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Abstract—Satellite-borne synthetic aperture radar has proven to
be a valuable tool for sea ice monitoring for more than two decades.
In this study, we examine the performance of an automated sea ice
classification algorithm based on polarimetric TerraSAR-X im-
ages. In the first step of our approach, we extract 12 polarimetric
features from HH–VV dualpol StripMap images. In a second step,
we train an artificial neural network, and then, feed the feature
vectors into the trained neural network to classify each pixel into
an ice type. The first part of our analysis addresses the predictive
value of different subsets of features for our classification process
(by means of measuring mutual information). Some polarimet-
ric features such as polarimetric span and geometric intensity are
proven to be more useful than eigenvalue decomposition based fea-
tures. The classification is based on and validated by in situ data
acquired during the N-ICE2015 field campaign. The results on a
TerraSAR-X dataset indicate a high reliability of a neural network
classifier based on polarimetric features. Performance speed and
accuracy promise applicability for near real-time operational use.

Index Terms—Artificial neural network (ANN), feature evalua-
tion, polarimetry, sea ice classification, TerraSAR-X.

I. INTRODUCTION

OVER more than three decades, synthetic aperture radar
(SAR) has become an invaluable asset for scientific mon-

itoring of ice infested maritime regions. In contrast to optical
imaging, SAR is not impeded by cloud coverage or lack of
daylight. While airborne and shipborne SAR cannot always be
used during adverse weather conditions, spaceborne SAR im-
age acquisition is not impeded by weather incidents and can
cover almost any region on the globe with short revisit times.
Given that sea ice coverage appears in remote regions that are
otherwise hard to reach, satellites with global coverage are an
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ideal way for any type of monitoring purpose. Satellites such
as RADARSAT-1 and 2, ERS, or ENVISAT in C-band and
TerraSAR-X (TSX) in X-band have proven the suitability of
SAR sensors for investigating sea ice in Arctic and Antarctic
regions. The size of SAR images extends up to a few hun-
dred kilometers in width and length. This facilitates wide area
investigations, e.g., as conducted for field experiments in the
marginal ice zone (ONR MIZ 2015 campaign, see [1]). Topics
in sea ice research using SAR are ice drift (see [2]–[6]), sea
state and wave propagation into sea ice (see [7] and [8]), ice
concentration (see [9]), iceberg detection (see [10] and [11]).
Most research published so far on SAR-based sea ice classifica-
tion concentrates on single polarized data (e.g., [12]–[22]). Such
work naturally concentrates on classical image analysis tools.
Among such tools are texture analysis via gray level cooccur-
rence matrices (GLCM), (cf., [12]–[15], [17], [18], [23], and
[24]), autocorrelation methods (see [25]), wavelet-based fea-
tures (see [7] and [26]), Gabor wavelet techniques (see [12]),
and Markov random fields (see [16]). However useful and suc-
cessful these techniques may be, there are still major obstacles in
sea ice classification, that remain for all mentioned approaches.
Most prominent is the high variability of different ice types by
influence of incidence angle, weather conditions, location, and
season.

Polarimetric data (i.e., at least two copol channels available)
promise to cope better with these obstacles, since each acqui-
sition contains more information than only one SAR channel.
The different backscatter behaviors (in different channels) al-
low for a better characterization of different ice types. When
polarimetric data are available, the most straightforward analy-
sis would inspect the intensities and phases of different chan-
nels directly (see [27]). Furthermore, it is rather common to
investigate parameters based on the eigendecomposition of the
scattering matrix like the eigenvalues and components of the
eigenvectors (see [28]) or derived quantities like the canonical
H/A/α parameters (see [28]–[30]). Wakabayashi et al. [28] used
this approach on airborne L-band data to investigate character-
istics of sea ice types. In other approaches, the distributions of
the coherency matrix are computed to be used as input argu-
ments of an unsupervised Wishart classifier (see [31] and [32]).
Recent publications (see [33] and [34]) proposed a polarimetric
approach based on C-band data in which a segmentation pre-
cedes an automated, statistical labeling of the segments. This
automated method is then compared with manual segmentations
and found to improve the quality of otherwise highly subjective
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TABLE I
TERRASAR-X MAJOR SPECIFICATIONS OF DIFFERENT IMAGING MODES

Imaging Mode SC SM SL HS

Polarization Mode S S D S D S D
Channels {HH/VV,

{HH,VV {HH,VV HH/HV, {HH,VV} {HH/VV} {HH,VV} {HH/VV}
HV,VH} HV,VH} VV/HV}

Data collection range 15◦–60◦

Full performance angle 20◦–45◦ 20◦–45◦ 20◦–55◦ 20◦–55◦

Range scene size [km] 100 30 15 10 10 10 10
Azimuth scene size [km] 150 50 50 10 10 5 5
Abs. Radiometric Accuracy [dB] 0.7 0.6 0.6 n.a. n.a. n.a. n.a.
Relative Radiom. Accuracy [dB] 0.4 0.3 0.3 n.a. n.a. n.a. n.a.

NESZ [db] −26 to −19

Incidence Angle (◦) 20 to 45 20 to 45 20 to 45 20 to 55 20 to 55 20 to 55 20 to 55

Slant range resolution[m], SSC only ∼1.2 ∼1.2 ∼0.6 ∼ 1.2

Ground range resolution (SE) [m] 19.2 to 17.0 3.5 to 3.3 6.6 3.5 to 1.7 3.5 to 3.4 1.8 to 1.1 3.3 to 2.2
Azimuth resolution [m] 19.2 to 18.5 3.5 to 3.3 6.6 3.5 to 1.7 3.5 to 3.4 1.8 to 1.1 3.3 to 2.2

S=single pol, D=dual polarimetric, SE=spatially enhanced mode.

manual interpretations. For the most part, mentioned publica-
tions were concerned with directly relating physical properties
of certain ice types to particular polarimetric parameters (and
possibly giving physical explanations for observed behavior)
and discussed how the generalizability of classifiers is impacted
by location, season, and incidence angle. Moen et al. in [33]
and [34] qualitatively examined the plausibility of the different
outcomes of manual and automatic classification approaches.
Our work heads into a slightly different direction as it intends
to contribute a comprehensive quantification of the informa-
tion theoretical qualities of polarimetric parameters (H/A/α)
and other polarimetric parameters derived from the scattering
matrix (see [35]) in X-band. The underlying dataset is a time se-
ries of dualpol StripMap images in X-band (TSX), which has not
yet been deeply investigated for its potential to classify sea ice.
The motivation of our work is concerned with the establishment
of an automated sea ice classification algorithm for navigational
purposes. Therefore, we assess the information quality of the
parameters prior to classification. Instead of directly linking
clusters in the parameter space to certain ice types (or physical
properties of ice types), we rather train a neural network classi-
fier. The neural network then implicitly encodes such relation-
ship between parameters and ice type. Thereafter, we confirm
the validity of the data clusters with in situ data. This reflects our
goal of developing navigation assistance products in near real
time.

Guided by these considerations, this study is structured into
the following parts: We will first propose our dataset and the
polarimetric parameters. After the formal introduction, the in-
formation theoretic analysis of the parameters will follow. The
statistical tools of this analysis will be a rather common feature
selection filter, namely the concept of mutual information (cf.,
[36]). Based on this statistical measure, one is able to quantify
the redundancy and relevance of features for our purposes of
identifying different ice types. In the third step, we present the
output of our subsequent neural network classification. Since

we utilize an openly accessible neural network library (FANN,
see [37]), the reader is referred to the standard literature on the
details of neural networks for theoretical details or for exem-
plary approaches in SAR-based neural network classification of
sea ice (see [18] and [20]).

II. DATASETS

When one ultimately strives to arrive at ice charts for maritime
users, the largest footprint for the desired polarimetric mode
(dual-polarimetric HH–VV in our case) is naturally the imag-
ing mode of choice. For the readers’ convenience, we provide
some technical information in Table I regarding characteristics
of different TSX imaging modes. The dataset used for devel-
oping this methodology have azimuth resolution of 6.6 m and
slant range resolution of∼1.2 m. In ground range projection, the
resulting StripMap dualpol image stretches about 18000 pixels
in azimuth and about 6500 pixels in range direction, covering
approximately 50 km × 15 km.

The exemplary dataset we use is a time series acquired in
spring 2015 during a field campaign north of Svalbard. The
image dates and locations are listed in Table II. The imaging
mode for all images was StripMap Dualpol HH–VV with an
incidence angle above 36◦ for all four images as manifestations
of different sea ice types are more prominent in higher incidence
angles (see Table II).

For comparing our results to the actual sea ice conditions in
the study area, we used in situ data collected by scientists partic-
ipating in the research project Norwegian young sea ICE cruise
(N-ICE2015), led by the Norwegian Polar Institute (NPI) (see
[38]). In this project, the research vessel RV Lance was frozen
into the sea ice in the Arctic Ocean north of Svalbard between
January and June 2015, providing interdisciplinary observations
from winter conditions and until the transition to early summer
with the onset of melt. After the vessel had been maneuvered
into the ice, it served as a drifting station and floated with the ice
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TABLE II
LIST OF TERRASAR-X DUAL-POLARIMETRIC STRIPMAP ACQUISITIONS

Time UTC Beam mode Incid. ang. Center loc. Heading ang.(Orb Direction)

February 07, 2015, 14:43:12 stripNear_012 40-41◦ 82.8N, 17.6E 32.7◦ (Ascending)
February 12, 2015, 14:51:37 stripNear_012 40-41◦ 82.0N, 19.0E 33.1◦(Ascending)
February 18, 2015, 14:42:58 stripNear_010 36-37◦ 81.8N, 18.6E 32.8◦(Ascending)
February 25, 2015, 06:26:15 stripFar_011 39-40◦ 83.2N, 28.8E 21.4◦(Descending)

Fig. 1. Left: Geocoded RGB composite of the dual-polarimetric TS-X acquisition on February 07, 2015, with marked location of EM measurement. Right: EM
measurement of ice thickness of February 11, 2015. Images depict same mooring point on different dates (i.e., differing lat,lon values are due to drift of floes).

TABLE III
POSITIONS OF THE LANCE AT INSTANCE OF ACQUISITION

Date of acquisition Position

February 07, 2015 82◦ 42.055862 N, 17◦ 47.467877 E
February 12, 2015 82◦ 5.674461 N, 19◦ 18.566928 E
February 18, 2015 81◦ 44.794054 N, 17◦ 55.809365 E
February 25, 2015 82◦ 59.111275 N, 27◦ 7.626262 E

south westwards. Once the ship reached the ice margin, it was
relocated to a position further north and a new drift started. The
study area of this expedition is located between 80◦N–83◦N and
3◦E–28◦E [38]. Three out of our four TerraSAR-X scenes are
covering the ships position and the investigated sea ice area (see
positions in Tables III.).

From this cruise, we obtained total ice thickness (ice+snow)
information from ground based electromagnetic instruments
(EM31), thickness drillings, and ice core data like salinity pro-
files to classify the ice types. For example, for February 06,
2015, the mean ice thickness of the floes next to RV Lance ac-
cording to EM31 data was 2.21 m, for February 11, 2015, the
reported mean ice thickness was 2.17 m. From these measure-
ments, we can confirm, that three dominant ice classes, namely

young ice (YI, 10–30 cm) thin to medium first-year (MFYI, 30–
120 cm) ice and a mixture of rough first-year and multiyear ice
(RFYMYI, >120 cm) (see [39]), could be measured in the field
(see example in Fig. 1). The histogram of ice thicknesses (see
Fig. 3) corroborates the ice regime with open water (OW) and
three different ice classes by exhibiting three major peaks in the
histogram. Additionally, field researchers could confirm from
visual observations that the area around the ship was mainly
a composite of multiyear ice (MYI) and leveled first-year ice
(FYI), broken by leads that transformed to flat new ice areas
within only a few days due to cold air temperatures. As training
dataset we chose the first day of the time series (February 07,
2015), which we term the training image. Training data rectan-
gles in the image were determined close to the mooring position
of the ship on February 07, 2015, relying on mentioned in situ
data and ice observations (see, e.g., for two classes in the embed-
ded zoom subimage in Fig. 2, acquired on February 12, 2015
over the floe where the ship was moored February 15, 2015
through February 21, 2015). Due to all the mentioned observa-
tions and measurements, we therefore used as the dominant ice
types OW, YI, thin to MFY ice and a mixture of RFYMYI.

Given that the ice situation is similar and the incidence an-
gle range is comparable in all images, these constraints limit
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Fig. 2. Subsection of the acquisition on February 12, 2015, HH Stripmap image. Red rectangle indicates training area of RFMYI, yellow rectangle indicates
training area of MFYI, other training areas not included in inlet image. The floe RV Lance was moored to can be seen in the zoom inlay. The big white dot is
Lance, the small dots mark the hourly ship track. Image created by Max König of NPI, Norway.

the variability of backscatter behavior in dominant ice types.
In operational situations, one will aspire to have a classifier for
each (narrow) incidence angle range to account for this. Named
variability normally makes a supervised classification approach
rather difficult (cf., [33] and [34]) and necessitates to establish a
library of classifiers, each for reasonably homogeneous acquisi-
tion conditions such as weather, season, and incidence angle. An
issue to mind is weather events such as melting and refreezing
that are known to alter the scattering mechanism significantly
(cf., [40]). In our case, the weather data, collected in situ dur-
ing the N-ICE2015 campaign, are well within winter conditions
(polar night) with no thaw at all. For these reasons, we do not
expect a strong variation in the dominant ice types, nor in the
backscatter behavior due to weather impact. Frost flowers on
refrozen leads were observed rather frequently by cruise mem-
bers, which needs to be kept in mind when discussing the SAR
backscatter and the classification output.

III. POLARIMETRIC FEATURES

For spaceborne SAR data of C-band and L-band, the behavior
of polarimetric features for different ice types has been investi-
gated before (e.g., [27], [33], [34], [41], and [42]). Studies that
compare X-band, C-band, and L-band in sea ice research data
are, for example, [28] or in [43]. Given that C-band is rather
close to X-band SAR, we expect to find a similar behavior in
our data (cf., [43]). Before we discuss the expected behavior in
C-band and L-band, we propose our dual-polarimetric defini-

tion for the features. By SHH we denote the complex backscatter
return as obtain in the delivered TerraSAR-X product. σHH de-
notes the amplitude of SHH and φHH denotes the phase angle of
SHH, i.e.,

SHH = σHH exp(iφHH). (1)

Likewise notation is used for SVV. The brackets 〈·〉 denote the
local averaging process during polarimetric feature extraction.
(The spatial averaging window size was chosen to be 11 pixels
for our sample dataset throughout this publication.) The com-
plex signal vectors in lexicographic basis representation and
Pauli basis representation are then

kL = (SHH, SVV), kP =
(SHH + SVV, SHH − SVV)√

2
. (2)

In a polarimetric approach, one generally first computes the
(locally averaged) covariance matrix of the scattering vector
(e.g., in Pauli or lexicographic basis)

TP = 〈ktr
P · kP 〉 (3)

and

TL = 〈ktr
L · kL 〉. (4)

The particular parameters are inspired by the ones outlined in
[29], [35], and [44].

The eigenvalues λ1 and λ2 of TP are used to compute the
scattering probabilities pj = λj /(λ1 + λ2). This is the input for
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Fig. 3. Histogram of ice thickness values measured on the floe, which RV
Lance was moored to January 15, 2015–February 21, 2015. Three peaks
indicate the three dominant ice types (YI(10–30 cm), MFYI(30–120 cm),
RFYMYI(>120 cm), see aforementioned definition) observed in the surround-
ing of the ship.

deriving entropy

H = − (p1 log2(p1) + p2 log2(p2)) (5)

and anisotropy

A =
(p1 − p2)
(p1 + p2)

. (6)

From the eigenvectors v1 and v2 of TP , one obtains

αi = arccos(v(1)
j ), j = 1, 2. (7)

We also compute the average α angle

α = α1p1 + α2p2 . (8)

While the classical H/A/α parameters (cf., [29]) in the fully
polarimetric case also permit the physical interpretation (e.g.,
about predominant scattering mechanisms), we do not further
explore this aspect for our 2-D adaptations. In any case, the
Pauli-based parameters can certainly be interpreted as statistical
parameters characterizing different types of sea ice surfaces.

From TL , we derive a number of parameters, inspired by [35]
and by [44], which are as follows.

Copolarization power ratio

γ =
〈|SHH|2〉
〈|SVV|2〉

. (9)

Phase difference

Δφ = φHH − φVV. (10)

Real part of the copolarization cross product

ρ = |�〈SHHS∗
VV〉|. (11)

Correlation

ε =
〈SHHS∗

VV〉√
〈|SHH|2〉〈|SVV|2〉

. (12)

Span of TL

span = trace(TL ). (13)

Scattering diversity (where ‖ · ‖F denotes the matrix Frobenius
norm)

δ = 2

(

1 −
(
‖TL‖F

span

)2
)

. (14)

Surface scattering fraction

τ =
〈|SHH + SVV|2〉

span
. (15)

Geometric Intensity μ

μ = (det(TL ))(1/2) . (16)

The C-band copol power ratio is known to provide an excellent
measure to distinguish OW and all other ice types, in particular
very thick ice types (see [41] or [27]). For the younger ice type,
the reported copol power ratio is closer to the respective values
of OW. The C-band phase difference Δφ is reported to be use-
ful for discriminating different thinner ice types (see [27], [33],
and[42]). For L-band, (quad-polarimetric) entropy H is known
to distinguish OW from ice types generally well and also thin ice
from thick ice types due to the underlying different scattering
mechanisms(see [28]). (Quad-polarimetric) L-band anisotropy
is known to be sensitive to surface roughness (see [28]), al-
though in our case, the anisotropy is calculated differently, and
thus, cannot be assumed to have the same physical meaning.
In fact, we will show further that (dual polarimetric) A is for
mathematical reasons more closely related to H .

IV. MUTUAL INFORMATION, RELEVANCE AND REDUNDANCY

OF FEATURES

To quantify the behavior of the different ice types we have
collocated the histograms for the mentioned features by class
(see Fig. 4). From the histograms, one can already gather quite
well which features distinguish certain classes quite distinctively
and which are not very discriminative in terms of class.

To quantify this in a more rigorous way, we employ an
information-theoretic idea, which has become a rather central
tool in analyzing informational content and discrimative power,
namely mutual information.

The concept of mutual information has become a rather pop-
ular tool in the field of feature selection for machine learning
(cf., [36] and [45]). In our case, we are not confronted with
a huge number of features. As hinted in the introduction, in
our case, the major challenge lies in the size of full resolution
data take: In the case of TerraSAR-X one full-resolution purely
real-valued image layer occupies about 600 MB of RAM, in
case of Sentinel dual-polarimetric data, this can be as much as
4 GB for one real-valued layer of a dual-polarimetric image.
Multiplying this memory consumption by the number of (real-
valued) polarimetric features, one clearly sees the advantage of
analyzing the relevance and redundancy of features first and re-
taining only those features necessary for a reasonably accurate
classification.
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Fig. 4. Relative frequencies of the different features. Color coding: OW blue, YI purple, MFYI yellow, RFYMYI red. Histograms left to right, top to bottom:
angle α, angle α1 , surface scatter fraction τ , entropy H , anisotropy A, scattering diversity δ, correlation, geometric intensity μ, span, copol power ratio γ ,
averaged phase difference Δϕ, and real copol cross product ρ.

A. Mutual Information for Feature Selection

Given two random variables X and Y (with joint and
marginal densities, no point masses), the mutual information
I of these variables is defined as

I(X|Y ) = H(X) −H(X|Y ) (17)

where H(X ) denotes the entropy and H(X|Y ) denotes the con-
ditional entropy of X given Y . For details, confer [36] and [45].
Intuitively, I can be said to describe the portion of information
that is shared by both, X and Y , i.e., their “information overlap.”
Put differently, the higher I(X|Y ), the more information one

can infer about X from existing knowledge of Y . In this way,
one can measure, in an information theoretical sense, the (non-
linear) information correlation of X and Y . The symmetry of I
in X and Y , which one would expect for the intuitive concept
of “shared information,” also holds for the strict mathematical
definition, i.e., I(X|Y ) = I(Y |X). Given I is a dimensionless
quantity, we use it only as a means to put different features
in comparison. The absolute value of I we do not investigate
further here.

As an example (we do not use here), one could let X be
the backscatter brightness, Y1 be the ice roughness, and Y2 ice
thickness. Surface roughness generally corresponds to higher
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backscatter, whereas backscatter and ice thickness have no
simple general functional relationship (but volume scattering
may be indicative of thick ice). So, for this hypothetical setup,
I(X|Y1) >> I(X|Y2).

We introduce the following terminology concerning particu-
lar choices of X and Y : In case, Y is a feature and X is the class
information (X attains, e.g., OW, YI, MFYI, and RFYMYI),
a (relatively) high mutual information I would indicate a high
predictive value of feature Y for determining the class X . Or
symmetrically, knowledge of the class X allows reliable predic-
tion of pertaining values of Y . If X is chosen to only attain two
classes (i.e., we only utilize training data from two classes to
determineI(X|Y )), the mutual information value then indicates
the particular discriminative power of the feature Y for distin-
guishing those two particular classes. This configuration (Y
feature, X all classes or two classes a and b) we use to rank the
features according to relevance (all-class relevance, two-class
relevance). We will write I(Y |Class(all)) or I(Y |Class(a, b))
for these situations.

In another setup, we let X and Y be two different features.
When I(X|Class(all)) and I(Y |Class(all)) are about equal
(i.e., have equal relevance), high mutual information I(X|Y )
then is said to indicate redundancy. Such redundancy we will
find in our sample data and we will use it to justify discard-
ing some features. To obtain a higher comparability, I(X|Y ) is
normalized by

√
H(X).

Since we input the features into a neural network classifier,
all features are rescaled into the range [−1.0, 1.0]. This way the
feature values lie in the range where the sigmoidal of the neural
network is not near-constant. We utilize a popular nonlinear
rescaling method involving the tanh function

x̃ = tanh
(

x − X

νX

)
(18)

where X denotes the mean of all values of feature X in the
training data and νX denotes the standard deviation of all val-
ues of feature X in the training data. When a neural network is
trained on data rescaled with these particular training data sta-
tistical parameters P = {X, νX }, then all feature vectors that
are afterwards ingested into this network for classification must
be rescaled with these parameters P prior to classification. In
all further analysis, we only consider the rescaled values of the
feature, since they determine the behavior of the classifier.

From first glance at Table IV, entropy H , anisotropy A, and
scattering diversity δ rank in the same order of relevance. Fur-
thermore, the angle α and α1 are found to be not very relevant.

As can be seen in Table V, for discriminating OW from the
thick ice classes (MFYI, RFYMYI), the copolarization power
ratio γ is the most relevant feature. This is a well-known fact
and demonstrated for different bands (cf., e.g.,[19] and [41]).
Since this discrimination is of major importance for navigation
through ice-infested waters, γ can be considered indispensible
in our classification. Another observation from Table V is that
the triplet δ,H, and A almost always appear in the same place
together. In fact, numerically the two-class relevances of these
three features hardly differed at all (the biggest value exceeding

TABLE IV
RELEVANCE FOR DISTINGUISHING ALL DIFFERENT CLASSES (ALL CLASS

RELEVANCE)

Feature I0 I1 Reference Histograms

span 0.862 0.390 4i
Geometric intensity μ 0.849 0.382 4h
Real part copol cross prod. ρ 0.799 0.363 4l
Anisotropy A 0.781 0.343 4e
Entropy H 0.779 0.344 4d
Scattering diversity δ 0.775 0.342 4f
surface scattering fraction τ 0.730 0.32 4c
Correlation ε 0.717 0.315 4g
Copol power ratio γ 0.686 0.300 4j
average angle α 0.661 0.289 4a
angle α1 0.394 0.173 4b
Averaged phase difference Δφ 0.195 0.085 4k

I0 denotes I(X |Class(all)) and I1 denotes I(X |Class(all))/
√

H (X ).

TABLE V
TWO-CLASS RELEVANCE IN DESCENDING ORDER FOR DIFFERENT PAIRS OF

CLASSES

1 Versus 2 1 Versus 3 1 Versus 4 2 Versus 3 2 Versus 4 3 Versus 4

ρ γ γ span τ μ

span A A ρ H span
μ δ H μ δ ρ

α H δ δ A Δφ

τ span μ H ε α1

α1 ρ τ A α α

ε ε ε ε ρ ε

γ μ span τ span τ

H α1 α1 α μ A

δ τ α γ α1 H

A α Δφ α1 γ γ

Δφ Δφ ρ Δφ Δφ δ

Class indices are: 1: OW, 2: YI, 3: MFYI, 4: RFYMYI.

Fig. 5. Normalized mutual information I(Y1 , Y2 )/
√

H(Y1 )H(Y2 ). Fea-
tures are: 1: γ , 2: Δφ, 3: ρ, 4: ε, 5: H , 6: α1 , 7: α, 8: μ, 9: A, 10: τ , 11: δ, 12:
span.

the smallest by at most 3%) for all but the case MFYI versus
RFYMYI (where the biggest value exceeds the smallest by less
than 10%).

The (normalized) mutual information for our particular
dataset is displayed in Fig. 5. Since we are only interested in
relative comparison, such a color-coded matrix offers an easy
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Fig. 6. Values of features H ,A, and δ in terms of the scattering
probability p1 .

Fig. 7. Left: Scattering diversity (δ); middle: Entropy (H ); right: Anisotropy
(A) of February 07, 2015 TSX image (window size −11 ×11, gray scale
representation).

way to comprehensively assess redundancy of the features. The
most striking observation in Fig. 5 is the high correlation of
the polarimetric entropy H , anisotropy A, and the scattering
diversity δ, which fits quite well the theoretical predictions of
[35, Sec. III-B]. This can also be observed by visual comparison
of H and δ in Fig. 7, and for H and A, minding the inverted
information in the gray values of A. The fact that H , A, and δ
are so closely related can also be expressed mathematically in
terms of the eigenvalues. Referring to (5), we have p2 = 1 − p1 ,
we obtain

H = −p1 log2(p1) − (1 − p1) log2(1 − p1) (19)

and likewise

A = 2p1 − 1. (20)

For the scattering diversity δ, a straightforward computation
shows

δ = 4(p1 − p2
1).

Noting that p1 ∈ [0.5, 1.0] for mathematical reasons, one can
see the close relationship between the three features directly in
Fig. 6.

The formulas and Fig. 6 highlight that δ can be regarded
as a second-order polynomial approximation of H , and Ã =
1 − A would be a linear approximation of δ. So, for any dual-

polarimetric SAR image, one would arrive at high visual match
and mutual information for H , Ã, and δ.

To a lesser degree, the correlation feature ε also bears similar
information content to H,A, and δ. For our purposes of detect-
ing redundancy, we do not consider any other similarities in
Fig. 5.

Therefore, we can summarize the most relevant features (the
top three features for each class pair) as γ, μ, span, τ , and
ρ by two-class relevances (see Table V), discarding redundant
entropy H and anisotropy A. By all-class relevance, the five
most relevant features (neglecting A and H) are μ, span, τ , ρ,
and δ. Only the copol power ratio γ appears rather off due to
the fact, that it is primarily important for discriminating thick
ice classes and OW but not so much for discriminating the thick
ice classes or thicker ice classes and YI. This matches reported
backscatter behavior for γ in C-band (see [46]).

Combining all the findings for relevance and redundancy, we
expect a reduced feature set comprising μ, span, τ , ρ, δ, and
γ to lead to comparable classification results when utilizing
all 12 features mentioned. This finding would greatly reduce
the computational overhead in applications since mentioned six
features do not rely on an eigendecomposition of the coherency
matrix. We finally remark that the mutual-information-based
analysis we conducted for individual features can be generalized
to higher orders, i.e., consider combinations of features as one
feature and compute relevance and redundancy. For this study,
we do not pursue such an analysis further but remark, that future
work will explore this aspect.

V. CLASSIFICATION RESULTS

As mentioned in the introduction, we performed a super-
vised classification using an artificial neural network (ANN).
The parameter subset we used was S, which included (μ, span,
γ, ρ, δ, and τ) plus their respective local variances.

The implementation was carried out in the Exelis IDL
programming language (Image ingestion, incidence angle
correction, feature extraction, and statistical analysis) and in
C (FANN library classifier). The network topology we used had
three hidden layers of 14, 16, and 7 hidden neurons per layer,
respectively. The training algorithm was resilient backpropaga-
tion (RPROP), with randomly initiated weights. The computa-
tion time for the extraction ranged at about 400 s for the feature
extraction. The classification runtime depends on the size of the
output, where a classification and execution on the full resolu-
tion took about 1000 s (hardware: 11-GB RAM, Intel Core i-7
3740 QM). Therefore, this approach is clearly suitable for near
real-time delivery to maritime end users, in particular, for ice
routing in the ice-infested waters. To see whether the training
process (with random starting weights in the ANN) is stable for
different choices of training data (from February 07, 2015), we
randomly split the initial patches of identified ice types (with
known reference ice class) into two disjoint subsets (U1 , U2).
The subset U1 we use as training data and the trained classifier
from this training dataset is then executed on the nontraining
dataset U2 . We repeat this procedure ten times (with random
initial weights of the ANN) with roles of U1 and U2 reversed
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Fig. 8. Left: Geocoded RGB composite of the dual-polarimetric TSX acquisition on February 07, 2015. Right: Ice classification based on copol power ratio γ ,
geometric intensity μ, scattering diversity δ, surface scattering fraction τ , span, real copol cross product ρ. and local variances for each feature. Blue: OW/nilas,
purple: YI, yellow: first-year ice (MFYI), red: rough first-year ice/multiyear ice (RFYMYI). Black dot marks position of RV Lance.

TABLE VI
CLASSIFICATION RESULTS COMPARED TO REFERENCE DATA SAMPLES FROM

EACH CLASS, AVERAGED OVER DIFFERENT NEURAL NETWORK TOPOLOGIES

Reference Ice Class

ANN Classification OW YI MFYI RFYMYI
OW 99.0% 13.5% 0% 0%
YI 1.0% 86.5% 0% 0%
MFYI 0% 0% 100% 1.9%
RFYMYI 0 % 0% 0% 98.1%

for training and nontraining subsets. For each execution of the
classifier on the nontraining dataset, we compute the percentage
of output into the different ice classes, recording also the refer-
ence ice class of the respective input pixel. This classification
output we interpret as an indicator of stability of the classifica-
tion procedure (not to be confused with validation, i.e., testing
of classifiers on portions of images of February 12, 2015 or later
dates). The percentages in the matrix (see Table VI) indicate the
proportion of samples of one reference class that were assigned
to the respective ice type by the classifiers. Therefore, columns
add up to 100%. Given that both training and validation data
are from the same ice situation (i.e., same time, location, and
incidence angle), we can conclude quantitatively that our
approach is consistent in itself and is stable in terms of the
choice of the training data.

Classification results for all four TSX images are presented
in Figs. 8–11. Since for the first two dates, the RV Lance was
moored at the same ice floe, we discuss these two dates together.
For the last date (February 07, 2015), we will also discuss the
result with regards to in situ observations. For the third date of
the series, the readers have to content themselves with visually

judging the plausibility of the result by taking the Pauli image
and the preceding classification results into account, as no in
situ data are available for that date.

Salinity measurements at the first moored point next to Lance
marked in the scenes of February 7 and 12 (see Figs. 8 and 9)
confirm by the low salinity in the upper part of the floe that
the ice is correctly classified as RFYMYI. The ice floe had
low salinity, which indicates that the floe had survived at least
one summer melt. To see the consistency of the classification
from February 07, 2015 to the next date (February 12, 2015)
consider the magnified subsections of the floe where the Lance
was mooring (left and center image in Fig. 12).

Also the MFYI to the north and north-east of the mooring floe
is identified correctly. The in situ measurements clearly show
a thinner, more saline ice for these regions. The refrozen leads
toward the south of the mooring position in the acquisition of
February 12, 2015 (see center image in Fig. 12) were, however,
mostly classified as RFYMYI even though the Pauli image sug-
gests YI. This is due to the classification procedure itself, since
the kind of YI, which appears with a purple hue on February 12,
2015 does not yet appear in the image of February 07, 2015. For
this technical reason, the classifier is not trained on this variant
of YI and incorrectly classifies these YI portions as RFYMYI.

The floe next to Lance on February 25, 2015 (see Figs. 11 and
12) actually was a composite of two floes: MYI toward the East
and FYI toward to the West as salinity and thickness measure-
ments show. They are both classified as RFYMYI. The FYI part
was smoother than the MYI part. The FYI part, however, also
showed signs of deformation. We, therefore, consider the clas-
sification successful. The FYI part of the floe next to RV Lance
was thicker than the thin FYI toward the North-West and South.
This thinner FYI ice is correctly classified as MFYI (yellow)
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Fig. 9. Left: Geocoded RGB composite of the dual-polarimetric TSX acquisition on February 12, 2015. Right: Ice classification based on copol power ratio γ ,
geometric intensity μ, scattering diversity δ, surface scattering fraction τ , span span, and real copol cross product ρ, and local variances for each feature. Blue:
OW/nilas, purple: YI, yellow: first-year ice (MFYI), red: rough first-year ice/multiyear ice (RFYMYI). Black dot marks position of RV Lance.

Fig. 10. Left: Geocoded RGB composite of the dual-polarimetric TSX acquisition on February 18, 2015. Right: Ice classification based on copol power ratio
γ , geometric intensity μ, scattering diversity δ, surface scattering fraction τ , span span, real copol cross product ρ, and local variances for each feature. Blue:
OW/nilas, purple: YI, yellow: first-year ice (MFYI), red: rough first-year ice/multiyear ice (RFYMYI). Black dot marks position of RV Lance.

by our method. By the visual observations from aboard the ship
one would not necessarily call it smooth. It actually showed a
significant number of small ridges with level ice in-between. A
possible alternative labeling for our ice type classes therefore
also could be: thin to medium first-year ice (MFYI, 30–120 cm
according to WMO [39]) and thick FYI (>120 cm). The YI
in the lead toward the South-East is correctly identified. It was
still OW when RV Lance arrived about 24 h before and had an
approximate thickness of 10–15 cm when the TerraSAR-X im-
age was acquired. In summary, the in situ observations confirm
the automatic classification and can attest a high agreement.

There is only a limited amount of in situ observations available,
and therefore, only a small fraction of the classified ice could
be evaluated. One, however, has to keep in mind that this is
one of the rare occasions that high quality winter time in situ
data is available at all, and to our knowledge, the first time that
SAR classification results could be evaluated (in this part of the
Arctic) under no-light conditions.

VI. CONCLUSION

Until recently sea ice classification using X-band SAR was
rather uncharted research domain. We investigated the potential
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Fig. 11. Left: Geocoded RGB composite of the dual-polarimetric TSX acquisition on February 25, 2015. Right: Ice classification based on copol power ratio
γ , geometric intensity μ, scattering diversity δ, surface scattering fraction τ , span span, real copol cross product ρ, and local variances for each feature. Blue:
OW/nilas, purple: YI, yellow: first-year ice (MFYI), red: rough first-year ice/multiyear ice (RFYMYI). Black dot marks position of RV Lance.

Fig. 12. Magnified subsections of classifications for February 07, 2015 (left
image) and February 12, 2015 (center image) for the location of the first moor-
ing of RV Lance, and for the second mooring (floe 2, right image) on Febru-
ary 25, 2015). Green dots in center image indicate location of refrozen lead.
Blue: OW/nilas, purple: YI, yellow: first-year ice (MFYI), red: rough first-year
ice/multiyear ice (RFYMYI). Black dot indicates position of RV Lance.

of dual-polarimetric TerraSAR-X data for automated sea ice
classification. In our analysis, we utilized in situ information
gathered during a field campaign with a high spatial and tempo-
ral correlation to the TS-X acquisitions of our work. In order to
keep the computational overhead low, we performed a statistical
analysis about the (nonlinear) correlation of the features and
their relevance for sea ice classification. Based on this analysis,
we arrived at the conclusion that, for our purposes, features in-
volving eigendecomposition of the scatter coherency matrix TP

do not provide informational benefit over features purely based
on the covariance matrix TL . The suggested ranking of features
was then used to train a neural network classifier. Numerical
and visual analysis of results are rather promising in terms of
providing an operational ice chart for navigation. The three main

ice classes plus OW were identified correctly in the majority of
cases. The in situ data also confirm that the relative fraction of the
four classes is realistic. It is important to note that the proposed
method in principal can also be applied to quad-polarimetric
SAR scenes subject to the training of a separate classifier. Future
efforts will have to be devoted to refining the proposed method-
ology and testing our automated sea ice classification algorithm
on a wider array of datasets. This encompasses the development
of libraries of classifiers that are fine tuned to acquisition
parameters such as incidence angle range, location, season, etc.,
depending on their variability. Likewise, we will also compare
the performance of discussed polarimetric features from other
sensors in different frequencies (e.g., Polarimetric C-band data
from RADARSAT-2, L-band data from ALOS-2), compact
polarimetry or other combinations of dual-polarimetric modes
(e.g., HH–HV) in order to explore more comprehensively
the ramifications of SAR polarimetry in the field of sea ice
classification. The analysis of the feature quality can also be
investigated by computing relevance and redundancy for differ-
ent combinations of features and by computing classification
accuracy results for such different subsets of features.
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