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The pressure dependence of pentacenesC22H14d transistors with solution-processed polyvinylphenol
gate dielectric on glass substrates is investigated by applying uniaxial mechanical pressure with a
needle. We found that organic thin-film transistors are sensitive to applied pressure inherently. The
measurements reveal a reversible current dependence of the transfer characteristics where the drain
current is switching between two states. Experimental and simulation results suggest that switch-on
voltage and interface resistance are affected. The change takes seconds, hinting at trap states being
responsible for the effect. ©2005 American Institute of Physics. fDOI: 10.1063/1.1888046g

I. INTRODUCTION

Organic semiconductors are of great interest for low-
cost, large-area electronics. Applications such as information
displays, chemical sensors, humidity sensors, and electronic
paper have been implemented.1–4 Pentacene organic thin-film
transistors sOTFTsd show carrier mobility of up to
3.2 cm2/V s and on/off current ratio exceeding 106.5 This is
competitive to amorphous silicon transistors, which are used
in liquid-crystal displays and flat-panel image detectors. But
organic semiconductor circuits can be fabricated on flexible
substrates and even on paper since the processing tempera-
ture is lower than for amorphous silicon—an advantage that
could grant access to future applications. Printing techniques
promise fast and easy fabrication.6,7 Recently improved di-
electrics have enabled low-voltage organic devices.8

Someya and Sakurai demonstrated an artificial skin
based on organic TFTs and rubbery pressure sensors.9 A flex-
ible low-cost large-area sensor matrix enables robots with
sense of touch. In this paper, we present the basics of a
concept which is based solely on organic TFTs as the sensing
element, without the need of any additional sensor element.
Our approach would greatly simplify the fabrication because
only TFTs are required eliminating all further process steps
such as rubber deposition and additional structuring.

II. EXPERIMENTAL PROCEDURES

The thin-film transistors studied here consist of
30-nm-thick sputtered titanium gates on a glass substrate,
covered with a 200-nm-thick polyvinylphenolsPVPd gate di-
electric. Source and drain contacts are made of 30-nm-thick
evaporated gold. The organic active layer is deposited by
thermally evaporating pentacene in vacuum, with a thickness
of about 30 nm. The devices are covered with polyvinyl al-
cohol sPVAd for passivationfsee Figs. 1sbd and 2sbdg. All
functional layers are patterned by photolithography and etch-

ing. A more detailed description of the production process is
given elsewhere.10,11 Two distinct transistor layouts were
evaluated in this work: TFTs with interdigitated source/drain
contacts and relatively short channelsschannel length
10 mm, channel width 1000mmd, and TFTs with a standard
slineard contact arrangement and relatively long channels
fchannel length 100mm, channel width 100mm; see Figs.
1sad and 2sadg.

To study the pressure dependence of the electrical per-
formance of these devices we apply mechanical force di-
rectly to the TFTs using a microneedlessee Fig. 3d. We use a
tungsten needle that is coated with a thick layer of a polymer
photoresist to eliminate the possibility of short-circuiting the
source and drain contacts of the transistors. The needle is
attached to a fitting, and moved by a step motor. The TFT
substrate is placed on a single-pan balance so that the pres-
sure can be measured. The electrical characterization of the
TFTs with and without applied mechanical pressure is car-
ried out with an HP 4155B semiconductor parameter ana-
lyzer.

III. RESULTS AND DISCUSSION

Figure 2scd shows the transfer characteristicssdrain cur-
rent ID versus gate-source voltageVGSd of a TFT with inter-
digitated contactsschannel length 10mmd with and without
applied pressure. In this measurement pressure was applied
to the entire device, i.e., to the pentacene channel and the
source/drain contact regions. The time for one sweep was
about 10 s. The transfer characteristics show a large increase
in drain current when pressure is applied. The increase in
drain current is most significant near the turn-on voltage of
the TFT, i.e., between about −10 and +10 V. The observed
increase in drain current is reproducible and reversible as
during the measurement the needle was dropped and lifted
several times between the voltage sweeps.

We have also examined the TFTs with standardslineard
contactsswith a channel length of 100mmd where the needleadElectronic mail: darlinski@iwe.rwth-aachen.de
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impacts only the pentacene channel, but not the contacts.
These measurement did not show any change in drain current
fsee Fig. 1scdg.

The transfer characteristics shown in Figs. 1scd and 2scd
were obtained with a pressure of about 106 Pa, calculated by
dividing the forcesmeasured with the balanced by the esti-
mated tip area. Raising the pressure above 106 Pa did not
lead to any further changes in current.

One feasible mechanism for the observed effect could be
that the increase in drain current is caused by leakage cur-
rents, either due to a short circuit through the tungsten needle
or by crushing the dielectricscreating shorts to the gate elec-
troded. To analyze this possibility we have measured all three
TFT currentssdrain currentID, source currentIS, and gate
currentIGd for both pressure states. The resultsfsee Fig. 4sadg
indicate that, although leakage paths between the gate elec-
trode and the source/drain contacts exist, the pressure-
induced changes are entirely in the drain and source currents
while the gate current is not affected by the mechanical pres-
sure. We therefore conclude that the gate dielectric is not
damaged by the needle and that the observed effect is not
due to an increase in gate leakage.

Furthermore, the absolute and relative pressure-induced
changes in the drain current shown in Fig. 4sbd indicate that
the observed effect is not a leakage current through the tung-
sten needle, which would be expected to result in a constant
current, i.e., a current independent of the gate-source voltage,
which is obviously not the case. The data in Fig. 4sbd also
show that the observed increase in drain current is not merely
due to a pressure-induced reduction in gate dielectric thick-
nessswhich would cause an increase in the gate fieldE for
the same gate-source voltageVGS, sinceE=VGS/ t, wheret is
the dielectric thicknessd. If this was the case we would ex-
pect the relative change in drain current to be independent of
the gate-source voltage, which is obviously not the case here.
Therefore, we can rule out that the observed effect is due to
elastic material effects or erroneous measurement setup.

While we see two stable states for slow measurements
si.e., measurements where the gate-source voltage is swept
slowly between positive and negative valuesd, fast measure-
ments with total sweep times of about 200 ms show a
smooth transition from the “low-pressure” state to the “high-
pressure” statefsee Figs. 5sad and 5sbdg. To examine the time
dependence of the pressure effect we measure the drain cur-

FIG. 1. sad Optical micrograph of a pentacene TFT with standardslineard
contacts and a channel length of 100mm; sbd schematic cross section of the
experiment when pressure is applied only to the channel;scd and transfer
characteristic of a TFT with standardslineard contacts and a channel length
of 100 mm.

FIG. 2. sad Optical micrograph of a pentacene TFT with interdigitated
source/drain contacts and a channel length of 10mm; sbd schematic cross
section of the experiment when pressure is applied to the entire device,
including the pentacene channel and the source/drain contact regions;scd
and transfer characteristic of a TFT with interdigitated source/drain contacts
and a channel length of 10mm, showing the pressure and no-pressure states.
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rent at fixed gate and drain voltages selecting the voltages for
maximum pressure sensitivitysVGS= +10 V,VDS=−20 Vd,
while moving the needle up and downfsee Fig. 5scdg. There
was no measurable delay in response, but it takes about 20 s
for the drain current to reach steady states. The rise and fall
times si.e., the time it takes for the current to change from
0% to 70% or from 100% to 30%d are in the range of a few
hundred milliseconds. The response appears to be much
shorter when the current is not measured at fixed gate-source
voltages but is swept between +10 and −20 V. Extending the
waiting time at positiveVGS accelerates the transition. From
this we conclude that the transition between the two steady
states is mediated by trapping and detrapping of charges.

Trapped charges will influence a thin-film transistor in
many ways, depending on the exact location of the traps in
the device. From simply looking at the transfer characteris-
tics it remains unclear which physical parameters of the TFT
are influenced by the mechanical pressure. To further exam-
ine this we have used aSPICEprogramssimulation program
with integrated circuit emphasisd to simulate the device.
As discussed elsewhere12,13 the SPICE metal-oxide-
semiconductor field-effect transistorsMOSFETd model is in-
sufficient to simulate organic thin-film transistors. Therefore,
we have modified the standard level-2p-MOSFET model by
introducing branches which form paths for leakage currents,
as shown in Fig. 6. By adjusting theSPICEmodel parameters
and improving the result by fitting the leakage currents we
found a system which describes our device reasonably well.
By changing MOSFET parameters we are able to simulate
the transition from “pressure” state to “no-pressure” state
with good accuracy. Figure 4scd shows the currents calcu-
lated by SPICE. The agreement between experimental and
simulation data is very good for positive gate-source volt-
ages. For negative gate-source voltages the simulation is
dominated by

ID = − KPS W

Leff
DSVGS− VTH −

VDS

2
DVDSs1 − lVDSd, s1d

which describes the behavior of inorganic transistors in the
linear regime, but which is inaccurate for organic devices.14

In Eq. s1d ID denotes the drain current for 0.VDS. sVGS

−VTHd andVGS,VTH. The theoreticalID vs VGS relationship
is nearly linear in this range of gate-source voltages, but for
organic semiconductors it is rather exponential. This inaccu-
racy of the model is insignificant for the discussion of the

FIG. 3. Optical micrograph of needle positioned over a TFT with interdigi-
tated source/drain contacts and a channel length of 10mm.

FIG. 4. sad Measured transfer characteristics of a TFT with interdigitated
source/drain contacts and a channel length of 10mm, showing drain current,
source current, and gate current;sbd measured relativessd and absoluteshd
changes in drain current between pressure and no-pressure states;scd simu-
lated transfer characteristic of the same device; andsdd simulated relative
sgrayd and absolutesblackd changes.
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observed pressure effect since it can be corrected by fitting
the model equation only.

The good agreement between our model and the experi-
mental results is evident from Figs. 4sbd and 4sdd, which
show the pressure-induced relative and absolute changes in
drain current, suggesting that our simulations provide a use-
ful analysis of the mechanism causing the observed pressure-
induced change in drain current. To achieve this agreement
between simulation and experiment we modified the thresh-
old voltagesVTOd, mobility sUOd, source resistancesRSd,
and drain resistancesRDd SPICE-model parameters as a re-
sponse to applied mechanical pressure. We therefore con-
clude that the force-induced change in drain and source cur-
rents is due to the distribution and activity of trap states at or
near the semiconductor/dielectric interface. This assumption

is further supported by the fact that we do not observe a
change in current when the pressure is applied only to the
channel region but not to the source and drain contactsfsee
Fig. 1scdg. This conclusion is in line with previous reports on
the importance of properly contacting pentacene.13,15

IV. CONCLUSIONS

In summary, we have shown that organic thin-film tran-
sistors are influenced by direct mechanical pressure. By
simulating the results we have shown that mechanical pres-
sure applied directly to the TFTsincluding the contact re-
gionsd results in changes in carrier mobility, threshold volt-
age, and contact resistances. We have shown a dependence
on materials and interfaces as the effect was only measured
when contact regions were affected. The origin of the ob-
served effect is not completely clear yet; we believe that
trapped charges are responsible. However, the trapping
mechanism and the nature of the traps are still under
discussion.
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FIG. 5. sad “Slow” measurement showing drain current in two steady states
at VDS=−20 V, sbd “fast” measurement showing shifting drain current be-
tween the two steady states atVDS=−20 V, andscd time dependence of drain
current at VGS=10 V and VDS=−20 V when applying and removing
pressure.

FIG. 6. Schematic of the extendedSPICEp-MOSFET model used to simulate
the leakage currents.
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