
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2009 Proceedings International Conference on Information Systems
(ICIS)

2009

Can Social Networks Help Mitigate Information
Asymmetry in Online Markets?
Mingfeng Lin
University of Maryland - College Park, mingfeng@rhsmith.umd.edu

Nagpurnanand R. Prabhala
University of Maryland - College Park, prabhala@rhsmith.umd.edu

Siva Viswanathan
University of Maryland - College Park, sviswana@rhsmith.umd.edu

Follow this and additional works at: http://aisel.aisnet.org/icis2009

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Lin, Mingfeng; Prabhala, Nagpurnanand R.; and Viswanathan, Siva, "Can Social Networks Help Mitigate Information Asymmetry in
Online Markets?" (2009). ICIS 2009 Proceedings. 202.
http://aisel.aisnet.org/icis2009/202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301344366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2009?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2009?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2009/202?utm_source=aisel.aisnet.org%2Ficis2009%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


 Thirtieth International Conference on Information Systems, Phoenix 2009 1 

CAN SOCIAL NETWORKS HELP MITIGATE 

INFORMATION ASYMMETRY IN ONLINE MARKETS? 
Completed Research Paper 

Mingfeng Lin 

Robert H. Smith School of Business 
University of Maryland, College Park 

mingfeng@rhsmith.umd.edu 
 

Nagpurnanand R. Prabhala 

Robert H. Smith School of Business 
University of Maryland, College Park 

nprabhal@rhsmith.umd.edu 

Siva Viswanathan 
Robert H. Smith School of Business 

University of Maryland, College Park 
sviswana@rhsmith.umd.edu 

 

Abstract 

This study examines whether online social networks can help mitigate information asymmetry in 

online markets, and if so, what aspects of these networks generate value for market participants.   

Using a comprehensive dataset on transactions and social network information in an online peer-

to-peer lending market, Prosper.com, we empirically study the linkage between borrowers' social 

network positions and their transactional outcomes. Our results highlight the distinction between 

the structural and relational dimensions of social networks.  Stronger ties, where social and 

economic relations intertwine with each other, create value by both exerting peer pressures and 

increasing the verifiability of network ties, thereby alleviating the information asymmetry between 

borrowers and lenders.  Our findings contribute to the growing IS literature on the economics of 

social networks as well as to the study of online quality signaling mechanisms. 

Keywords:  P2P Lending, Information Asymmetry, Online Social Networks, Econometric Analyses 
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Introduction 

The evolution of online social networks is one of the most exciting phenomena in online commerce in the past few 
years.   A large number of social networking sites such as Facebook and LinkedIn have emerged with the specific 
goal of connecting users.  More recently, online retailers such as Amazon.com have also begun to implement social 
networking features on their websites.  A general perception among researchers and practitioners is that connecting 
users can help create value, yet the details of how such value is generated and what its sources are is not clear.  The 
goal of this study is to empirically investigate if and how online social networks create value.   

Drawing on literature from sociology and economics, we propose that one potential role of online social networks is 
to help alleviate information asymmetry issues that plague online commerce.  To test such a proposition, an ideal 
context is the online peer-to-peer (P2P) lending marketplaces, where individuals make unsecured microloans to 
other individual borrowers.  This market was virtually non-existent prior to 2005, yet we have seen many such sites 
rapidly gaining popularity over the last few years.  The most prominent of them is Prosper.com, which has logged 
over 200,000 loan requests seeking about $1 billion since its inception.   

Prosper.com is ideal to our investigation for a number of reasons.  First, members create and maintain social 
networks in this marketplace, which provides objective measures of their network positions as well as information 
about all "nodes" on the network.  There are friendship networks as well as group affiliation networks, providing an 
opportunity to contrast their effectiveness.  Secondly, as a financial lending marketplace, Prosper.com provides 
detailed objective information regarding all transactional outcomes, giving us a unique opportunity to explore the 
link between online social networks and economic outcomes.  The transactional outcomes that we study include all 
major events in the life cycle of loans: (1) the probability that a borrower's loan is funded; (2) the interest rate of 
loans; and (3) the ex post performance of loans.  Last but not the least, financial lending is the ideal context to study 
issues of information asymmetry and trust.  As Guiso et al (2004) suggest, "Financial contracts are the ultimate trust-
intensive contracts".  The issue of information asymmetry is only heightened by the decentralized nature of the P2P 
market, as each individual lender decides whom to lend and how much to lend, in a disaggregated manner.   

We draw on the literature in social networks that differentiate between structural and relational aspects of these 
networks.  Relational aspects of the network can be further classified as either "arm’s length" or "strongly 
embedded" depending on the extent to which economic relationships are intertwined into the social network. While 
both forms of social relationships have the potential to create value, they operate in different ways (Granovetter, 
1972; 2005). Weaker arm’s length relationships create value via access to diverse and heterogeneous information or 
resources; stronger embedded relationships create value by facilitating the sharing and transfer of private resources 
and promote self-enforcing governance such as norms. Whether the structural or the relational aspects of online 
social networks matter in online P2P lending markets, and further, whether arm's length relationships are more 
valuable than embedded ones in influencing positive lending outcomes, are the empirical questions that we seek to 
address in this study. 

We gather data on transactions as well as the social networks created by participants on Prosper.com to address the 
following research questions:  

(1) Does the social network position of borrowers affect their probability of funding, interest rate of loans, and loan 

performance?  

(2) How do the structural and relational aspects of online social networks impact transactional outcomes?  

Our empirical analysis shows that the relational aspects online social networks can indeed create value by mitigating 
the information asymmetry between borrowers and lenders.  The relational aspects create value by not only exerting 
peer pressure through network ties, but also increasing the verifiability and credibility of the ties themselves.  By 
contrast, structural aspects of the social networks, measured through a variety of network metrics, have limited to no 
significance in explaining the transactional outcomes.   

Our findings have implications for both IS research and practice. While it is widely accepted in economics and 
sociology that networks matter, especially to the sets of individuals forming the networks and the organizations that 
employ them, our study quantifies its value and places boundary conditions to the claim.  Secondly, our study 
emphasizes the issue of verifiability in the online context. While we empirically support the relevance of the 
“relational embeddedness” dimension of social capital (Granovetter 1972), such relational embeddedness has to be 
visible and verifiable to outsiders, such as lenders, in order to unleash its value.  
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Literature Review 

We draw on the following streams of literature: prior research on social networks, information asymmetry and trust 
in online environments, as well as microfinance.   

Social Networks 

The relation between social networks and economic outcomes has been the subject of much attention for researchers 
in sociology and economics; and “social capital” is usually denoted as the resource that accrues to an agent because 
of his or her position in a social network.  For instance Granovetter (2005) reviews applications in areas such as 
employment, innovation, and entrepreneurship.  Burt (1992, page 9) describes an individual’s social capital as 
“friends, colleagues, and more general contacts through whom you receive opportunities to use your financial and 
human capital.” The focus of our paper is to study the effectiveness of social capital on economic transactions.   

Theorists differentiate between two dimensions of social capital (e.g. Granovetter 1992; Moran 2005; Tsai and 
Ghoshal 1998). The first dimension, structural embeddedness, refers to the position of an actor in the network.  
Relational embeddedness, on the other hand, refers to the quality of the relationship among actors in the network. 
Studies have shown that on a given network, the position of an agent can often reflect his or her resources.  Some 
positions in a network endow control over the flow of information and other resources through the network, e.g., 
individuals who are in a “hub” position (Granovetter 1972; Constant et al 1996), or those occupying “structural 
holes” (Burt 1992). Examples of studies on relational embeddedness include Grewal et al. (2006), who study open 
software projects and Cowan et al. (2007), who examine embeddedness in a network of collaborators on innovation.  
In management studies, papers such as Rodan and Galunic (2004) show that it is not just the network structure that 
matters, but also the content of the network. Whether structural or relational aspects of networks matter in P2P 
lending remains open questions. It is of special interest given the decentralized nature of the network with 
independent lending decisions made by small investors on an arms-length basis to borrowers, and the fact that even 
if friends lend to borrowers, their stakes only account for a small portion of the loan amount.   

Researchers have identified various pathways through which peers on a social network can influence the perceptions 
and behavior of an individual. Social psychologists suggest two channels: informational influence and normative 
influence (Cialdini and Goldstein 2004; Rashotte 2007; Manstead and Hewstone 1995; Campbell and Fairey 1989).  
The idea of informational influence is comparable to the theory of informational cascading in economics 
(Bikhchandani et al 1992), where individuals follow the action of another agent due to the belief that others’ 
behaviors contain important information about the market.  Normative influence, on the other hand, is more 
subjective: it is the “conformity to the positive expectations of others, motivated by the desire for approval and to 
avoid rejection” (Manstead and Hewstone 1995).  

Explicit economic incentives represent another channel for peer influence. A case in point is the group lending 
programs in microfinance (Morduch 1999), where if one member defaults on his loan, all other members will be 
denied access to future loans. Alternatively, peer influence can arise out of the indirect economic effects. Karlan 
(2007) argues that the pressure to repay microloans can come from a desire to “protect their social connections … 
and avoid any repercussions” such as “reduced trading partners for one’s business” (Karlan 2007, page F58). This is 
echoed by Granovetter, who proposes that “individuals with whom one has a continuing relation have an economic 
incentive to be trustworthy, so as not to discourage future transactions” (Granovetter 1985).  These economic 
incentives can further be intertwined with social norms, which “carries strong expectations of trust and abstention 
from opportunism” (Granovetter 1985, page 490).  Therefore, economic and social motivations, both related to the 
presence and action of others, combine to discourage what Granovetter calls “malfeasance” (1985) or opportunistic 
behaviors.  Furthermore, Latane (1981) and Latane et al (1995) argue that stronger degrees of mutuality and 
interdependence lead to greater levels of normative influence and economic incentives – the stronger the tie, the 
greater the strength of the peer influence.   

The existence of social capital per se, however, does not ensure better lending outcomes. It needs to be visible to and 
verifiable by potential lenders to become part of their information set. Additionally, given the ease of formation of 
online networks, they may not be credible in reducing opportunistic behavior by borrowers, so verifiability is 
important.  As noted by Rosenthal (1971), a message “must be testable by means independent of its source and 
available to its receiver” to be verifiable.  This applies to online social networks as well, since a user’s social 
network is fundamentally a signal that he or she is trying to send to others.  
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Information Asymmetry and Trust  

Information asymmetry generally refers to the incomplete information among market participants, which further 
leads to adverse selection and moral hazard.  Akerlof (1979) showed that such information asymmetry could 
potentially lead to the demise of an entire market, in the absence of sufficient signaling and reputation mechanisms.  
In the context of electronic commerce, information asymmetry is a particularly problematic issue due to the 
anonymity and lack of accountability.  IS scholars have accumulated a significant body of literature on trust and 
reputation mechanisms in the online world (e.g. Dellarocas et al, forthcoming). To the best of our knowledge, 
however, there has been no research on role of online social networks in mitigating information asymmetry. Our 
study seeks to fill this gap.  

Microfinance 

Grameen Bank is arguably the most popular example of a microfinance institution.  Unlike typical banks however, 
microfinance institutions are often faced with poor or "ultrapoor" borrowers, and consequently, much higher levels 
of information asymmetry.  Social networks often serve as "soft collateral" in microfinance.  One such soft collateral 
is "group lending", where borrowers borrow as a group, and if one member defaults, none of the other members in 
that group can borrow again.  This mechanism leverages “peer pressure” as collateral for lending.  Online P2P 
lending, on the other hand, does not (yet) explicitly offer such "soft collaterals".  But as we argue, even though a 
borrower's network does not directly offer financial guarantees regarding the borrowers' trustworthiness, there still 
exist various types of pressure (on the ego) from the alters.  The authenticity of such pressures, in turn, depends on 
the degree of verifiability of these ties.  

Background and Data Description 

Our data is collected from a major online peer-to-peer lending website, Prosper.com.  It was first created in 2005 
and opened to public in 2006.   Due to the changes in website policies in its early years, our analysis use loan request 
and performance data between January 2007 and May 2008.  In what follows, we first describe the social networks 
on Prosper.com, and then outline the process through which loans are generated.   

Members join Prosper.com using an email address. Once the email address is verified, members can create or join a 
social network. We consider two types of social networks: the friendship network and groups.  In a friendship 
network, a member can be a friend with other members who already have a valid user ID on Prosper.com. 
Alternatively, the member can ask offline friends to join Prosper.com and become an online friend on Prosper.com.  
A member’s friendship network is visible on the profile page or a listing page.    

Another type of social network on Prosper.com is a group. Any member can create a group, and a member can 
typically join any group whose membership criteria are met.  However, each individual can be a member of only one 
group at a time; if a borrower is a member of a group when requesting a loan, the borrower cannot leave the group 
or join any other group until the outstanding loan is repaid in full. The leader of each group can determine the rules 
regarding who can become group members and how others may join.  Some groups, such as alumni groups, 
typically require verification. Other groups require little verification.   

Borrowers who wish to request loans do so by setting up a listing on Prosper.com once their identities are verified.  
They are, however, required to verify their true identity by providing social security numbers (SSNs), drivers license 
numbers, and so on.  Only people with a FICO score above 520 are allowed to borrow, and their credit report 
information will be made available to potential lenders.  In the listings, borrowers specify the amount that they 
would like to borrow, the maximum interest rate they are willing to pay for the loan, as well as other information 
such as the duration of loans and the format of auction (close versus open).  A close-format auction is one in which 
the auction closes as soon as the amount requested has been fulfilled, whereas an open-format auction allows the 
bidding process to go on so that the borrower can receive a lower rate.  In addition, the listing also displays hard 
credit information from the borrower’s credit report, including number of credit inquiries, his debt-to-income ratio, 
and a letter credit grade, which is a coarse version of the borrower’s FICO score. Purpose of a loan is also specified 
in listings and could be a business loan, or an auto loan, mortgage, a student loan, and so on. We control for the loan 
purpose in our models. We also include the total amount of text included in a listing in our analysis. The listing also 
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contains information about the borrower’s friends and groups to which he belongs. These variables are an important 
part of our analysis and are discussed separately next.  

A lender interested in a borrower’s listing can bid an amount that she’s willing to lend and specify the minimum 
interest rate.  The actual bidding process uses a “proxy bidding” mechanism. That is, if the loan has not yet been 
funded 100%, the ongoing interest rate will be the borrower’s asking rate, even if the lenders’ “minimum rate” is 
lower.  Once 100% of the requested funding has been reached and the format of the auction is “open”, the ongoing 
rate decreases as the lender with the highest rate-bid is competed out.  In a sense the auction is similar to a second-
price auction.  All bids are committed, and no withdrawals are allowed. From a lender’s viewpoint, a bid could win 
or be “outbid,” in which case the lender can place a second bid to rejoin the auction. From a borrower’s perspective, 
a loan is either fully funded or not, in which case the auction is deemed to have failed and no funds are transferred.    

When the auction process ends, the listing will be processed by website staff for further verifications; during this 
process, the borrower could be asked to provide further documentation.  Once the loan is approved, the loan 
originates, and the funds will be transferred from the lenders to the borrower.  There will be 1-2% service fee to 
maintain the website, depending on the credit grade of borrowers.  After that, the loan will be managed by Prosper, 
and lenders are paid each month automatically.  Borrowers who defaulted will be reported to credit bureaus and 
collection agencies, and will not be allowed to borrow from the site again.   

A major advantage of our dataset is that the majority of information received by lenders at the time of the auction is 
captured, allowing us to control for potential confounding factors. Our dataset contains information regarding 
borrower’s credit history, their unique identifiers (not their social security numbers), their position in the online 
social network, features of their auctions, outcome of their loan listings, and the current status of their loans.  In 
particular, we obtained detailed credit profile information of the borrowers at the time of listing.  Our dataset 
contains information about loans originated between Jan 1st, 2007 and May 20th, 2008. In what follows, we 
describe the “hard credit information” and “social network information” used in our models.  It should be noted that 
our sample includes borrowers and lenders who do not have any friends; for these borrowers, their “friendship” 
variables are recorded as zero. Twenty-one percent of the loan requests in the data set are from individuals with 
friends, and the borrowers of 29% funded loans have friends.   

• Hard credit information: including credit grades, debt-to-income ratio, bank card utilization, number of credit 
inquires in the past 6 months1, record of bankruptcy, and so on.  When borrowers apply for loans at banks, these 
are typically requested by banks to evaluate their riskiness and probability of repayment.  

• Social network metrics: 

o Friendship network:  

� Structural: To measure the structural aspect of the borrower’s friendship network, we use social 
network software Pajek and UCINET to calculate a number of frequently used network metrics, 
including degree centrality, closeness centrality, betweenness centrality, power, eigenvector 
centrality, coreness, and clustering coefficients, for each individual borrower (cf. Hanneman et al 
2005).  Due to the size of the network, we use Pajek to extract individual components and then import 
the components into UCINET to derive the above metrics.  

� Relational: The relational social network measures emphasize roles and identities of members in the 
network. Figure 1 discusses the hierarchy underlying our empirical strategy. In Level 1, we 
distinguish friends according to whether their identities are verified on Prosper, i.e., individuals who 
have elected to undergo verification of identities and bank accounts versus individuals who have 
merely registered and are thus little more than persons with a verifiable email address. In level 2, we 
categorize the friends of borrowers based on their roles – whether these friends are borrowers or 
lenders. Lenders are individuals with extra financial capital while borrowers are likely to be facing 
financial constraints. On the other hand, borrowers are subject to greater scrutiny as they have 
assigned credit grades that form a backbone of their listings.  Level 3 further differentiates between 
“real lender” friends – those who have lent prior to the current listing; and “potential lender” friends – 
those who have provided enough information to Prosper to be listed as lenders but have yet to 

                                                           

1 “Number of credit inquiries” refer to credit applications at financial institutions, and do not include loan requests 
on Prosper.com.  
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participate in a loan. Level 4 differentiates real lender friends according to whether they bid on the 
specific borrower’s listing or not. Here, we can have two effects. Having friends who participate can 
enhance lending outcomes. However, having several friends who do not participate in a borrower’s 
auction can send negative signals about the borrower, which can potentially lead to negative 
outcomes if “inaction” is interpreted by other lenders as a negative signal. Level 5 is the finest 
classification. Here, we distinguish further between lender friends who bid on the borrower’s listing 
and won (i.e. actually lent money to the borrower), and those who bid but did not win. Overall, as we 
progress from higher to lower levels of this friendship hierarchy, the relationship between the 
borrower and lender becomes more actionable, verifiable and more strongly embedded.  

o Groups: Members can choose to create or join groups on any basis: geographic proximity, common 
interest, alumni, or any other possible commonality.  However, once they create a loan while a member 
of a group, they are not allowed to change their affiliation until the loan is repaid in full.  In our 
analysis, we manually coded all groups associated with loans and have 6 or more members, according 
to their descriptions and names.   

• Auction Characteristics: These include the duration of listing, the format of auction, the maximum 
interest rate (similar to the starting bid in auctions), purpose of the loan, and the amount requested.  We 
mainly incorporate these variables in the model as controls. 

• Additional variables.  We also obtained or calculated the following variables for our analysis:  
o A dummy variable for whether the borrower comes from a state with interest rate caps (or “usury 

laws”).  
o Outside interest rate.  We purchased a proprietary dataset from a professional company that collects 

data on interest rates in different US markets.  This is the average interest rate for borrowers in each 
credit grade, in each regional market, for a given month.  The term of loans is of the same length as 
Prosper loans (36 months). In our analysis, it serves as a proxy for the “outside option” of borrowers; it 
is also intended to subsume geographical or seasonal variations in macroeconomic conditions.  

 

 

Figure 1: “Hierarchy of Friends” 
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Models and Results 

Probit Model of Funding Probability 

Our first model examines the probability that a listing is funded using a probit model:  

Probability (funding) =  HardInfo  SocialNetwork +  Other Variables1 2 3 iα α α ε+ +  (1) 

To control for unobserved changes in Prosper.com policies, we include quarterly fixed effects. We report six sets of 
results that vary based on how they specify the social network variables (see Table 1 and Table 2 for details).  All 
six specifications include a common set of variables and controls.  In addition, these results do not change when we 
use a Logit setup; here we use a Probit model because it allows us to compare with the results from the Heckman 
model on interest rates, since the first stage of Heckman model is a Probit specification.  

Hard credit information 

The first set of variables in our model represents hard credit information, including credit grade, number of credit 
inquiries, and so on. All hard credit variables are significant and have the expected signs.  For instance, worse credit 
rated borrowers are less likely to be funded. Other hard credit variables such as number of public records tend to be 
highly collinear with these variables; adding them does not affect our results.  

Social network Variables – Friendship network 

Our main focus is on the social network variables.  We start with structural measures of networks. The degree 
centrality measures a borrower’s position in the friendship network. Specification P1 shows that degree centrality is 
positively related to the probability of being funded. As discussed below, this relation masks a more extensive 
relation caused by the roles and identities of the members of the friendship network. We included other structural 
network measures such as coreness, effective size of network, and efficiency but none of these alternative metrics 
have any significant effects on the probability of funding.  It should be noted that we add these metrics sequentially 
to test for their significance, not simultaneously, since they could be correlated with one another.   

We then distinguish friends according to whether their identities are verified on Prosper or not. If a borrower is 
connected to friends who are not verified, the loan is less likely to be funded. Lenders apparently view the presence 
of friends who do not choose to initiate verifiable roles in Prosper.com as a negative signal, so connections that 
merely verify email addresses have no economic value. In contrast, that having friends with roles on Prosper is 
positive and significant at 1%. These results constitute the first evidence that it is not numbers alone, but rather the 
roles and identities that matter.  

Next, we further decompose the total number of friends into two orthogonal and additive pieces: the friends with 
roles as borrowers and roles as lenders, so that the total adds up to the total number of friends with roles. In addition 
to these two components of friendship, we also include the total number of friends with no roles. The number of 
friends with no roles continues to have a negative coefficient, as before.  We find that being connected to borrowers 
has no impact. However, having additional “lender” friends increases the probability of the loan being funded. 

We then further differentiate between “real lender” friends – those who have lent prior to the current listing; and 
“potential lender” friends – those who are yet to lend prior to the start of the current listing, and the real and 
potential lender friends add up to the total number of lender friends. There is a continued gradation of the friendship 
effects based on the nature of a friend’s role and its verifiability and visibility to outside lenders. Having just 
potential lender friends has little effect. Our results show that having “potential lender” friends does not have a 
significant impact on any of the transactional outcomes. In contrast, having “real lender” friends increases the 
probability of the loan being funded and the coefficient almost doubles relative to that for the total number of lender 
friends.  

At the next level, we differentiate real lender friends further according to whether they bid on the specific 
borrower’s listing or not.  We find that if a borrower has more potential lender friends who do not bid, the borrower 
is less likely to generate funding for a listing. On the other hand, the greater the potential lender friends who bid, the 
more likely is the listing to get funded. We see similar and even stronger effects for friends who are real (past) 
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lenders. A greater number of real lender friends who bid on a listing make the listing more likely to be a success. 
More strikingly, if the borrower has a real lender friend but this friend chooses not to lend to this particular 
borrower, this “inaction” is interpreted by other lenders as a negative signal, thereby decreasing the probability of 
the loan being funded.  

At the finest level of role and identity is whether a real lender friend who bid actually won or lost in the listing. Real 
lender friends who win a bid not only signal their willingness to lend to the friend but also signal their willingness to 
compete and win in the auction. This type of behavior may serve as a more positive signal to outside lenders to 
participate in the loan listing aggressively. We find that the number of real lenders bidding on a friend’s loan listing 
has beneficial effects on the funding probability both when the friends win and do not win in the auction, although 
the coefficient for winners is about twice that of the coefficient for lenders who do not win. Other coefficients in the 
specification are not affected.  

In sum, our results establish that social capital matters in attracting outside financial capital. Furthermore, the 
structural aspects of the social network are not necessarily the critical variables for successful listings. Rather, the 
role and identity of the members of a social network matter. In this context, verifiability is critical. Social capital that 
is verifiable and visible to outside lenders has the capacity to influence outside lender behavior, even in a setting in 
which these outside lenders are atomistic individuals participating in arms-length transactions with the individuals 
possessing the social capital.  

Social network variables – Group Affiliation 

Our hypothesis that verifiability matters applies to groups as well.  We specifically consider the group 
characteristics. Here, we again draw a distinction between group memberships that are less or more verifiable based 
on the criteria imposed for joining a group. We find two categories of groups where there is a relatively high bar on 
verifiability: alumni memberships based on university or former or current employers, and geography based groups. 
For both variables, group membership results in a greater chance of listings being funded in all six specifications. 
Interestingly, being affiliated with religious groups also matters. In a later section, we test these (and other) 
hypothesis by examining ex-post default rates on loans.  

Survival Model of Loan Performance 

Prosper.com records the status of loans in each month, or payment cycle. If the borrower pays off the monthly 
amount due, the loan status is listed as “current” for that month.  Otherwise, the loans can be “late”, “1 month late”, 
“2 month late”, etc.  We create a dummy variable “defaulted” if a loan is late for 2 months or more, consistent with 
the Prosper.com policies that once a loan is 2 months late or more, it is considered to be in default and sent to a 
collection agency. In this section, we model the default hazard as a function of hard and soft credit variables as 
explanatory variables, an approach taken, for instance, by Gross and Souleles (2002) in modeling consumer loan 
defaults. 

Probit or logit models are inappropriate to model loan performance because of the nature of data: loan performance 
data is highly censored; it is not reasonable to compare the current status between loans that were generated a year 
ago to others that were generated a month ago.    

The key dependent variable in the survival model is the time-to-default, or the number of payment cycles after 
which a loan defaults. Survival models estimate the hazard function, or the probability of surviving for the next 
instant of time given that a subject has survived until time T. The hazard function h(t) is defined as  

( ) Pr( | )h t t T t t t T= ≤ ≤ + ∆ ≥          (2) 

Different survival models vary based on how they specify the survival function. Preliminary diagnostics indicate 
that the baseline hazard increases and then decreases at a slower rate over time, suggesting that either a parametric 
log logistic model or a Cox model is appropriate. We employ the Cox model (see, e.g., Cleves et al., 2008), which 
specifies the hazard as 

( | ) ( ) exp( )0h t x h t x xj jβ=          (3) 
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where 
0

( )h t  is a baseline hazard rate, and x j  represents the explanatory variables. For easier interpretation, the 

results we report for each covariate x j in the Cox model is not the coefficient jβ , but rather its exponential form, 

which is called the “hazards ratio.” The significance of this hazards ratio must be gauged by comparing it to 1.0 
rather than zero. The standard error of the exponentiated coefficients are obtained by applying the Delta method to 
standard errors of the coefficients (Cleves et al 2008, page 133).  This allows direct and intuitive interpretation of the 
results. For instance, if we have a dummy variable of whether the borrower is from a usury state, and the hazards 
ratio is 1.2, it means that people from the usury states are 20% more likely to default than those from a state without 
the usury law.  

Hard credit variables all affect loan performance in expected directions.  For instance, more credit inquiries and 
higher debt to income ratios have hazard ratios exceeding 1, so they increase the probability of default. Hazards ratio 
on credit card inquiries is 1.037, indicating that one additional credit inquiry is associated with an average of 3.7% 
increase in the loan default rate.  

Our focus is still the social network variables. We find that the total number of friends is insignificant as a predictor 
of default.  However, when we decompose the friends into those with verified identities on Prosper, i.e., those who 
classify themselves as lenders or borrowers, and friends with no verification, we find a consistent pattern. Other 
things equal, having more friends without verified identities actually increases the odds of default with a hazards 
ratio of 1.05, while friends with verified identity decrease the odds of default. Neither variable is significant. In 
specification C3, we find sharper effects for the number of Prosper verified friends who are potential lenders. 
Having lender friends decreases default risk, with a hazards ratio of 0.91 significant at 1%, while having borrower 
friends (with similar financial needs) is insignificant.  

Specification C4 includes the number of lender friends but this time controlling for whether they actually participate 
in lending. Having real lender friends further decreases the hazards ratio to 0.88, indicating even lower probability 
of default, and the hazards ratio decreases to 0.86 when we consider friends who bid on a listing. The coefficients 
are significant at 1%. Similarly, friends who bid on and win a listing: these types of listings have still lower hazard 
rates of 0.79, significant at 1%. The odds of default are significantly reduced when friends have a personal stake. 
Financial stakes taken by friends appear to be the strongest information signal for outside lenders that a borrower is 
credit worthy. Alternatively or additionally, peer pressure is generated when friends take stakes in a borrower’s 
listing, generating a positive externality to not default on loans.  

In terms of group characteristics, Table 8 shows that two matter for loan performance: alumni groups and 
geography-based groups.  Interestingly, of the various groups considered in our study, only these two groups contain 
verifiable information about members: borrowers need to prove that they were actually part of the relevant 
organization before they can join alumni groups (such as universities or companies), and geography information is 
verified during the registration process.  Being members of these two groups increases the probability of the loan 
being funded and decreases the risk of default.  None of the other groups have an impact on the risk of default. 
Controlling for the type of the group, we find that group size does not affect the loan performance or the interest rate 
of funded loans.  

Heckman Model of Interest Rate Effects 

We further examine the interest rate at which a loan is funded. The motivation for this model is straightforward. Our 
results show that social network variables increase the likelihood of loans being funded, and are associated with 
lower default rates. The question is whether social network variables have complementary price effects for 
borrowers. We examine this issue by regressing interest rate spreads on loans on social network variables plus 
controls, using a Heckman selection model.  

An Ordinary Least Squares (OLS) model of interest rate is not appropriate in this context due to selectivity bias.  
More specifically, interest rates of loans are not available unless they are funded.  We account for selectivity by 
using the Heckman (1979) model that specifies an equation for the probability of being funded as a function of 
observables and an unobserved error, and a second equation for the interest rate, which is observed only if a listing 
is successful.  

We use the two step method of Heckman (1979) to estimate the coefficients. The model can be identified through 
exclusion restrictions or non-linearity intrinsic to selection models, the latter effectively identifying the model 
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through functional form. We obtain substantively similar results through both methods. We implement the exclusion 
restriction by using SPIKEDAYS in the probit model as an instrument that affects probability of funding but not the 
interest rate. SPIKEDAYS is the volume of search for “prosper.com” omn Google Trends, a proxy for traffic to 
Prosper.com.  This variable passes the strong instrument test of Staiger and Stock (1997). Its F-statistic exceeds 50, 
well above the strong instrument cutoff of 10 suggested by Stock and Staiger. The results with the instrument 
included are reported in Table 9.  Results on hard credit variables are still in expected directions, but our focus is 
still the social network variables, which we shall discuss next.  

None of the structural variables including centrality, coreness, effective size, and efficiency affect loan interest rates. 
On the other hand, the variables reflecting role and identity matter, with direction and gradation consistent with the 
results for funding probability and ex-post default. Connections to unverified friends increase interest rates, 
reflecting “negative” social capital (Portes 1998). Connections to lender friends decrease interest rates by 60 basis 
points, while connections to borrower friends have no effect. Both connections to real lenders and those to potential 
lenders matter, and the real lender coefficient results in a greater decrease in interest rates to a 70 basis point effect. 
These effects and their significance remain quantitatively similar when we consider real lenders who win or lose on 
the specific borrower auction. Interestingly, having potential lender-friends who do not bid on a borrower’s listing 
hurts, increasing loan spreads by about 20 basis points.  In sum, we obtain consistent gradation effects as before.  

The group variables also explain interest rates in a fashion largely consistent with the funding probability model. 
Belonging to a group that has a religious motif lowers the interest rate on loans significantly, although it has no 
effect on default rates. Business or university alumni affiliation groups show an even stronger effect, lowering 
interest rates by close to 120 basis points, consistent with the lower ex-post default rates for such loans. Geography 
based groups have insignificant interest rate effects and about a 10% significance in ex-post loan defaults.  

Robustness and Additional Tests 

We conduct extensive robustness check for the above results, and results are all consistent with them.  More 
specifically, our robustness check includes the following: (1) panel data for funding probability, to account for 
multiple listings by the same borrower; (2) a survival model for “time to first time funded; (3) a Tobit model on the 
percentage of funding, which is censored at 0 and 100%; (4) additional hard credit variables such as number of 
public records and amount of delinquencies; (5) potential endogeneity of the choice of auction format, using a 
bivariate Probit model.  Details about these tests are available upon request.   

We also test and find that having endorsements has no impact on loan performance.  This result holds for both 
having/not-having endorsements as well as for the number of endorsements received, which is consistent with the 
verifiability argument since endorsements are largely subjective.   

Another potential confounding factor in our analysis is that borrowers themselves, or their friends who are 
borrowers, could already have a borrowing history, and the repayment of those loans could affect later loan requests.  
We found that controlling for this has no impact in our results, since all loans on Prosper.com are 3-year loans, and 
borrowers are not allowed to have more than 2 outstanding loans.  Hence borrowers with a history on Prosper is a 
small fraction, and do not bias our results.  We also found that controlling for other factors, amount of bids from 
lenders in the borrower’s group do not have an impact on the riskiness of loans. Furthermore, although we are able 
to incorporate most, if not all, borrower characteristics that the lenders have access to at the time of lending, cautions 
should be used when making causal inferences.   

In addition, as pointed out by one of the reviewers, our results on funding probability and interest rate should hold 
only if potential lenders have access to both the borrower’s social networks, and whether any bids came from their 
friends.  This is indeed the case in our sample, as Prosper.com displays an icon next to a bid if it comes from a 
friend.  And the borrower’s social network is easily accessible on the page of their loan requests.  But more 
surprisingly, even though Prosper.com does not show all the intermediary levels of the “friendship hierarchy” in 
figure 1, the gradation effect across these levels are evident from the analysis.    

Discussions and Conclusions 

Web 2.0 technology and its successors are continuing to transform how businesses and consumers interact with each 
other.  As more entrepreneurs and investors jump on the "social networking" bandwagon, our study suggests that 
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social networks, especially online social networks, do not automatically and always create value to stakeholders.  In 
fact, our results show that online social networks can be sometimes associated with negative outcomes.  Our study 
shows that it is the relational aspects of the social network that mitigates information asymmetry: Borrowers can use 
the social network as a viable signaling mechanism for their trustworthiness, since as we move down the friendship 
hierarchy (Figure 1), the cost of signaling increases.  Meanwhile, lenders can positively reward borrowers with 
higher chances of funding and lower interest rate, since they are less risky than others.   

Borrower signaling is an important reason that the relational aspect of the networks matters more than the structural 
aspect in online P2P lending.  Structural metrics matter in other contexts because they reflect ties that offer access to 
resources or information.  Even if two members are not directly connected to each other, information and resources 
can still flow.  In the context of peer-to-peer lending, the main function of ties is signaling, and signaling would 
work only when the tie can reasonably influence the behavior of borrowers.  Hence, those who are not directly 
connected are much less likely to exert social pressure to repay, especially when those “distant” nodes are unverified 
members and there is not perceivable social contact with the borrower.  In addition, as pointed out by economists 
such as Spence (1973), a signal is effective only when it is costly to send, such as an education.  Given the “virtual” 
nature of this marketplace, the cost of creating online networks is very low: it is cheap to expand one’s online social 
networks structurally.  If such networks – no matter how cheap they are – can benefit borrowers, all borrowers 
would have a large number of “friends”, which can be as cheap as email addresses.  This, in turn, will render the 
signal worthless.  As we have seen in our results, only the relational aspect of the social network can create a 
separating equilibrium that distinguishes good borrowers and bad borrowers.   

Therefore for practitioners, an important implication of our study is the need to carefully understand the 
heterogeneity of social network ties.  Specifically in decentralized marketplaces, a value-added service would be 
incorporating relation-specific network metrics as additional search criteria.  This promises to increase the efficiency 
of matching among market participants.  In addition, despite the popularity of many social networking websites, our 
study suggests that a proper valuation of these websites should not simply depend on the number of users, but rather 
how these users and connections can actually create tangible values.  

Our study also contributes to the growing IS literature on the economic value of online social networks, as well as 
the literature on trust and reputation.  We find that even though social networks can create value, there is a critical 
boundary condition: it is the relational aspect that matters.  In addition, the "online" nature of these networks 
requires that their value can be realized only to the extent that they are verifiable to other stakeholders.  These 
findings should have significant implications for trust and reputation mechanisms of electronic markets in general.   
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Appendices 

Table 1: Estimated models and their different specifications 

 Variable set 

1 

Variable set 

2 

Variable set 

3 

Variable set 

4 

Variable set 

5 

Variable set 

6 

Probit Model Spec. P1 Spec. P2 Spec. P3 Spec. P4 Spec. P5 Spec. P6 

Heckman model Spec. H1 Spec. H2 Spec. H3 Spec. H4 Spec. H5 Spec. H6 

Cox model Spec. C1 Spec. C2 Spec. C3 Spec. C4 Spec. C5 Spec. C6 

Table 2: Variable sets used in different specifications of the models 

Variable 

sets 

Corresponding level in the 

friendship hierarchy 

Common variables Additional variables 

1 Root level (degree centrality) ttlFriends 

2 1 

 

• Hard credit ttlNoRole, ttlRole 
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3 2 ttlNoRole, ttlPureBorrow, ttlLend 

4 3 ttlNoRole, ttlPureBorrow, 
ttlPotentLend, ttlRealLend 

5 4 ttlNoRole, ttlPureBorrow, 
ttlPotentLend, ttlRealNoBid, ttlRealBid 

6 5 

information;  

• Auction characteristics;  

• Social network info – 
Groups; 

• Quarterly Fixed Effects 

• Additional control 
variables ttlNoRole, ttlPureBorrow, 

ttlPotentLend, ttlRealNoBid, 
ttlRealBidWin, ttlRealBidLose 

Tables 1 and 2 explain the specifications of the main models that we use.  For instance, the first specification of the 
Probit model is P1, and it uses variable set 1 in a Probit setup.  The contents of variable set 1 can be found in the 
first row (root level) of Table 2, which includes common variables (the shaded column in Table 2) and the variable 
“ttlFriends” for the total number of friends.  Other variables sets are similarly defined.  

Table 3: Probability of funding (Probit model) 

Table 3 reports the estimates of probit models, where the dependent variable is 1 if a listing on prosper.com is 
funded and 0 otherwise. The explanatory variables include a borrower’s hard credit variables, social network 
variables, group affiliation, and other characteristics of the loan, plus quarterly time period fixed effects.  Robust 
standard errors are in parentheses. Results on controls are available upon request.   (* p<0.1, ** p<0.05, *** p<0.01) 

                                  Spec. P1 Spec. P2 Spec. P3 Spec. P4 Spec. P5 Spec. P6 

ttlFriends                        0.033***      

                                  (0.008)      

ttlNoRole                          -0.020* -0.020** -0.017* -0.017 -0.017* 

                                   (0.010) (0.010) (0.010) (0.010) (0.010) 

ttlRole                            0.106***     

                                   (0.017)     

ttlPureBorrow                       -0.006 -0.002 0.018 0.018 

                                    (0.023) (0.021) (0.018) (0.018) 

ttlLend                             0.170***    

                                    (0.023)    

ttlPotentLend                        0.025   

                                     (0.022)   

ttlRealLend                          0.312***   

                                     (0.055)   

ttlPotentNobid                        -0.062** -0.063** 

                                      (0.028) (0.029) 

ttlPotentBid                          0.325*** 0.329*** 

                                      (0.050) (0.050) 

ttlRealBid                            0.849***  

                                      (0.044)  

ttlrealnobid                          -0.148*** -0.151*** 

                                      (0.022) (0.023) 

ttlRealBidWin                          0.782*** 

                                       (0.047) 

ttlRealBidLose                         1.628*** 

                                       (0.185) 

creditgrdA                        -0.375*** -0.372*** -0.372*** -0.373*** -0.381*** -0.381*** 

                                  (0.037) (0.037) (0.037) (0.037) (0.036) (0.036) 

creditgrdB                        -0.806*** -0.805*** -0.805*** -0.805*** -0.814*** -0.812*** 

                                  (0.062) (0.061) (0.061) (0.061) (0.063) (0.062) 

creditgrdC                        -1.457*** -1.455*** -1.456*** -1.457*** -1.470*** -1.466*** 

                                  (0.056) (0.056) (0.056) (0.056) (0.057) (0.057) 

creditgrdD                        -2.105*** -2.102*** -2.107*** -2.109*** -2.133*** -2.127*** 
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                                  (0.094) (0.094) (0.093) (0.094) (0.094) (0.094) 

creditgrdE                        -2.831*** -2.825*** -2.833*** -2.837*** -2.867*** -2.859*** 

                                  (0.139) (0.138) (0.138) (0.139) (0.139) (0.139) 

creditgrdHR                        -3.310*** -3.304*** -3.312*** -3.318*** -3.354*** -3.346*** 

                                  (0.132) (0.131) (0.131) (0.131) (0.131) (0.130) 

bankCardUtilization               0.359*** 0.356*** 0.357*** 0.355*** 0.357*** 0.358*** 

                                  (0.105) (0.104) (0.103) (0.103) (0.102) (0.103) 

BankCardUtilization
2
  -0.203** -0.201** -0.200** -0.200** -0.199** -0.199** 

                                  (0.096) (0.096) (0.095) (0.096) (0.095) (0.095) 

inquiriesLast6months             -0.020*** -0.019*** -0.019*** -0.019*** -0.019*** -0.019*** 

                                  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

debttoincomeratio                 -0.102*** -0.102*** -0.102*** -0.103*** -0.106*** -0.106*** 

                                  (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Log(amountReq)                        -0.706*** -0.707*** -0.708*** -0.709*** -0.714*** -0.713*** 

                                  (0.012) (0.012) (0.012) (0.012) (0.012) (0.012) 

BorrowerMaximumRate              24.308*** 24.307*** 24.406*** 24.558*** 24.844*** 24.760*** 

                                  (1.099) (1.095) (1.093) (1.094) (1.092) (1.093) 

Borrowermaxrate
2
  -37.911*** -37.904*** -38.057*** -38.357*** -38.849*** -38.708*** 

                                  (2.234) (2.220) (2.212) (2.217) (2.220) (2.223) 

auctionformat                     0.122*** 0.125*** 0.126*** 0.127*** 0.133*** 0.134*** 

                                  (0.017) (0.017) (0.017) (0.017) (0.018) (0.018) 

_ReligionGroup                       0.280*** 0.287*** 0.283*** 0.273*** 0.246*** 0.246*** 

                                  (0.089) (0.088) (0.087) (0.085) (0.084) (0.083) 

_GeographyGroup                      0.572** 0.536** 0.512** 0.467*** 0.411** 0.419*** 

                                  (0.241) (0.220) (0.200) (0.176) (0.161) (0.163) 

_AlumniGroup  0.529*** 0.526*** 0.519*** 0.519*** 0.527*** 0.529*** 

                                  (0.098) (0.096) (0.098) (0.097) (0.100) (0.099) 

_cons                             2.494*** 2.473*** 2.474*** 2.458*** 2.528*** 2.522*** 

                                  (0.192) (0.190) (0.192) (0.193) (0.190) (0.189) 

N                                 205131 205131 205131 205131 205131 205131 

pseudo R-sq                       0.322 0.323 0.324 0.325 0.331 0.331 

  

Table 4: Time to default of successful listings (Cox model) 

Table 4 reports the estimates of a Cox proportional hazards model on the time-to-default of loans successfully 
funded on Prosper.com. Robust standard errors are in parentheses. The table reports the exponentiated coefficients, 
or the hazards ratio. Values greater than 1 suggest that risks increase as covariates increase, and vice versa.  

                                  Spec. C1 Spec. C2 Spec. C3 Spec. C4 Spec. C5 Spec. C6 

ttlFriends                        1.017      

                                  (0.021)      

ttlNoRole                          1.048 1.048 1.047 1.047 1.047 

                                   (0.031) (0.031) (0.031) (0.031) (0.031) 

ttlRole                            0.968     

                                   (0.027)     

ttlPureBorrow                      1.061 1.061 1.058 1.055 

                                    (0.055) (0.055) (0.055) (0.053) 

ttlLend                             0.912**    

                                    (0.034)    

ttlPotentLend                       0.950   

                                     (0.061)   

ttlRealLend                          0.877***   

                                     (0.044)   

ttlPotentNobid                       0.964 0.964 
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                                      (0.073) (0.071) 

ttlPotentBid                          0.910 0.916 

                                      (0.150) (0.150) 

ttlRealBid                            0.856**  

                                      (0.052)  

ttlrealnobid                          0.938 0.938 

                                      (0.113) (0.113) 

ttlRealBidWin                         0.791*** 

                                       (0.062) 

ttlRealBidLose                        1.086 

                                       (0.146) 

inquirieslast6months             1.037*** 1.037*** 1.037*** 1.037*** 1.037*** 1.037*** 

                                  (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

Debt-to-incomeRatio*10                           1.004*** 1.004*** 1.004*** 1.004*** 1.004*** 1.004*** 

                                  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Interest Rate                   1.088*** 1.088*** 1.087*** 1.087*** 1.087*** 1.087*** 

                                  (0.008) (0.008) (0.007) (0.007) (0.007) (0.007) 

auctionformat                    1.073 1.070 1.069 1.069 1.069 1.072 

                                  (0.074) (0.074) (0.074) (0.074) (0.074) (0.075) 

GroupLeaderRewarded                1.152*** 1.151*** 1.152*** 1.153*** 1.153*** 1.148*** 

                                  (0.047) (0.047) (0.047) (0.047) (0.047) (0.046) 

_ReligionGroup                       0.758 0.760 0.766 0.768 0.769 0.767 

                                  (0.180) (0.181) (0.182) (0.182) (0.182) (0.185) 

_GeographyGroup                      0.404** 0.416** 0.426** 0.430** 0.430** 0.433** 

                                  (0.166) (0.166) (0.170) (0.171) (0.170) (0.170) 

_AlumniGroup  0.406*** 0.407*** 0.408*** 0.409*** 0.408*** 0.409*** 

                                  (0.120) (0.120) (0.122) (0.123) (0.122) (0.123) 

creditgrdA                        1.696*** 1.692*** 1.692*** 1.692*** 1.694*** 1.691*** 

                                  (0.204) (0.204) (0.205) (0.205) (0.205) (0.205) 

creditgrdB                        2.009*** 2.009*** 2.007*** 2.005*** 2.009*** 2.008*** 

                                  (0.233) (0.233) (0.233) (0.233) (0.235) (0.235) 

creditgrdC                        2.329*** 2.330*** 2.333*** 2.334*** 2.341*** 2.342*** 

                                  (0.333) (0.336) (0.337) (0.337) (0.338) (0.338) 

creditgrdD                        2.461*** 2.463*** 2.476*** 2.479*** 2.489*** 2.496*** 

                                  (0.466) (0.465) (0.468) (0.467) (0.470) (0.472) 

creditgrdE                        3.055*** 3.064*** 3.097*** 3.106*** 3.122*** 3.139*** 

                                  (0.896) (0.895) (0.902) (0.903) (0.908) (0.911) 

creditgrdHR                       4.550*** 4.567*** 4.638*** 4.655*** 4.685*** 4.710*** 

                                  (1.394) (1.393) (1.408) (1.408) (1.421) (1.427) 

BIC                               45998.573 46007.992 46016.797 46028.312 46052.031 46061.700 

Log lik.                          -2.28e+04 -2.28e+04 -2.28e+04 -2.28e+04 -2.28e+04 -2.28e+04 

Table 5:  Interest rate on funded listings (Heckman model) 

Table 5 (please see next page) reports the estimates of a Heckman selection model.  The dependent variable of the 
outcome equation is the interest rate for successful listings. The selection equation is a probit specification that 
models the probability of a listing being successfully funded. We report all estimated coefficients for the interest rate 
equation but suppress coefficients for all probit variables included in Table 3 since they are very consistent.  Robust 
standard errors are shown in parentheses. (* p<0.1; ** p<0.05; *** p<0.01) 

                                  Spec. H1 Spec. H2 Spec. H3 Spec. H4 Spec. H5 Spec. H6 

Borrower Rate (Outcome) 

ttlFriends                        -0.002***      

                                  (0.001)      

ttlNoRole                          0.002*** 0.002*** 0.002*** 0.001*** 0.001*** 

                                   (0.001) (0.001) (0.000) (0.000) (0.000) 



 Lin et al. / Online Social Networks and Information Asymmetry 

  

 Thirtieth International Conference on Information Systems, Phoenix 2009 15 

ttlRole                            -0.005***     

                                   (0.001)     

ttlPureBorrow                       0.000 -0.000 -0.001 -0.001 

                                    (0.001) (0.001) (0.001) (0.001) 

ttlLend                             -0.006***    

                                    (0.001)    

ttlPotentLend                        -0.001   

                                     (0.001)   

ttlRealLend                          -0.007***   

                                     (0.001)   

ttlPotentNobid                        0.002** 0.002** 

                                      (0.001) (0.001) 

ttlPotentBid                          -0.008*** -0.008*** 

                                      (0.001) (0.001) 

ttlRealBid                            -0.007***  

                                      (0.001)  

ttlrealnobid                          0.002 0.001 

                                      (0.001) (0.001) 

ttlRealBidWin                          -0.006*** 

                                       (0.001) 

ttlRealBidLose                         -0.006*** 

                                       (0.002) 

bankrate                          0.104* 0.106** 0.102** 0.102*** 0.100*** 0.099*** 

                                  (0.053) (0.048) (0.042) (0.032) (0.027) (0.027) 

Log(Loan Amount)                        0.047*** 0.043*** 0.038*** 0.030*** 0.014*** 0.012*** 

                                  (0.004) (0.003) (0.003) (0.002) (0.001) (0.001) 

borrowermaximumrate              -1.008*** -0.854*** -0.688*** -0.368*** 0.206*** 0.255*** 

                                  (0.135) (0.119) (0.102) (0.071) (0.038) (0.036) 

BorrowermaxRate2  2.749*** 2.507*** 2.246*** 1.746*** 0.846*** 0.769*** 

                                  (0.221) (0.195) (0.167) (0.117) (0.068) (0.064) 

auctionformat                     0.030*** 0.031*** 0.031*** 0.033*** 0.035*** 0.036*** 

                                  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

grpleaderrewarded                -0.005*** -0.004*** -0.003*** -0.002* 0.002** 0.002** 

                                  (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 

_ReligionGroup                       -0.020*** -0.019*** -0.017*** -0.014*** -0.007*** -0.007*** 

                                  (0.006) (0.005) (0.004) (0.003) (0.003) (0.002) 

_GeographyGroup                      -0.031*** -0.026*** -0.021*** -0.014*** -0.002 -0.001 

                                  (0.008) (0.007) (0.006) (0.004) (0.003) (0.003) 

_AlumniGroup  -0.036*** -0.033*** -0.030*** -0.024*** -0.013*** -0.012*** 

                                  (0.006) (0.006) (0.005) (0.004) (0.003) (0.002) 

Inverse Mills Ratio                           -0.081*** -0.073*** -0.064*** -0.047*** -0.016*** -0.013*** 

                                  (0.007) (0.006) (0.005) (0.003) (0.002) (0.002) 

_cons                             -0.083*** -0.073*** -0.065*** -0.050*** -0.027*** -0.024*** 

                                  (0.010) (0.009) (0.008) (0.006) (0.004) (0.004) 

 Selection Equation: All variables used but not reported for conciseness 

spikedays                         -0.050** -0.053*** -0.053*** -0.054*** -0.052*** -0.051** 

                                  (0.020) (0.020) (0.020) (0.020) (0.020) (0.020) 

N                                 205,132 205,132 205,132 205,132 205,132 205,132 

Chi-squared                       20,014 24,575 31,816 56,142 88,973 91,319 
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