. The subclass may declare new variables and it may also

add new methods or override existing methods in the superclass. A

subclass overrides a superclass method by adding a new method in

the subclass with the same message pattern as the method of the

superclass. Instances of the subclass will respond to the message by

executing the new method of the subclass rather than that of the

superclass.

The following is a summary of the Smalltalk-80 terminology as

given by Goldberg & Robson.

Summary or Terminology

object

message

class

, ,,:

Instance

Instance variable

method

subclass

superclass

A component of the Smal 1 talk-80
system represented by some private
memory and a set of operations.

A request for an object to carry out
one of its operations.

A description of a group of similar
objects.

- . - ~' --'· ... \~ :--· ,,

One of the objects described by a
c I ass.

A part of an object's private
memory.

A description of how to perform one
of an object's operat_ions.

A class that inherits variables and
methods from an existing class.

The class from which variables and
methods are inherited.

6

~:--.__ ...

This paper will present classes in the same manner as does

[Goldberg & Robson. 1989). That is. a class will be presented in two

forms. One form will describe the functionality of the instances and

t~ther will describe the implementation of that functionality.

The protocol description lists the messages that an instance of that

class can respond to. Each message has a description of the operation

to be performed when the mes sage is received. An implementation

description shows the implementation of the functionality des er i bed

in the protocol description.

ln some cases only the protocol description of the methods will be

provided. as this description will be adequate to present the context

of the information. In other cases. where more detail is required.

both the protocol description and the implementation description will

be provided. Italics are used in the implementation descriptions to
~-·_ "'"' ~·-·- -

j

indicate pseudo code where actual methods have not been defined.

In Smalltalk-BO there are three types of messages: unary, binary,

and keyword. A unary message is a message that has no arguments.

a binary message takes one argument and is composed of either 1 or

2 special symbols. and a keyword message takes as many arguments

as there are keys. Some examples of each are shown in table 1.

7

me sage type message message e x p r e s s l~o n response
unary sqrt 4 sqrt 2

binary + 4+5 9
keyword quo: 6 quo: 2 3
keyword newDay: Date newDay: 6 6-Feb-91

month: month:#feb
year: year: 91

Tab le 1
Mes sage Examples

To develop an application in Smalltalk-BO. the programmer

modifies the existing environment. To achieve the desired results,

new objects and classes. with corresponding variables and methods,

may be added to the system. Subclasses of existing classes may be

added. which enhance or override the existing superclass description,

or existing classes and methods may simply be rewritten. This last

method of changing the environment is not a highly recommended

one. since it may be possible that the particular method being

changed is being used in more than one application. To ensure the
.I

integrity of the existing system, it is wiser to create a subclass and

override that method in the subclass.

The factory simulation front-end developed in this paper is done

by creating subclasses of existing classes. It is therefore necessary to

first define some of the tools for simulation in the Smalltalk-80

environment. After that, the factory line for which this front-end is

designed will be described, followed by a high-level description of

that front-end. The protocol descriptions of the classes added to the

8

~ystem will then be presented along with some of the corresponding

implementation descriptions.

Before proceeding. a brief description of the Smalltalk-BO

environment is presented. The Smalltalk-BO environment has a

highly interactive user interface. with pull-down menus and multiple

windows. Smalltalk-80 is usually run on a system with a 3 button

mouse. Smalltalk refers to these buttons as the red. yellow and blue

buttons. See figure 1 for the layout of the buttons on the mouse.

R Y B

'

Figure 1
Mouse But tons

By convention. each mouse button has a unique function in the

system. The blue button is used for window control: closing, resizing.

moving. etc .. The red button controls the text cursor when the mouse

is in a text window. The yellow. button controls functions within the

window. The options for this button differ ac·cording to the purpose

of the window. For example. in a text window. the yellow button
,·

9

controls the functions such as copying. deleting. pasting. etc .. The

actual functionality of the mouse buttons is decided upon by the

software designer. However. the assignment of functions described

above is done for the sake of consistency.

10

III. Smalltalk-80 Simulation Framework

Smalltalk-80 provides a framework for event-driven simulations.

Goldberg & Robson describe event-driven simulations as "simulations

in which a collection of independent objects exist. each with a set of

tasks to do. and each needing to coordinate its activity's times with

other objects in the simulated situation ... The two major classes

provided for simulation in Smalltalk-80 are class Simulation and

class SJmulatlonObject. The class SlmulatlonObject describes the

kind of object to appear in the simulation. These objects have a set of

tasks to carry out. and the methods for these objects describe the

manner in which the tasks are completed. An instance of class

Simulation is the driver of the simulation. It is responsible for
,,..
"

maintaining the simulated clock. the queue of events. and the

coordination of arrival of new objects and resources jnto the system.

(.

Class Simulation and class SimulationObject are abstract

classes because they are not intended to have instances. According to

[Goldberg & Robson. 1989) an abstract class "prov.ides a framework

for a method that is refined or actually implemented by the

subclass". If an instance of one of these classes was created. it would

not be able to respond to all of the messages successfully because

some of the messages are not implemented at this level. It is

therefore the responsibility of the subclass to implement these

messages.

1 1

Following ls a partial protocol description of class
'\
)

SimulatlonObJect and class Simulation. Only the messages that

are necessary to understand the design of the front-end to be

described later are presented. For a complete des~ription of these

classes refer to [Goldberg & Robson. 1989]. The following descriptions

are presented here exactly as they are found in the Goldberg &

Robson text.

SlmulatlonObJect Instance protocol

initialization
initialize

simulation control
startup

tasks

finish Up

task language
holdFor: aTimeDelay

Initialize instance variables. if any.

Initialize instance variables. Inform
the simulation that the receiver is
entering it. and then initiate the
receiver's tasks.

Define the sequence of activities
that the receiver must carry out.

The receiver's tasks are completed.
Inform the simulation

Delay carrying out the receiver's
next task until a Time Delay amount
of simulated time has passed.

12

acquire: amount ofResource: resourceName
Ask the simulation to provide a
simple resource that is referred to
by the String, resourceName. If one
exists. ask it to give the receiver
amount of resources. If one does
not exist. notify the simulation user
(programmer) that an error has
occured.

produce: amount ofResource: resourceName
Ask the simulation to provide a
simple resource that is referred to
by the String. resourceName. If one
exists, add to it amount more of its
resources. If one does not exist,
create it.

inquireFor: amount ofResource: resourceName
Answer whether or not the
s i mu I at i on has at 1 ea s t a q u ant i t y,
am o u n t. of a re sou r c e referred to
by the St r in g, re sou r c e Name .

Simulation Instance protocol

initialization
initialize Initialize the receiver's instance

variables.

modeler's initialization language
defineArrivalSchedule Schedule simulation objects to enter

the simulation at specified time
intervals, typically based on
probability distribution functions.
This method is implemented by
subclasses.

define Resources
...

Specify the resources that are
initially entered into the simulation .
These typically act as resources to
be acquired. This method is
implemented by subclasses.

13

modeler's task language
produce: amount of: resourceName

An additional quantity of amount of
a resource referred to by a String,
resourceName, is to be part of the
receiver. If the resource does not as
yet exist in the receiver, add it: if
it already exists, increase its
available quantity.

scheduleArrivalOf: aSimulationObject at: timelnteger
Schedule the simulation object,
as i mu 1 at ion O b je c t , to enter the
simulation at a specified time.
timelnteger .

• accessing
time

simulation control
startup

proceed

finish Up

\.

A n s we r the rec e i ve r' s c u r rent t i me .

Specify the initial simulation objects
and the arrival schedule of new
objects.

This is a single event execution. The
first event in the queue, if any, is
removed, time is updated to the
time of the event, and the event is
initiated.

Release references to any remaining
simulation objects.

14

IV. Scope of Manufacturing System to be Modeled

An automated flow line can be modeled by a series of machines

that obtain parts from a storage buffer. hold them for a period of

time and then place them into another storage buffer. For the

purpose of this paper. it is assumed that each machine wi 11 have only

one buffer from which it receives parts. and only one buffer to feed

parts to. Some examples of flow lines are shown below.

Prod. Prod. Prod.
Mach. S.B. Mach. S.B. Mach. S.B.

Example 1

Prod.
Mach.

Prod. Prod.
Mach. S.B. S.B. Mach. S.B.

Prod.
Mach.

Example 2

15

Each machine has a set of characteristics associated with it. These

are: machine cycle time and standard deviation. mean time between
(' ,,

failures (mtbf). mean time to repair (mttr). where to obtain incoming

parts. and where to place outgoing parts.
'

The user interface must therefore have the capability of adding

machines to the simulation. modifying their parameters. and then

running the simulation. A description of the user interface is

presented next. followed by a high level description of the Smalltalk

implementation of that interface.

16

i)

V. Front-End Description

The user of the front end is first presented with an empty

working window, and a pull down menu that would allow two

choices: add machine or quit. After the first machine has been

added, the menu will consist of the options shown in figure 2.

add machine

move machine

move buffer

modify machine

remove machine

run simulation

quit

Figure 2
Main Menu Options

Description of Menu Options

add machine

move machine

./

The characteristics for the machine
are entered, and the machine is
added to the simulation. The
machine and its corresponding
buffers are positioned in the
display.

Change the position of the machine
in the display .

17

move buffer

modify machine

remove machine

run simulation

quit

Change the posit ion· of the bu ff er in
the display.

Change any one of the machines
characteristics.

Remove a machine from the
simulation.

Execute the simulation for the
length of time indicated by the user.

Remove all machines and buffers.
Close simulation window.

During execution of the simulation the user can watch how the

parts flow through the system. Each buffer keeps a constant display

of how many parts are in it at that time. and the machines change

color to indicate when they are out of service. It is important to note

that the simulation will run according to the specifications entered

when the machine is input. The actual placement of the machines

and buffers on the screen has no affect on the simulation flow. This

graphical representation is solely for the user's ease in following the

flow of parts through the system.

When the simulation completes execution. the display is left with the

storage buffers displaying the number of parts left in them at that

time. At this point. the user has all of the menu options shown in

figure 2. This allows the user to run a simulation. wait for its

completion, make modifications. and then re-run the simulation.

18

VI. Front-End Implementation

As previously mentioned. the front-end will be developed by

adding new objects and classes to the existing framework for

simulation in Smalltalk-80. The design will be based on the model

view-controller (MVC) paradigm (Pinson. 1987]. The model is the

actual simulation. It must maintain data on all of the machines and

buffers in the simulation. The view is the graphical representation of

the simulation. It displays the machines and buffers where the

model informs it to. The controller is the user interface. It controls

the flow of information between the model. the view. and the user.

The controller controls all of the interaction with the user. however,

it basically just feeds all of the information on to the model.

The relationships between the model. the view. and the controller

are shown in figure 3. According to Pinson's definition of the view. it

is the view's primary responsibility to keep the MVC triad together

as a family. "Private data within the view protocol are used to

connect the view with its model and controller. In his definition of

the controller, he states that "Private data within the controller

protocol are used to connect the controller with its model and view".

These definitions describe the solid lines of conwiunication shown in

figure 3. The dotted line is used to represent the relationship from

the model to the view. The model protocol does not have an internal

reference to its controller or its view. however. the view needs to be

informed when the model changes. To establish this link between th-e

19

model and the view. a dependency relationship is utilized. This type

of dependency is described in class Object. which is the superclass of

all other classes in the Smalltalk-80 system. When the MVC triad is

established. the view sends a message to the model to add the view

as a dependent of the model. This action forms the dotted line shown

in the diagram. When the model has changed. and the view should be

informed, the message changed is sent to the model. The response to

this message is to send the message update: to all of its dependents. It

is the responsibility of the view to reimplement the message update:

so that upon receipt of this message. the view can redisplay the

simulation.

20

\
\

View

Contra l l er

_________
Model

~--------

Figure 3
Relationship between the Model.

the View, and the Controller

Figure 4 shows the relationships between the classes and

subclasses used in the design of the specific MVC paradigm for this

application. This figure should be used as a reference while reading

through the class descriptions that follow. The figure shows that the

controller, FactoryS1mu1atlonContro11er. is a subclass of the

S tandardSys tern Con trot I er while the view,

FactoryS1mulationView. is a subclass of the

StandardSystemView. The model. FactorySimulation. is a

subclass of class Object. An instance of class FactorySimulation

has machines as an instance variable which is an

OrderedCollection of instances of MachineTypeA or

MachlneTypeB. The other class which is required for this factory

21

simulation application is class Factory. Class Factory, which is a

subclass of class Simulation. is responsible for the initialization and

maintenance of the actual simulation. Class Factory is not shown in

Figure 4 since it is the responsibility of the model to send a message

to an instance of class Factory to start the simulation.

22

Controller

StandardSystemContro 11 er

subclass

Fae torys i m-u lat i onContro 11 er

View
Model

StandardSystemView Object

subclass subclass . - -
FactoryS i m ul at ion Vi e·w Fae toryS i m ul at ion

Figure 4

instance variable
mach1nes

OrderedCo 11 ect ion of

SimulationObject

subclass

'"- i.,

MachineTypeA

subclass

MachineTypeB

MVC Class/Subclass Relationships

23

' -

VI.I. The Model

The model needs to represent the machines and the buffers with

data structures. As well as having the ability to grow in size. these

data structures must be able to remove elements from anywhere in

the data structure. For these reasons. an ordered collections

[Goldberg & Robson. 1989] are chosen to represent the machines and

buffers. These are instance variables machines and buffers in class

FactorySlmu 1 atlon

To describe the machine objects. two new classes are added to the

system. MachineTypeA is used to represent the first machine or

machines in the automated flow line because it does not use an input

buff er. MachineTypeB is the more commonly used type in that it

uses both input and output buffers. These subclasses have accessing

methods for retrieving and modifying the machine parameters. The

protocol descriptions of·MachineTypeA and MachineTypeB are given

next. MachineTypeA is a subclass of SimulationObject. MachineTypeB

is a subclass of MachineTypeA because it has all of MachineTypeA's

characteristics with the addition of an extra instance variable. By

having MachineTypeB be a su be lass of MachineType A. the repetition

of a lot of code is avoided. Note: the instance variables are specified

in the implementation descriptions which fol low the protocol

descriptions for the classes.

24

l

MachlneTypeA Instance protocol

• accessing
meanTBF

meanTBF: aNum

cycle Tim a Mean

cycleTimeMean: aNum

cycle Ti me Dev

cycleTimeDev: aNum

meanTtoRep

meanTtoRep: aNum

outBuf

outBuf: aString

machineName

machineName: aString

location

25

Return the value of instance
variable meanTBF

Set instance variable meanTBF
to the value of aNum

Return the value of instance
variable cycleTimeMean

Set instance variable
cycleTimeMean to the value of
aNum

Return the value of instance
variable cycleTimeDev

Set instance variable
cycleTimeDev to the value of
aNum

Return the value of instance
variable meanTtoRep

Set instance variable
meanTtoRep to the value of
aNum

Return a string with the value
of instance variable outBuf

Set the instance variable
outbuf to the value of aString

Return a string with the value
of instance variable
machine Name

Set the instance variable
machineName to the value of
aString

Return the value of instance
variable location

location: aPoint

simulation control
tasks

Set the instance variable
location to the value of aPoint

The sequence of activities that
the machine object must
carry out. je, Determine if the
machine is in a failure mode.
If yes, hold for a period of
time determined by the
variable meanTtoRep. If no,
hold for an amount of time
determined by cycleTimeMean
and cycleTimeDev, then add 1
to the quantity in the output
buffer.

MachlneTypeB Instance protocol

• accessing
inBuf

inBuf: aString

simulation control
tasks

Return a string with the value
of instance variable inBuf

Set the instance variable inbuf
to the value of aStr ing

The sequence of activjties that
the machine object must
carry out. ie. Determine if the
machine is in a failure mode.
If yes, hold for a period of
time determined by the
variable meanTtoRep. If no,
acquire a quantity of 1 from
the input buffer. hold for an
amount of time determined by
cycleTimeMean and
cycleTimeDev. then add 1 to
the quantity in the output
buffer.

Shown next is the implementation description of these two classes.

26

\
)

class name
superclass
instance variable names

instance methods

accessing

meanTBF
A meanTBF

meanTBF: aNum
meanTBF <- aNum

cycle Ti me Mean
A cycleTimeMean

cycleTimeMean: aNum
cycleTimeMean <- aNum

cycle Ti me Dev
A cycleTimeDev

cycleTimeDev: aNum
cycleTimeDev <- aNum

meanTtoRep
A meanTtoRep

meanTtoRep: aNum
meanTtoRep <- aNum

outBuf
A outBuf

outBuf: aString
outBuf <- aString

machineName
A machineName

machineName: aString
machine Name <- aStr ing

location
A location

location: aPoint
location <- aPoint

27

MachineType A
SimulatlonObject
meanTBF cycleTimeMean
cycleTimeDev meanTtoRep
outBuf machineName
location

simulation control

tasks
' I exp on Var Time I

exponVarTime <-
(Exponential mean: meanTBF) next

+ Simulation active time.
"Must get the time of the simulation from the model ..
[Simulation active time >

dependent simTime)
whi leFal se:
[(Simulation active time > exponVarTime]

whileFalse:
(self holdFor:

(Normal mean: cycleTimeMean
deviation: cycleTimeDev) next.

self produce: 1 ofResource: outBuf.
"redisplay buffer at this point"
self changed]

self holdFor:
(Exponential mean: meanTtoRep) next.

expon VarTime <-
(Exponential mean: meanTBF) next

+ Simulation active time]

class name
superclass

Mac hi neTypeB
MachineTypeA
inBuf instance variable names

instance methods

accessing

inBuf
A inBuf

inBuf: aString
inBuf <- aString

28

simulation control

tasks
"Although this method looks very similar to the same method in
the superclass MachlneTypeA. it ls actually necessary to
reimplement it here. The difference between the methods is that
the method described here must first acquire a resource before
completing the rest of its tasks.The method described in the
superclass did not perform this initial action."

I exp on VarTime I
expon VarTime <-

(Exponential mean: meanTBF) next
+ Simulation active time.

"Must get the time of the simulation from the model"
[Simulation active time >

dependent simTime]
whi leFal se:
[[Simulation active time> exponVarTime]

whileFalse:
[self inqu ireFor: 1 ofResource: inBuf]

whileFalse: [].
self acquire: 1 ofResource: inBuf.
"redisplay buffer at this point"
self changed.
self holdFor:

(Normal mean: cycleTimeMean
deviation: cycleTimeDev) next.

self produce: 1 ofResource: outBuf.
"redisplay buffer at this point"
self changed]

self holdFor:
(Exponential mean: meanTtoRep) next.

exponVarTime <-
(Exponential mean: meanTBF) next

+ Simulation active time]

When the controller has all of the information about a machine. it

passes it on to the model in the method. createMachine: input: output:

cycleTime: cycleTimeDev: mtbf: mttr: location:. The model responds to this

29

message by producing an instance of either MachineTypeA or

MachlneTypeB. It then adds this object to the collection of

machines in the simulation.

The protocol description of the model is given next.

FactorySlmulatlon Instance protocol

menu messages
createMachine: machineName

input: inputBufferName
output: outputBufferName
cycleTime: cycleMean
cycleTimeDev: cycleDev
mtbf: failTime
mttr: repairTime
location: display Loe

createBuffer: bufferName
location: display Loe

runSim: simTime

Create either an instance of
MachineType A or
MachineTypeB, and initialize
the instance variables. Add
the object to the database of
machines.

Add an entry, bufferName, to
the database for buffers.

Start the simulation running,
and have it run for the
amount of time indicated by
simTime.

When the controller sends the message runSim: to the model. the

model must respond by initiating the simulation. This is

accomplished by simply sending the message startup to an instance of

30

the class Factory. which ls a subclass of class Simulation. Upon

receipt of this message class Factory initializes and maintains the

simulation until completion. at which point control is passed back to

the model. The initialization of the simulation objects is done through

the messages defineArrivalSchedule and defineResources. The

implementation of these methods is shown next in the

implementation description of class Factory.

class name
superclass
instance methods

defineArrivalSchedule

Factory
Simulation

.. loop through collection of machines in
FactorySimulationModel ..

self scheduleArrivalOf: machine at: 0.0.

define Resources
"loop through collection of buffers in
FactorySimulationModel"

self produce: 0 of: 'buffer'

The implementation description of the model is given next.

31

class name
superclass

FactorySimu lat ion
Ob Ject

instance variable names
instance methods

machines buffers simTime

menu messages

createMachine: machineName
input: inputBufferName
output: outputBufferName

/

cycleTime: cycleMean .)
cycleTimeDev: cycleDev (.
mtbf: failTime

\

mttr: repairTime ,\
location: display Loe / 1

(

"First determine if machineName(is a MachineTypeA
or MachineTypeB. Create the appropriate object.
and add it to the ordered collection of machines."

I tempMachine I
(in p u t Buffer Name = n i I)

ifTrue:[tempMachine<- MachineType A new)
ifFalse:[tempMachine<- MachineTypeB new.

tempMachine inBuf: inputBufferName).
tempMachine outBuf: outputBufferName.
tempMachine cycleTimeMean: cycleMean.
tempMachine cycleTimeDev: cycleDev.
tempMachine meanTBF: failTime.
tempMachine meanTtoRep: repairTime.
tempMachine location: displayLoc.
tempMachine machineName: machineName.
tempMachine addDependents: self
machines addLast: tempMachine

runSim: simTime
I sim I
sim <- Factory new startUp.
[sim time< simTime)

whileTrue: [sim proceed).

update: aParam
"The model receives this message when a machine object has
modified the size of one of the buffers. The model must therefore
inform the view that the model has changed. so the view can
respond accordingly."

self changed

32

VI.II. The Controller

The controller has command of the user menu options. The yellow

button. by convention. is chosen to control the menu functions. Each

option in the menu has a method corresponding to that option. Figure

2 showed the standard options available to the user with the yellow ·

button. Shown below is the protocol description for the controller.

FactorySimulatlonController Instance protocol

initialization
initialize

menu messages
setYellowButtonMenu

addMachine

33

Initialize instance variables.
Set up the ye 11 ow butt on
menu. Inform the view that
the model has changed.

Initialize the pop-up menu
seen when the yellow button is
depressed. This menu contains
all of the options available to
the user at that time.

Prom p t the u s e r for a 11 of the
characteristics as soc iated with
the machine. Have the user
place the machine in the
display. Send a message to t.he
model to add this machine to
the simulation. Send messages
to the model to add the
buffers to the simulation.
Reinitialize the user menu.
Inform the view that the
model has changed.

move Machine

move Buffer

modify Machine

removeMachine

runSim

quitSim

machine entry
addData

getMachName

getlnBufName

34

Have the user move a
machine within the display.
Inform the model of the
machines new location. Inform
the view that the model has
changed.

Have the user move a buffer
within the display. Inform the
model of the buffers new
location. Inform the view that
the model has changed.

Allow the user access to the
machines instance variables.
Inform the model of the
changes. Inform the view that
the model has changed.

Send a message to the model
to remove a machine from the
simulation.

Prompt the user for the length
of time which the simulation
shou 1 d run for. Send· a
message to the model to run
the simulation for this length
of time.

Break down the MVC paradigm
for factory simulation.

Display a menu of the
machine's characteristics. Do
not allow the user to exit this
menu until all of the
machine's characteristics have
been entered.

Prompt the user for the name
of the machine. If the name is
already in use, prompt the
user for a new name.

Prompt the user for the name
of the input buffer.

getOutBufName

getCycleTimeMean

getCycle Ti me Dev

getMTBF

getMTTR

doneAdd

Prompt the user for the name
of the output buffer.

Prompt the user for the mean
cycle time of the machine.

Prompt the user for the cycle
time deviation of the machine.

Prompt the user for the mean
time between failures.

Prompt the user for the mean
time to repair.

Verify that all of the
characteristics for the machine
are entered. If true, exit the
addData menu. If false. do not
allow the exit.

If the user chooses. for instance. to add a machine to the

simulation. The yellow button menu option add machine is selected.

By doing so. the corresponding method addMachine is sent to the

controller. The controller responds to this message by prompting the

user for all of the machines characteristics. It then directs the user to

place the machine somewhere in the simulation window. The

controller then passes all of the information it has gathered about the

machine on to the model. After the machine has been added to the

model's data base. the controller directs the placement of the input

and output buffers associated with that machine. The buffers·

locations are then passed on to the model so that they too can be

added to the data base.

..

· To prompt the ~r for the characteristics of the machine being

added to the system. the controller displays the menu shown in

figure 5. When the user chooses a selection. they are prom-pted for

the correct value for that parameter. The user is not permitted to

exit this menu until all of the characteristics have been entered.

Therefore. a selection of completed entering data will do nothing

until all of the other selections have been executed.

machine name = undefined

input buff er = undefined

outbut buffer = undefined

cycle time mean= 0.0

cycle time dev = 0.0

mtbf = 0.0

mttr = 0.0

completed entering data

Figure 5
Machine Entry Menu Options

When the user has completed entry of the machines and buffers

to be used in the simulation. the menu option run simulation, in

figure 2. can be chosen. When this is done. the corresponding

method. runSim. is sent to the controller. This method must first find

")
I
I

\

'\
\

)

36

.\

out. from the user. the amount of time that the simulation will run.

The controller then sends this information to the model in the

message runSim:. The model is then responsible for starting the

execution of the simulation. When the simulation is complete. the

user will once again have the yellow button menu options shown in

figure 2.

The implementation description of the controller is given next.

class name
superclass
instance variable names

Fae torySim u 1 at ion Controller
StandardSys temCon troll er
machName inBufName
outBufName cycleMean
cycleDev meanTBF meanTTR

instance methods

initialization

initialize
super initialize.
initialize instance variables
self setYellowButtonMenu

menu messages

setYellowButton Me nu
model has at least one machine

ifTrue: lyellowButtonMenu:
(PopUpMenu labels: 'add machine\

move machine\move buffer\
modify machine\remove
machine\run simulation\qui t'
withCRs)

yellowButtonMessages: #(addMachine
moveMachine moveBuffer
modifyMachine removeMachine
runSim quitSim))

ifFalse: [yellowButtonMenu:
(PopUpMenu labels:

'add machine\quit' withCRs)
yellowButtonMessages: #(addMachine

quitSim)J

37

..

..

addMachine
"First prompt user for all characteristics associated with the
machine being added. Have user place machine and buffers.
Pass all info on to model."

I machLoc inBufLoc outBufLoc
self add Data.
place machine in display.
model createMachlne: machName

in p u t : i n Bu f Name o u t p u t : o u t Bu f Name
cycleTime: cycleMean cycleTimeDev: cycleDev
mtbf: meanTBF mttr: meanTTR
location: machLoc.

input buffer new
ifTrue: [place buffer in display.

model createBuffer: inBufName
location: i nBufLoc).

output buffer new
ifTrue: [place buffer in display.

model createBuffer: outBufName
location: outBufLoc) .

self setYellowButtonMenu.
model changed

runSim
prompt user for time for simulation.
model runSim: simTime.
self setYellowButtonMenu.

machine entry

addData
laddDataMenu labe1String actions!
labelString <- WriteStream with:
'machine name = ·, mac hName pr in tSt ring,
'\input buffer = •• inBufName printString,
· \ o u t p u t b u ff e r = · . o u t Bu f Name p r i n t St r i n g,
'\cycle time mean = •• cycleMean,
'\cycle time dev. - ·. cycleDev.
'\mtbf a '.meanTBF.
'\mttr = ·, meanTTR,
'\completed, entering data'.

actions <- #(getMachName getlnBufName
getOutBufName getCyc leTimeMean
getCycleTimeDev getMTBF getMTTR·
done Add).

addDataMenu <- Pop Up Menu
labels: (labelString contents)

wi thCRs
lines: #(123 4 5 6 7).

"self perform:(actions at: (addDataMenu
start Up And Wai tForSelection At: aPoint))

38

/

get Mach Name
(machine name is undefined or
machine name ls already in usel
whileTrue: [

Fi11InTheBJank
request: 'enter the name of the machine'
di s p I a y At: Sensor cursor Point
centered: true
action:[:responsel I
initial Answer: machName printString.

machName <- response).
A self addData

getlnBufName
FilllnTheBlank

request: 'enter the name of the input buffer·
displayAt: Sensor cursorPoint
centered: true
action:[:responsel I
initial Answer: inBufName pr intStr ing.

in Bu f Name <- response.
A self addData

getOutBufName
FilllnTheBlank

request: ·enter the name of the output buffer·
displayAt: Sensor cursorPoint
centered: true
action:[:responsel I
i n i t i a I A n s we r : o u t Bu f Name pr i n t St r in g.

o u t Bu f Name < - re s po n s e.
Aself addData

getCycleTimeMean
F ii llnTheBlank

request: ·enter the machine's mean cycle time·
displayAt: Sensor cursorPoint
centered: true
action:[:responsel I
initial Answer: cycleMean.

cycleMean <- response asNumber.
A self addData

39

'

getCycleTimeDev
Fi I J InTheBlank

request: ·enter the machine's cycle time
deviation'

~displayAt: Sensor cursorPoint
centered: true
action:[:responsel I
initial Answer: cycleMean.

cycJeDev <- response asNumber.
A self addData

getMTBF
FilllnTheBlank

request: 'enter the machine's mean time
between failures·

displayAt: Sensor cursorPoint
centered: true
action:[:responsel I
initial Answer: meanTBF.

meanTBF <- response asNumber.
A self addData

getMTIR
FilllnTheBlank

request: 'enter the machine·s mean time to
t I repair

displayAt: Sensor cursorPoint.
centered: true
action:(:responsel I
initial Answer: meanTTR.

meanTTR <- response asNumber.
Aself addData

40

VI.Ill. The View

The primary objective of the view is to keep the MVC triad

together. This is accomplished by establishing the MVC triad in the

view where methods are inherited that connect the view with its

model and controller.

The view's other responsibility is to display the data contained in

the model. It is therefore necessary for the model to inform the vi.ew

when a change in the data occurs.

The protocol description of the view is shown next.

FactorySimulatlonVlew Instance protocol

initialization
startSim

displaying
displayView

update: aParam

Establish the MVC triad. Make
the window active.

Display the data in the model.

~---- _}of o_rm the view that the data
r-n-'the model needs to be redisplayed.

Following is the implementation of the view.

I,

41

class name
superclass
instance methods

startSim
insideColor <- Form white.
borderWidth <- 2.
borderColor <- Form black.

FactorySimu 1 at ion View
Standard Sys tern View

self model: FactorySimulation new
controller: FactorySimulationController new.

window <- model window
self label: 'Factory Simulation·.
control 1 er open

displayView
I trans I
super displayView.
"display the model"
trans <- W indowingTransformation

window: window
viewport: insetDisplayBox.

(model aJJObjectsToBeDisplayed)
do: [:each I (trans applyTo: each)display]

update: aParam
self displayView

42

,;

VII. Conclusion ..

The purpose of this paper was to present a high level design for

an object-oriented. menu driven front-end of a simulation package

for simulating automated flow lines. Using the abstract tools

provided by Smalltalk-80 for simulation. classes were established to

represent the machines and storage buffers in an automatic flow line.

The main goal in designing this front end was to develop an

interface that is easy to use. This was accomplished by the use of

menus. The user selects the next action from the main menu and is

then either presented with another menu of choices or is prompted

for specific information.

This paper presented the structure for the interface design. In

some cases. specific detail was presented to fully describe the

Smalltalk-BO implementation. In other cases. a partial description

was provided in order to give the reader the basic flow of the design.

It would be desirable to integrate the menu-driven front-end

with the SimTalk package that was mention earlier. This paper used

two classes of objects to be simulated. Each was a subclass of the

abstract class SimulatlonObJect provided in Smalltalk-BO. By

making these classes sub-classes of SlmulatlonObJect. they

inherited the basic structure of any object in a simulation. In order to

combine this with the SimTalk package. classes MachlneTypeA and

43

I

.\ '.

MachlneTypeB would need to be subclasses of a more robust class

provided by SimTalk. In this way. the objects not only inherit the

basic structure for simulation. they would also inherit the more

advanced features provided by SimTalk.

By changing t·he superclass of the machine objectst the user

interface would require very little modification to be used with the

SimTalk package. Enhancements could be made to prompt the user

for other choices that SimTalk provides. such as what simulation or

output package is desired. Due to Smalltalk's modularityt the front

end designed here could be added to the SimTalk package with little

or no modifications to the SimTalk package itself.

The combination of this menu-driven front-end and the package

provided by SimTalk would result in a "user oriented .. simulation

package for manufacturing system design.

44

BIBLIOGRAPHY

Doe. Lawrence Whittier. Object Oriented Simulation of Manufacturing
Systems.· A Smalltalk Experience. Dissertation. Lehigh University,
1989

Goldberg. Adele and David Robson. SM ALLT ALK-80.· The Language,
Addi son-Wesley. Reading. Ma. 1989

Grant, F. Hank. "Simulation in Designing and Scheduling
Manufacturing Systems .. , Design and Analysis of Integrated
Manufacturing Systems. National Academy Press, Washington, D.C.,
1988, 134-147

Groover. Mikell P .. Automation, Production Systems, and Computer
Integrated Manufacturing. Prentice-Hall. Englewood Cliffs, NJ.
1987

Pinson. Lewis and Richard Weiner. An Introduction to Object
Oriented Programming and SMALLTALK, Addison-Wesley.
Reading. Ma. 1987

45

Vita

Pamela S. Woodbury was born April 7. 1963 in Cuba. New York. In

1987 she graduated Cum Laude with a Bachelor of Science in

Electrical Engineering from the University of Miami. Miami. Florida.

Currently she is employeed at AT&T Bell Laboratories in

Allentown. Pa. where she works in a software development group for

test program generation.

,,

46
•

/

0.

..

	Lehigh University
	Lehigh Preserve
	1991

	Object-oriented menu-driven front-end for simulation of manufacturing systems
	Pamela S. Woodbury
	Recommended Citation

	tmp.1551882614.pdf.vSMvJ

