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ABSTRACT We introduce a new technique for delineating animal home ranges that is 2 

relatively simple and intuitive: the potential path area (PPA) home range. PPA home 3 

ranges are based on existing theory from time geography, where an animal’s movement is 4 

constrained by known locations in space-time (i.e., n telemetry points) and a measure of 5 

mobility (e.g., maximum velocity). Using the formulation we provide, PPA home ranges 6 

can be easily implemented in a geographic information system (GIS). The advantage of 7 

the PPA home range is the explicit consideration of temporal limitations on animal 8 

movement. In discussion, we identify the PPA home range as a stand-alone measure of 9 

animal home range or as a way to augment existing home range techniques. Future 10 

developments are highlighted in the context of the usefulness of time geography for 11 

wildlife movement analysis. To facilitate the adoption of this technique we provide a tool 12 

for implementing this method. 13 

KEY WORDS home range, time geography, potential path area, wildlife movement, 14 

GIS, error 15 

The Journal of Wildlife Management: 00(0): 000-000, 201X 16 

INTRODUCTION 17 

Animal home ranges are used to study many aspects of wildlife ecology including habitat 18 

selection (Aebischer et al. 1993), territorial overlap (Righton and Mills 2006), and 19 

movement impacts of offspring status (Smulders 2009). Home ranges often serve as the 20 

primary spatial unit for wildlife research and represent the area to which an animal 21 

confines it’s normal movement (Burt 1943). Wildlife telemetry data, typically collected 22 

with radio or GPS collars, provide a collection of space-time locations for an animal. 23 
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Telemetry data are commonly converted to home ranges to identify spatial patterns in 24 

animal movement and answer specific research questions. 25 

In order to derive animal home ranges, wildlife scientists have used existing 26 

methods in geometric topology and spatial smoothing to transform a set of telemetry 27 

points into a polygon animal home range. The two most common methods for computing 28 

animal home ranges are the minimum convex polygon (MCP), and kernel density 29 

estimation (KDE) (Laver and Kelly 2008). MCP continues to be used extensively in 30 

wildlife movement analysis (Laver and Kelly 2008) despite considerable drawbacks, such 31 

as sensitivity to sampling intensity and outliers, convex assumption, and inclusion of 32 

large, unused interior areas (Worton 1987, Powell 2000, Borger et al. 2006). The 33 

prevalence of MCP is likely due to its ease of implementation in common GIS platforms 34 

and that it requires no input parameters. Kernel density estimation (KDE) has been 35 

influential in home range analysis since its introduction by Worton (1989). KDE remains 36 

contentious in animal movement analysis due to issues with selecting an appropriate 37 

kernel bandwidth (Hemson et al. 2005, Kie et al. 2010), which can significantly impact 38 

results (Worton 1989). Unfortunately, KDE based home ranges can be misleading when 39 

telemetry points are irregularly shaped (Downs and Horner 2008) or when animals 40 

habituate patchy environments (Mitchell and Powell 2008). A number of other lesser 41 

used methods also exist (e.g., harmonic mean, Dixon and Chapman 1980, local nearest-42 

neighbor convex hull, Getz and Wilmers 2004, Brownian bridge, Horne et al. 2007, 43 

characteristic hull, Downs and Horner 2009), but have yet to become widely adopted.  44 

The objective of this article is to demonstrate a new approach for integrating time 45 

attributes accompanying telemetry data when calculating animal home ranges. Drawing 46 
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on concepts from time geography (Hagerstrand 1970), we develop a new approach for 47 

computing animal home ranges that explicitly considers the temporal constraints of 48 

animal movement. Time is largely ignored in existing home range techniques, and used 49 

primarily for separating data into temporal groups such as seasons (Nielson et al. 2003). 50 

The value of this method is discussed in context of existing home range research, 51 

including existing examples moving towards a time geographic approach. 52 

METHODS 53 

Background: Time Geography 54 

Time determines bounds on an objects movement in space (Parkes and Thrift 1975). With 55 

time geography (Hagerstrand 1970), these constraints are represented as volumes 56 

containing all accessible locations in a three dimensional space-time continuum 57 

consisting of geographic coordinates x and y and time (t) (frequently termed the space-58 

time cube, Kraak 2003, or space-time aquarium, Kwan and Lee 2004). If both starting 59 

and end points are known (as with a collection of telemetry fixes) then the space-time 60 

prism represents the set of all accessible locations to the object during that movement 61 

segment (Figure 1). The projection of the space-time prism onto the geographic plane is 62 

termed the potential path area (PPA), and represents all locations accessible to an object 63 

given its start and end points and assumed maximum rate of travel (Figure 1). An object’s 64 

maximum traveling velocity impacts the extent of these volumes into geographic space.  65 

< approximate location Figure 1 > 66 

Potential Path Area (PPA): A New Measure of Animal Home Range 67 

This work will focus on potential uses of PPA in wildlife movement analysis, specifically 68 

the calculation of a PPA animal home range. The PPA represents the set of all accessible 69 
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locations between two known locations in space and time (Miller 2005). Geometrically, 70 

the PPA is an ellipse with focal points located at two known locations, the origin and 71 

destination. The spatial extent of the PPA depends on the animal’s maximum velocity 72 

(vmax) which may be explicitly known or empirically estimated from the data.  73 

Visually, conceptualizing the creation of a PPA ellipse is best done using the 74 

‘pins-and-string’ method (Figure 2a). Consider placing pins at the known start (i) and end 75 

(j) locations of an animal movement segment. A single string is then tied to each point, 76 

connecting the two pins. The length of the string is Dmax, representing the maximum 77 

distance the animal can travel given its maximum velocity (vmax) and the time difference 78 

between points i and j (∆t). 79 

tvD 
maxmax

 [1] 80 

The PPA ellipse is drawn by moving a pencil around the two points, but inside of the 81 

string, keeping the string tight at all times. Any point located along or within the PPA 82 

ellipse is reachable by the animal during this movement segment. 83 

< approximate location Figure 2 > 84 

Mathematically, given that in unconstrained space PPA is an ordinary ellipse, we 85 

can derive PPA using parameters of an ellipse related to animal movement in time and 86 

space. We define vmax and ∆t as above, the maximum velocity of the animal and the time 87 

difference between known telemetry locations i and j. A PPA ellipse is defined using four 88 

parameters: a center point, a major axis, a minor axis, and a rotation angle (Figure 2b). 89 

The center point is calculated as the midway point between the spatial (x, y) coordinates 90 

of telemetry points i and j. The major axis (a) is defined as: 91 

tv

Da





max

max
 [2] 92 
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With this we can define the minor axis (b) as: 93 

22
dab   [3] 94 

Where d is the Euclidean distance between points i and j. Rotation angle (Rθ) is the angle 95 

the ellipse is rotated from the horizontal, and defined using x and y coordinates of 96 

telemetry points i and j: 97 
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Using these parameters we can generate the PPA ellipse for any pair of known locations 99 

in space-time.  100 

A PPA home range can be computed by generating PPA ellipses for a set of 101 

animal locations. A telemetry dataset of n recordings requires calculation of n-1 PPA 102 

ellipses which are combined to produce the PPA home range (Figure 2c). Formally this is 103 

defined as the union of n-1 PPA ellipses such that: 104 

 11in][PPA  PPA
1HR




n,,i,
i,i

     [5] 105 

The mathematical formulation of this method (represented by equations [1] through [5]) 106 

is easily implemented in a GIS.  107 

Estimating vmax 108 

 The PPA home range method requires a single input parameter vmax that has 109 

obvious biological connotations and in some cases may be explicitly known based on a 110 

fine understanding of an organism’s mobility. This parameter could be related to an 111 

organism’s maximum velocity. For example, cheetahs have a maximum speed of up to 112 

120 km/h (Sharp 1997); however it is unreasonable to expect a cheetah to maintain that 113 

speed over longer intervals, characteristic of telemetry datasets. It is more useful to 114 
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compute the maximum distance a cheetah could cover in 30 minutes and derive vmax from 115 

this. In practice, vmax should relate biologically to the temporal frequency of recordings. 116 

 In many cases however, a biologically reasonable estimate of vmax will not be 117 

explicitly known and a researcher will be required to estimate it from the data. For each 118 

pair of consecutive relocation fixes we can compute the segment velocity (vi) by: 119 

i

i

i

t

d
v        [6] 120 

where di is the distance and ti the time difference between consecutive fixes. Computing 121 

vi for all n − 1 segments will provide a distribution of v values which can be used to 122 

generate estimates for vmax. The simplest would be to take max(vi) – the maximum 123 

observed velocity as vmax, however this is problematic as it produces a straight-line 124 

(degenerative ellipse) between any consecutive pair of fixes that have this maximum 125 

value. A more robust approach is to estimate a value for vmax based on the ordered 126 

distribution of the vi. Following Robson and Whitlock (1964) an estimate of vmax could 127 

take the form: 128 

 
1max 


mmm

vvvv̂      [7] 129 

where vi are in ascending order such that v1 < v2 < …< vm-1 < vm and m = n − 1. This 130 

estimate for vmax has an approximate 100(1 – α)% upper confidence limit given by: 131 

 
  




1

maxLim

1
U





mm

m

vv
vv      [8] 132 

Cooke (1979) and van der Watt (1980) have extended the work of Robson and Whitlock 133 

(1964) deriving estimates with lower mean squared errors and smaller confidence 134 

intervals, at the cost of added complexity. In the case where vm = vm−1, the result from [7] 135 

will equal max(vi) and  cause degenerate ellipses to be produced for pairs of consecutive 136 
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points that have this maximum value. The method of van der Watt (1980) is 137 

advantageous as it avoids the problem of degenerate ellipses through careful selection of 138 

the parameter k in the equation: 139 

kmm
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   [9] 140 

where 1 < k < m representing the k
th

 ordered value of vi. This estimate for vmax has an 141 

approximate 100(1 – α)% upper confidence limit given by: 142 
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  [10] 143 

In the previously stated problem scenario where vm = vm−1 it would be useful to take k to 144 

be the largest value such that vm−k < vm. In general [9] has been shown to be an improved 145 

estimator of vmax over [7] (van der Watt 1980), however it requires that the researcher 146 

select an appropriate value for k. Alternatively, a more conservative analysis could use 147 

the upper confidence interval limits (e.g.,  [8] or [10]) as an estimator for vmax. 148 

RESULTS 149 

For demonstration, we simulate an animal trajectory using a correlated random walk (n = 150 

2000). Using this data as a surrogate for animal movement data, we calculate animal 151 

home range using two common, existing techniques (MCP and KDE) and the new PPA 152 

home range approach (Figure 3 a–c). We used the Robson and Whitlock (1964) method 153 

given by [7] for estimating the vmax parameter from the data.  The temporal sampling 154 

interval of telemetry fixes is known to influence output home range size and shape using 155 

MCP (Borger et al. 2006) and KDE (Downs and Horner 2008), but also will influence the 156 

PPA home range. To demonstrate this effect, we re-sampled our simulated animal 157 
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trajectory using only ¼ (n = 500) of the points and re-estimated the vmax parameter using 158 

[7] (Figure 3 d–f).  159 

< approximate location Figure 3 > 160 

DISCUSSION 161 

In this example, the effect of changing sampling frequency had minimal effect on home 162 

range computed using MCP (figure 3 a & d), however this will not always be the case 163 

(Borger et al. 2006). With KDE, fewer points lead to increased uncertainty in the 164 

bandwidth selection process, resulting in a wider bandwidth selection, and in general a 165 

larger output home range. With the PPA home range method uncertainty is a function of 166 

the time between consecutive known locations, rather than the number of points. As a 167 

result, PPA home ranges are comprised of fewer, larger ellipses to account for 168 

uncertainty in animal location between consecutive known points, and produce larger 169 

home range estimates. We suggest that PPA home ranges be employed only when 170 

telemetry data are collected using a relatively short sampling interval (e.g., dense GPS 171 

telemetry data). In these situations uncertainty between consecutive fixes will be 172 

relatively low. In cases where the temporal duration between fixes is substantially longer 173 

(e.g., with most VHF collars), the ellipses produced by the PPA algorithm will be large, 174 

resulting in significant overestimations of home range size. We withhold from specifying 175 

an absolute threshold on sparse telemetry data where the PPA method should not be used 176 

as it will be dependant on both the species (e.g., large vs. small mammal) and application 177 

(seasonal home range vs. migratory behavior). Comparison of the PPA home range with 178 

existing methods (e.g., KDE and MCP) should provide information as to whether or not 179 
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the PPA approach is appropriate with a given dataset (see Figure 4 and the accompanying 180 

discussion below). 181 

The conceptual and computational simplicity of the PPA home range may be its 182 

greatest asset. The PPA home range can be defined simply as: given a set of sampled 183 

locations (telemetry points) the PPA home range contains all locations in geographic 184 

space that the animal could have visited. PPA can be easily implemented in a GIS and 185 

requires only one input parameter, maximum travelling velocity – vmax, that can be 186 

derived using biological knowledge or estimated directly from the data (e.g., using [7] or 187 

[9]). If telemetry data are categorized into distinct behavioral segments (e.g., Jonsen et al. 188 

2005, Gurarie et al. 2009) where differing vmax would be expected, PPA home range 189 

analysis could be further enhanced.  190 

It is interesting that given its intuitive structure, ideas from time geography are 191 

largely absent from wildlife movement research. Baer & Butler (2000) use time 192 

geographic theory for modeling wildlife movement building upon Hagerstrand’s (1970) 193 

concept of ‘bundling’, representing animals congregating in space-time. Regions where 194 

‘bundling’ occurs can be used to identify specific ecological activity in groups of animals 195 

(e.g., locating scarce resources). Wentz et al. (2003) implement time geographic 196 

constraints for animal movement, interpolating between sampled telemetry locations to 197 

model movement paths. Time geography volumes are used by Wentz et al. (2003) to 198 

constrain random walks between sampled locations. More recently, Downs (2010) 199 

presents a novel approach for incorporating time geographic principles, specifically the 200 

potential path area (termed geo-ellipse), into kernel density estimation. Downs (2010) 201 

uses the geo-ellipse in place of a circular kernel in the density estimation. Several 202 



11 | Long and Nelson 

   

advantages of this approach are identified, such as replacing subjective selection of 203 

kernel bandwidth by an objective parameter – maximum travelling velocity. Time 204 

geographic kernel density estimation assigns zero density to regions outside of the PPA 205 

home range, creating a utilization distribution density allocated only to accessible 206 

regions.  207 

Wildlife do not use the space within their home range evenly motivating use of an 208 

intensity surface – termed utilization distribution, to analyze animal space use (Jennrich 209 

and Turner 1969). Utilization distributions more adequately portray patterns of space use 210 

within wildlife home ranges and provide more reliable estimates of overlap and/or 211 

fidelity compared with discrete home range methods (Fieberg and Kochanny 2005). 212 

However, these advantages come at the cost of added complexity in deriving the 213 

utilization distribution with many researchers continuing to use discrete measures of 214 

home range over utilization distributions in analysis due to their simplicity (Laver and 215 

Kelly 2008). KDE remains the most popular method for computing utilization 216 

distributions despite considerable drawbacks with newer (temporally dense) telemetry 217 

data (Hemson et al. 2005, Kie et al. 2010). Horne et al. (2007) propose the Brownian 218 

bridge approach for computing the utilization distribution. A Brownian bridge is simply 219 

defined as the probability a random walk passes through a location given the known start 220 

and end points. Like the PPA home range, with the Brownian bridge approach telemetry 221 

data are analyzed using pairs of consecutive telemetry fixes. This method relies on a 222 

variance parameter – σm that is difficult to interpret but can be estimated from the data 223 

using an optimization algorithm. The PPA method is essentially the discrete equivalent of 224 

the Brownian bridge approach, but with simple, intuitive, and easy to estimate parameters 225 
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that can be straightforwardly computed in a GIS. Getz and Wilmers (2004) propose the 226 

use of overlapping local convex hulls to generate a utilization distribution. A similar 227 

approach could be adopted with PPA ellipses to generate a utilization distribution based 228 

on the areas under overlapping ellipses. The derivation of an overlap-based utilization 229 

distribution for PPA ellipses remains an area for future investigation.  230 

 Wildlife researchers now routinely collect temporally dense telemetry data using 231 

sophisticated tracking technologies (e.g., GPS, Tomkiewicz et al. 2010). Such temporally 232 

dense telemetry data provide a more detailed and informative view of animal movement. 233 

Given continued advancements in technology in the future it is likely that we will be 234 

analyzing (near) continuous animal trajectories. This improved representation of animal 235 

movement necessarily results in highly autocorrelated movement data. Much attention 236 

has been given to the problems autocorrelated telemetry data pose with traditional 237 

methods for studying wildlife movement (Swihart and Slade 1985, Otis and White 1999, 238 

Fieberg et al. 2010). Many existing methods, developed for use with temporally sparse 239 

telemetry data, are ill equipped for dense telemetry data. The PPA home range method is 240 

advantageous with temporally dense telemetry data, as it is capable of including rich 241 

temporal information into the derivation of home range. With few exceptions (e.g., Horne 242 

et al. 2007) existing home range techniques ignore rich temporal information contained in 243 

telemetry datasets. Including temporal information in analysis is beneficial as points are 244 

no longer considered independent observations, but rather as a sequence of recordings 245 

taken over a time period.  246 

Certain land cover types (e.g., dense forest, Rempel et al. 1995) can interfere with 247 

locating technologies resulting in missing recordings. Missing data points are problematic 248 
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in subsequent analysis as bias towards specific cover types can occur (Frair et al. 2004). 249 

By explicitly considering the temporal sequencing of points, PPA home ranges adjust for 250 

missing telemetry recordings by way of a larger ∆t value in these areas, providing an 251 

unbiased estimator of home range.  252 

Commission errors (locations included in the home range but never visited) and 253 

omission errors (locations visited but not included in the home range) are important 254 

properties of output home range polygons that require careful consideration (Sanderson 255 

1966). All home range methods short of a direct trace of an animal’s movement path will 256 

include commission errors. Omission errors occur with most methods, but can be avoided 257 

by substantially overestimating home range size. This is equivalent to selecting an overly 258 

large bandwidth with KDE. Substantial overestimation limits utility for wildlife research 259 

as the signature of animal behavior is masked. The PPA home range method can be used 260 

in tandem with other methods to examine commission and omission errors. Consider a 261 

simple comparison, by intersecting the PPA home range with commonly employed home 262 

range techniques MCP and KDE (Figure 4). The PPA home range represents the largest 263 

spatial unit such that no omission error occurs, due to explicit consideration of the time 264 

geography constraints on animal movement. Potential omission errors are then easily 265 

represented as those areas included in the PPA home range, but not in other techniques. 266 

Areas not included in the PPA home range but included in other methods can be 267 

considered inaccessible regions and an unnecessary source of commission error. With 268 

MCP, potential omission errors are likely to occur near edges of MCP home ranges. Due 269 

to the convex assumption, MCP home ranges almost always include inaccessible areas as 270 
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well (Powell 2000). KDE home range polygons are not guaranteed to even include all 271 

sampled telemetry points, therefore explicitly known errors of omission may exist. 272 

< approximate location Figure 4 > 273 

All measures of home range are indirect and based on specific properties of the 274 

telemetry data from which they are derived. Most existing methods use only the spatial 275 

properties of telemetry data represented as points. The PPA method provides a 276 

complementary view that not only considers spatial information but also temporal 277 

information. Using the demonstrated intersection technique, omission errors and 278 

inaccessible regions (unnecessary commission error) using existing home range methods 279 

can be mapped and quantified. This represents a significant contribution towards home 280 

range analysis that carefully considers these types of errors as has been previously 281 

suggested (Sanderson 1966). Often studies employ multiple methods when delineating 282 

wildlife home ranges to evaluate a range of possibilities (e.g., Righton and Mills 2006). 283 

The PPA home range should be included in such studies as it can be used to augment 284 

other techniques by providing information on omission and commission errors. 285 

In this derivation of PPA home range all geographical space is considered equally 286 

navigable. In reality, environmental factors (e.g., topography, land cover, water bodies) 287 

influence an animal’s ability to traverse the landscape. As well, external factors such as 288 

inter- and intra-species competition (Schwartz et al. 2010), and habitat requirements 289 

(Sawyer et al. 2007), motivate wildlife movement, and subsequent home range 290 

delineations. Optimally, PPA home ranges would be based on the time geography 291 

constraints across an unequal surface (see Miller and Bridwell 2009), that considers 292 

competition, habitat, topography, and barriers to wildlife movement. Future work should 293 
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investigate combining available environmental datasets into animal specific movement 294 

cost surfaces. Movement cost surfaces could then be integrated into time geographic 295 

analysis to compute more realistic PPA home ranges. However, incorporating movement 296 

cost surfaces may take away from the attractiveness of time geography methods due to 297 

added complexity. 298 

MANAGEMENT IMPLICATIONS 299 

The concept of home range remains at the core of current research on wildlife movement 300 

and habitat analysis, and is frequently adopted as a tool in wildlife management 301 

applications.  In this article we have presented a new technique for deriving animal home 302 

ranges that is simple and intuitive, but also designed specifically for use with emerging 303 

temporally dense telemetry datasets, such as those now routinely collected with GPS 304 

collars. However, we suggest the PPA approach not be adopted with temporally coarser 305 

telemetry data (e.g., VHF collars) as it can lead to overestimation of home range size and 306 

misleading interpretations. The PPA home range can be used as a stand-alone measure of 307 

animal home range, or to augment existing techniques by identifying potential omission 308 

errors and inaccessible areas making it flexible for use with both novel and existing 309 

analyses. When performing PPA home range analysis the method for obtaining the vmax 310 

parameter (e.g., through biological reasoning or by one of the estimation approaches we 311 

provide) along with the parameter value should be explicitly stated, as it will influence 312 

the resulting home range area. To those wishing to implement the PPA home range 313 

technique in their own research we have provided access to a tool for implementing the 314 

PPA home range. For more information please go to: 315 

http://www.geog.uvic.ca/spar/tools.html. 316 

http://www.geog.uvic.ca/spar/tools.html
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Figure Captions: 

 

Figure 1: Diagram of Hagerstrand’s (1970) time geography. The space-time prism 

contains the set of all locations accessible to an individual given telemetry fixes at 

t1 and t2, and a velocity parameter (vmax). The projection of the space-time prism 

onto the geographical plane is called the potential path area (PPA), used here for 

delineating wildlife home ranges.  
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Figure 2: a) Pins-and-strings method for generating PPA ellipses. The length of the string 

is equal to the longest distance the animal could travel (Dmax) given parameter 

vmax and the time difference between points. b) Geometric properties of a PPA 

ellipse with telemetry points i and j. CP is the center point and d is the Euclidean 

distance between points i and j; a and b are lengths of the major and minor axis 

respectively; and Rθ is the rotation angle. c) Computation of the PPA home range 

involves combining multiple (n–1) PPA ellipses.  
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Figure 3: Home range polygons for a simulated dataset with n = 2000 (top) re-sampled to 

n = 500 (bottom) using MCP (a & d), KDE (b & e) and PPA (c & f).  
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Figure 4: Intersections between a) MCP & PPA and b) KDE & PPA (for n = 2000); 

demonstrating how PPA home ranges can be used to augment existing techniques 

by identifying omission errors and inaccessible areas. 
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