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Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate
activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express
a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environ-
ment. Those includeG-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion recep-
tors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune
receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse sig-
nal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced
and store-operated Ca2+ signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement.
Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal
transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in
antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of
the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Neutrophils are the most abundant circulating leukocytes in the
human blood. They develop in the bone marrow from the myeloid
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hematopoietic system and share a number of characteristic features
with other myeloid cells such as monocytes/macrophages and mast
cells [1,2]. Neutrophils are short-lived, terminally differentiated cells
that, unless activated by a microbial or inflammatory stimulus, only
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survive for a short time in the bloodstream anddie by a spontaneous ap-
optotic program, followed by removal of dead neutrophils by macro-
phages. Neutrophils show a condensed and multilobed nuclear
morphology (likely reflecting the limited transcriptional activity of the
cells) and contain a large number of intracellular granules and vesicles
with no prominent staining characteristics [3]. Those features explain
the alternative designation of the cells as polymorphonuclear cells or
neutrophilic granulocytes.

The primary role of neutrophils is host defense against bacterial and
fungal pathogens, providing the first line of defense against invading mi-
croorganisms.Neutrophils express a largenumber of cell surface receptors
for the recognition of microbial invasion. Some of those receptors are ca-
pable of innate recognition of microbial structures while others (such as
Fc-receptors) are linked to the activation of the adaptive immune re-
sponse, and yet other receptors recognize the inflammatory environment.

The antimicrobial activity of neutrophils relies on the effective
recognition and elimination of microbial pathogens, as well as complex
intracellular signal transduction pathways linking those processes to
each other. Additional signal transduction processes are not directly in-
volved in microbial recognition and elimination but inform the cells of
their environment (such as an inflammatory interstitium) or promote
additional processes (such as chemotaxis) indirectly required for the
elimination of pathogens. Taken together, intracellular signal transduc-
tion processes need to convey a large amount of complex information to
support an efficient antimicrobial immune response.

There are several classes of receptors expressed on the surface of
neutrophils, including G-protein-coupled seven-transmembrane recep-
tors, Fc-receptors, adhesionmolecules like selectins/selectin ligands and
integrins, various cytokine receptors, as well as innate immune recep-
tors including Toll-like receptors and C-type lectins (Table 1). Activation
of those receptors leads to complex cellular activation and elimination
processes such as phagocytosis, exocytosis of intracellular granules, pro-
duction of reactive oxygen species, release of neutrophil extracellular
traps, aswell as additional responses like chemotactic migration or che-
mokine and cytokine release.

The aimof this review is to provide an overviewof neutrophil cell sur-
face receptors and their intracellular signal transduction processes. Given
the very large amount of information available on that subject, only a
small portion of the available data will be discussed, focusing on path-
wayswhere genetic data fromprimarymammalian neutrophils are avail-
able and where results may have implications in the understanding,
diagnosis and therapy of autoimmune and inflammatory diseases.
Table 1
The most important neutrophil receptors. See the text for further details.

G-protein-coupled receptors Fc-receptors Adhesion rec

Formyl-peptide receptors
• FPR1 (FPR)
• FPR2 (FPRL1)
• FPR3 (FPRL2)

Classical chemoattractant receptors
• BLT1 (LTB4-rec.)
• BLT2 (LTB4-rec.)
• PAFR
• C5aR

Chemokine receptors
• CXCR1 (human)
• CXCR2
• CCR1
• CCR2

Fcγ-receptors
• FcγRI
• FcγRIIA (human)
• FcγRIIB (inhibitory)
• FcγRIII (mouse)
• FcγRIIIB (human)
• FcγRIV (mouse)

Fcα-receptors
• FcαRI (human)

Fcε-receptors
• FcεRI
• FcεRII

Selectins and
• L-selectin
• PSGL-1

Integrins
• LFA-1 (α
• Mac-1 (α
• VLA-4 (α
2. Signaling by G-protein-coupled receptors

2.1. G-protein-coupled receptors on neutrophils

Neutrophils express a large number of G-protein-coupled receptors
(GPCRs) that participate in host defense and inflammation (Table 1).
Those include formyl-peptide receptors [4–6] that sense bacterial prod-
ucts and tissue injury (through recognition of release of mitochondrially
synthesized proteins), receptors for a diverse set of “classical
chemoattractants” such as leukotriene B4 (LTB4), platelet activating factor
(PAF) and complement fragment C5a [6–9], as well as CXC (CXCR1,
CXCR2) and, to a lesser extent, CC (CCR1, CCR2) chemokine receptors
[10–13].

A common feature of the above G-protein-coupled receptors is that
they strongly activate the chemotactic migration of neutrophils; there-
fore their agonists are conventionally termed “chemoattractants”. It
should nevertheless be stated that most of those ligands (especially for-
myl-peptides, lipidmediators and C5a) also trigger neutrophil responses
other than chemotaxis, including ROS production and exocytosis of in-
tracellular granules and vesicles, and they are also able to augment the
responses of neutrophils to subsequent stimulation by other agonists
(“priming” effect).

2.2. GPCR signal transduction

All of the above GPCR agonists signal through pertussis toxin-
sensitive heterotrimeric G-proteins of the Gi/o family. Activation of
those receptors triggers thedissociation of the GPCR-specific Gα subunit
from the shared Gβγ dimer and concomitant activation of various signal
transduction pathways by both G-protein fragments (Fig. 1). The Gαi

subunit inhibits adenylyl cyclase activity and therefore reduces cyto-
plasmic cAMP levels. However, it is unclear whether that inhibition
plays any major role in GPCR signaling in neutrophils. Instead, our cur-
rent understanding is that the majority of GPCR signal transduction in
neutrophils occurs through the Gβγ subunit [14–16].

One of the classical signals triggered by GPCRs in neutrophils is a
prominent biphasic Ca2+-signal. The first phase of this signal is likely
mediated by phospholipase Cβ (PLCβ) enzymes leading to the genera-
tion of IP3 and concomitant release of Ca2+ from intracellular stores. In-
deed, the combined genetic deficiency of PLCβ2 and PLCβ3 completely
abrogated fMLP-induced IP3 production, the increase of cytoplasmic
Ca2+-concentration, the activation of conventional PKC isoforms and
eptors Cytokine receptors Innate immune receptors

selectin ligands

Lβ2)
Mβ2)
4β1)

Type I cytokine receptors
• IL-4R
• IL-6R
• IL-12R
• IL-15R
• G-CSFR
• GM-CSFR

Type II cytokine receptors
• IFNAR (IFNα/β-rec.)
• IFNGR
• IL-10R

IL-1R family
• IL-1RI
• IL1RII (decoy)
• IL-18R

TNFR family
• TNFR1 (p55)
• TNFR2 (p75)
• Fas
• LTβR
• RANK
• TRAIL-R2
• TRAIL-R3

Toll-like receptors
• TLR1
• TLR2
• TLR4
• TLR5
• TLR6
• TLR7 (?)
• TLR8
• TLR9

C-type lectins
• Dectin-1
• Mincle
• MDL-1
• Mcl
• CLEC-2

NOD-like receptors
• NOD2
• NLRP3

RIG-like receptors
• RIG-I
• MDA5
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the release of superoxide [17]. It should bementioned that PLCβ isoforms
(primarily PLCβ1) were traditionally thought to be only activated by the
Gαq subunit of Gq family heterotrimeric G-proteins. However, it was
later shown that other PLCβ isoforms (particularly PLCβ2 and PLCβ3)
can also be directly activated by Gβγ subunits [18–23], indicating a
novel, Gα-independent PLC activation mechanism. Such a mechanism
is further supported by the fact that pharmacological disruption of the
Gβγ dimer inhibits GPCR-mediated chemotactic migration of neutro-
phils [16]. Interestingly, PLCβ2−/−PLCβ3−/− double knockout neutro-
phils migrated normally towards both fMLP and MIP-1α (CCL3),
indicating that PLCβ enzymes (and, likely, an IP3-mediated Ca2+-signal)
are not required for GPCR-induced neutrophil chemotaxis [17].

Another prominent pathway triggered by neutrophil GPCRs is the ac-
tivation of phosphatidylinositol (PtdIns) 3-kinases (PI3-kinases or PI3K)
and subsequent production of PtdIns(3,4,5)P3 (PIP3) lipid moieties (Fig.
1). Similar to PLCβ activation, PI3K-activation by neutrophil GPCRs also
occurs primarily through Gβγ subunits, through the unique PI3Kγ iso-
form which is directly activated by Gβγ dimers [24]. Indeed, neutrophils
isolated frommice deficient in the catalytic subunit of PI3Kγ showed de-
fective PtdIns(3,4,5)P3 production andactivationof PKB/Akt, the ribosom-
al S6 kinase and the ERK pathway upon stimulation by various GPCR
agonists including fMLP, C5a and IL-8 [17,25,26]. PI3Kγ−/− neutrophils
were also defective in migrating towards fMLP, C5a, IL-8 or MIP-1α and
showed defective respiratory burst upon activation by fMLP or C5a
[17,25,26]. On the other hand, PI3Kγwas not required for GPCR-induced
Ca2+-signals [17,25,26] or fMLP-induced PKC activation [17].

The above results indicate that Gβγ subunits released upon GPCR
ligation in neutrophils directly triggers two parallel receptor-proximal
signal transduction events: activation of the PLCβ2/3 proteins triggers a
Ca2+ signal and activation of conventional PKC isoforms whereas activa-
tion of PI3Kγ leads to PIP3 production and PKB/Akt activation (Fig. 1). The
PI3Kγ pathway (but not PLCβ2/3) is required for chemotaxis of the cells
while both pathways are required for GPCR-induced superoxide release.

Prior pharmacological studies also indicated that tyrosine kinases
may be involved in GPCR signaling in neutrophils [27]. Neutrophils ex-
press threemembers of the Src tyrosine kinase family: Hck, Fgr and Lyn.
We and others found that Hck−/−Fgr−/− double or Hck−/−Fgr−/−Lyn
−/− triple mutant neutrophils fail to release their intracellular granules
Fig. 1. G-protein-coupled receptor signaling in neutrophils. G-protein-coupled receptors
in neutrophils primarily signal through theGβγheterodimer, activating twoparallel path-
ways through PLCβ2/3 and PI3Kγ. The activation of Src-family kinases likely proceeds
through (an) independent and yet incompletely understood pathway(s) (question
marks). See the text for further details.
or produce superoxide upon stimulation with fMLP [28–30]. Deficiency
of Src-family kinases reduced the fMLP-induced activation of the JNK
and p38 MAP kinases [29,30], as well as the activation of the Vav-Rac-
PAK pathway [30] but it did not affect Ca2+ signaling or Akt phosphor-
ylation [30]. The mechanism of Src-family kinase activation by neutro-
phil GPCRs is at present poorly understood (see question marks in
Fig. 1). A prior study indicated that Src-family kinases are activated by
β-arrestins directly coupled to the chemokine receptor CXCR1 in
granulocytes [31] and direct interactions between Src-family kinases
and G-protein-coupled receptors or G-protein subunits have also been
proposed in other cell types [32,33]. Taken together, activation of Src-
family kinases by G-protein-coupled receptors in neutrophils likely oc-
curs parallel to the PLCβ and PI3Kγ pathways, possibly mediated by the
direct interaction of Src-family kinases with β-arrestins, G-protein sub-
units or the G-protein-coupled receptors themselves (Fig. 1).

In contrast to the role of Src-family kinases in fMLP-induced degran-
ulation and the respiratory burst, their role in neutrophil migration is
rather controversial. While Hck−/−Fgr−/− and Hck−/−Fgr−/−Lyn−/−

neutrophils failed tomigrate towards 2 μMfMLP in an in vitro Transwell
system [30,34], the Hck−/−Fgr−/−Lyn−/− cells migrated even better
than wild type cells at higher doses of fMLP [34] and migration of
human neutrophils toward fMLP or IL-8 in a similar Transwell system
was not affected by dasatinib, a multi-specificity tyrosine kinase inhibi-
tor, at doseswhere complete inhibition of Src-family kinases is expected
[35]. Furthermore, Hck−/−Fgr−/−Lyn−/− neutrophils migrated normal-
ly in an in vivo thioglycollate-induced peritonitis experiment [34] and
the accumulation of neutrophils in that assay was not affected by the
per os administration of dasatinib either (K. F. and A. M., unpublished
observations). Taken together, Src-family kinases do not appear to
make a major contribution to neutrophil migration.

Prior studies using pharmacological approaches and heterologous
expression systems also suggested the role of the Syk tyrosine kinase
in GPCR signal transduction (see references in [36]). However, our
own studies using Syk−/− neutrophils did not reveal any substantial de-
fect in GPCR-induced functional or signaling responses upon the com-
plete genetic deficiency of Syk in neutrophils or mast cells [36],
whereas those cells were completely defective in signaling through
β2-integrins or Fc-receptors [34,36]. Therefore, it is unlikely that Syk is
a major component of GPCR signal transduction in neutrophils.

The ERK and p38 MAP kinases are robustly activated upon stimula-
tion of neutrophils with G-protein-coupled receptor agonists. Prior
pharmacological studies suggested a positive role for the p38 MAP-ki-
nase pathway in GPCR signaling in neutrophils [29,37] and a recent
study showed that p38 MAP-kinase promotes neutrophil migration by
interfering with GRK2-mediated desensitization of formyl-peptide
receptors [38]. Unfortunately, the phenotype of neutrophils lacking
MAPKAP-kinase 2, the major target of p38 MAP-kinases, is rather con-
troversial [37,39]. The functional role of the ERK pathway in neutrophil
GPCR signaling is mostly unclear, in part because of a number of contra-
dicting results in the literature [27,38,40–42].

It should also be mentioned that a few other papers have reported
additional controversial studies related to the above signaling path-
ways. For example, one study indicated that PI3-kinases were not re-
quired for long-term chemotaxis towards fMLP [37] whereas another
report suggested that PI3Kγ in neutrophils is required for something
else other than GPCR-mediated gradient sensing [43]. Also, Hck and
Fgr were proposed to be negative, rather than positive regulators of
chemokine receptor signal transduction [44].

3. Fc-receptor signaling in neutrophils

3.1. Fc-receptor expression on neutrophils

Neutrophils express various Fc-receptors that are primarily involved
in the recognition of Ig-opsonized pathogens but also participate in im-
mune complex-mediated inflammatory processes (Table 1). The most



Fig. 2.Neutrophil Fc-receptors. Low-affinity activating Fcγ-receptors signal through cyto-
plasmic ITAMmotifs which recruit the Syk tyrosine kinase and activate further signaling.
Most ITAM-coupled Fc-receptors (except FcγRIIA) are noncovalently linked to the FcRγ
adapter. The human FcγRIIIB receptor has no transmembrane segment and it is linked
to the membrane by a GPI anchor. See the text for further details.
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important Fc-receptors in neutrophils are the low-affinity Fcγ-receptors
[45]. Humanneutrophils express FcγRIIA, a single-chain transmembrane
receptor which carries an immunoreceptor tyrosine-based activation
motif (ITAM; see below) in its cytoplasmic tail, aswell as FcγRIIIB, an en-
tirely extracellularmoleculewhich is anchored to the plasmamembrane
by a GPI moiety (Fig. 2). In contrast, mouse neutrophils express FcγRIII
and FcγRIV which are both multimeric receptors non-covalently associ-
ated with a transmembrane adaptor protein, the Fc-receptor γ-chain
(FcRγ), which carries an ITAM motif in its intracellular tail. Since this
non-covalent association is required for the stabilization of the receptor
complex, the FcRγ-associated receptors are not expressed on the cell
surface in the absence of FcRγ (e. g. on leukocytes of FcRγ−/− animals).

Low-affinity Fcγ-receptors play important roles in immune complex-
mediated activation of neutrophils. Activation of human neutrophils
by immune complexes requires both FcγRIIA and FcγRIIIB (see [46]
and references therein). It has been proposed that FcγRIIIB makes
initial contact and tethering to immune complexes in vivo [47], follow-
ed by full activation of the cells through a synergistic ligation of both
FcγRIIA and FcγRIIIB [48]. In case of mouse neutrophils, immune
complex-induced cell activation is mediated by the FcRγ-associated
FcγRIII and FcγRIV which function in an overlapping manner, i. e. both
receptors need to be deleted or blocked to obtain complete inhibition of
the responses of the cells [46].

Neutrophils also express Fc-receptors other than low-affinity Fcγ-
receptors. Activated but not resting neutrophils express the high-affinity
FcγRImolecule [49,50]which is of significant diagnostic value [51], but its
functional relevance is poorly understood. Human (but notmurine) neu-
trophils express FcαRI, an FcRγ-associated receptor for monomeric
serum IgA [52,53]. Though this receptor is able tomediate IgA-induced in-
flammatory processes and tumor cell killing [54,55], the role of neutrophil
Fcα-receptors in the general immune and inflammatory response is
poorly understood. Under certain conditions, neutrophils likely also ex-
press Fcε-receptors [56,57] which may participate in allergic responses
[57,58] or as pathogenic factors in certain infectious diseases [59],
though the role of FcεRI of neutrophils has been debated by other inves-
tigators [60]. An inhibitory Fc-receptor, FcγRIIB [45], is also expressed
by murine and human neutrophils and participates in negative regula-
tion of neutrophil activation. Due to the paucity of neutrophil-specific
information, we will limit the discussion below to signal transduction
by low-affinity Fcγ-receptors.

3.2. Signal transduction by neutrophil Fc-receptors

Similar to other cell types, low-affinity activating Fcγ-receptors on
neutrophils are thought to signal through the ITAM motifs present in
the cytoplasmic region within the receptor complex (Fig. 2). Those
motifs are short consensus sequences of YxxL/Ix(6–12)YxxL/I where x
denotes any amino acid. The single-chain human FcγRIIA receptor con-
tains an intrinsic ITAM whereas murine FcγRIII and FcγRIV are non-
covalently linked to the ITAM-containing FcRγ adapter [45]. Crosslinking
of the receptors leads to dual tyrosine phosphorylation of the ITAM se-
quence which then recruits the Syk tyrosine kinase to the receptor com-
plex through binding of the two tandem SH2-domains of Syk to the two
phosphorylated ITAM tyrosines [61]. This triggers the activation of Syk
which will phosphorylate various tyrosine kinase substrates, therefore
initiating further downstream signaling (Fig. 2). This mechanism is con-
ceptually very similar to ITAM-mediated signal transduction by antigen
receptors of B- and T-cells [61].

Themechanisms leading to ITAM phosphorylation upon Fc-receptor
ligation and the kinases involved are not completely understood. Src-
family kinases play a critical role in ITAM phosphorylation and activa-
tion of the Syk-related ZAP-70 kinase in T-cells [62]. However, unlike
ZAP-70 which is incapable of phosphorylating the TCR-associated
ITAM sequences, Syk has been shown to be able to phosphorylate
ITAM sequences and it has been proposed that Syk-mediated signal
transduction can be initiated even in the absence of Src-family kinase
activity. Indeed, while ZAP-70-mediated receptor-proximal TCR signal-
ing is completely blocked in the absence of the Lck tyrosine kinase, Syk
activation can proceed even in the absence of Src-family kinases [63].
Also, BCR-mediated ITAM phosphorylation in B-cells is not affected by
the combined deficiency of Blk, Fyn and Lyn [64] andmacrophages lack-
ing the Src-family kinases Hck, Fgr and Lyn showonly delayed andmod-
estly reduced phagocytosis of IgG-coated red blood cells whereas Syk-
deficiency leads to complete loss of phagocytosis under identical
conditions [65–67]. Since no studies on Fc-receptor signaling in Src-
family-deficient neutrophils have yet been reported, the role of those ki-
nases in neutrophils is at present incompletely understood. It should
nevertheless be mentioned that dasatinib, a multi-kinase inhibitor
with strong effects on Src-family kinases, robustly inhibits immune
complex-induced activation of human neutrophils [35].

Triggering of Fcγ-receptors on neutrophils also requires the activa-
tion of a number of further signal transduction pathways. The SLP-76
adapter molecule, which was originally identified as a component of
T-cell receptor signal transduction, was shown to be required for
FcγR-mediated Ca2+-flux and superoxide production [68]. The PLCγ2
phospholipase was also essential for immune complex-mediated acti-
vation of neutrophils, likely downstream of Src-family kinases and Syk
[69]. Fcγ-receptor-mediated neutrophil activation required members
of the Vav guanine nucleotide exchange factor and Rac small GTPase
families with predominant roles for Vav3 and Rac2 [70,71]. Immune
complex-induced neutrophil activation also required the PI3-kinase
isoforms PI3Kβ and PI3Kδ with a predominant role for PI3Kβ [72].

Given the association of Fcα-receptors to the FcRγ adapter, it is
expected that those receptors also signal through an ITAM-dependent
mechanism [52,53].

4. Signaling by selectins/selectin ligands and integrins

4.1. Neutrophil adhesion receptors

The two major groups of neutrophil adhesion receptors are selectins/
selectin ligands and integrins (Table 1).

Selectins are single-chain transmembrane glycoproteins that recog-
nize carbohydrate moieties and mediate transient interactions between

image of Fig.�2
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leukocytes and the vessel wall [73]. P-selectin is expressed on platelets
and endothelial cells with increased endothelial expression in an inflam-
matory environment. E-selectin is expressed on endothelial cells but
only under inflammatory conditions. L-selectin is expressed on leuko-
cytes. Selectins interact with a large number of carbohydrate-containing
cell surface molecules including the best characterized P-selectin glyco-
protein ligand 1 (PSGL-1), a mucin-like protein expressed on the leuko-
cyte surface, which is the counterreceptor of P- and E-selectins on
endothelial cells [74]. However, endothelial E-selectins also bind to
other selectin ligands on the leukocyte surface, including CD44 and
ESL-1 [75], as well as (in case of human leukocytes) various glycolipid
ligands [76]. Selectins and selectin ligands are required for the rolling
phase of the leukocyte adhesion and transmigration cascade (see
below). More detailed description of selectins/selectin ligands and the
role of carbohydrate-recognizing receptors in immune cell trafficking
can be found in excellent recent reviews [73,74].

Integrins are heterodimeric transmembrane glycoproteins present
on virtually allmammalian cells. Themost important integrins expressed
on leukocytes belong to the β2 integrin family, formed by the β2 (CD18)
integrin chain and a unique α chain [77]. LFA-1 (αLβ2; CD11a/CD18) is
expressed on all circulating leukocytes while Mac-1 (αMβ2; CD11b/
CD18) is primarily expressed on myeloid cells such as neutrophils,
monocytes and macrophages. LFA-1 and Mac-1 bind to endothelial
ICAM-1 and are involved in different phases of neutrophil adhesion
and transendothelial migration (see below). Leukocytes also express
the VLA-4 (α4β1) integrin which binds to endothelial VCAM-1. The role
of this interaction is well known in the case of lymphocytes but less
well characterized in the case of neutrophils (see [78] and references
therein). A more detailed description of the functions of β2-integrins in
neutrophils can be found in a recent review [77].

4.2. The neutrophil adhesion and transendothelial migration cascade

While themajority of neutrophils circulate in the bloodstreamunder
resting conditions, microbial invasion or other inflammatory stimuli
trigger the extravasation of neutrophils to the inflamed interstitium.
This process is mediated by a multistep cascade of neutrophil adhesion
to, and transmigration through, the vessel wall [79]. Under resting con-
ditions, neutrophilsmake temporary, reversible contactswith the endo-
thelium which leads to a characteristic rolling phenomenon with an
Fig. 3. Signal trandsuction by selectin ligands and integrins. PSGL-1 andβ2-integrins signal throu
tyrosine kinase. Additional signaling proteins are involved in the regulation of the integrin bin
average speed of approx. 40 μm/s (steady-state rolling). This steady-
state rolling is primarily mediated by the interaction of endothelial P-
selectins with their neutrophil glycoprotein counterreceptors, primarily
PSGL-1. The rolling velocity of neutrophils is dramatically reduced to
approx. 5 μm/s in an inflammatory environment (slow rolling). This de-
celeration is due to the expression of E-selectins on the inflamed endo-
thelium which provides increased number of binding sites for PSGL-1
and also triggers an intermediate-affinity conformational state of the
β2-integrin LFA-1 on neutrophils (Fig. 3). This leads to further neutro-
phil–endothelial cell interactions through the binding of LFA-1 to its
endothelial counterreceptor ICAM-1 during the slow rolling phase
[80–82]. Therefore, unlike steady-state rolling, slow rolling is mediated
by both selectins and integrins [79]. The inflamed endothelium
also expresses a number of other cell surface molecules (such as
membrane-bound chemokines and cytokines) that trigger further
neutrophil activation. An important result of that neutrophil activation
is the development of a high-affinity conformation of the neutrophil
integrin LFA-1 (and, possibly, other integrins such as VLA-4 and Mac-
1), leading to increased binding to endothelial integrin ligands (such as
the LFA-1 ligand ICAM-1 and, possibly, the VLA-4 ligand VCAM-1). This
results in full arrest of the neutrophils at the endothelial surface. Arrested
neutrophils begin to spread over the endotheliumwhich results in adhe-
sion strengthening and firm adhesion [79]. Before leaving the vessel
lumen, neutrophils crawl on the endothelium, primarily using cell sur-
face Mac-1 integrins binding to endothelial ICAM-1. After finding the
place for transmigration, neutrophils migrate to the interstitium
through transcellular or paracellular routes and begin chemotaxing
towards the site of infection/inflammation within the perivascular and
interstitial space. Those processes also require β2-integrins and other,
not fully characterized adhesion receptors [79].

The role of β2-integrins and carbohydrate-binding receptors
(primarily selectins) is well represented in the various forms of leu-
kocyte adhesion deficiency (LAD), a severe inherited leukocyte ad-
hesion and migration defect resulting in severe bacterial infections
in human patients [83]. While LAD Type 1 is caused by the deficien-
cy of the β2 integrin chain CD18, LAD Type 2 is caused by a defect in
cellular fucose metabolism, leading to defective selectin-mediated
cell–cell interactions [83]. LAD Type 3 is due to defective inside-
out signaling of various integrins including leukocyte β2-integrins
(see below).
gh an ITAM-basedmechanism, involving theDAP12 and FcRγ adapter proteins and the Syk
ding affinity (inside-out signaling). See the text for further details.
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4.3. Signal transduction by neutrophil selectins and selectin ligands

Though the interaction between selectins and selectin ligands is very
short and primarily determined by the molecular interactions between
the extracellular portions of the molecules, selectin-mediated interac-
tions also trigger intracellular signal transduction processes. The
principal example of this is the increased LFA-1-mediated adhesion of
leukocytes following PSGL-1 binding to E-selectin [80–82]. PSGL-1 in-
duces an intermediate affinity state of LFA-1 by mechanisms resembling
immunoreceptor (e. g. Fc-receptor) signal transduction (Fig. 3) whereby
Syk is activated through ITAM-bearingmolecules such as the DAP12 and
FcRγ adapters [84,85] and ERM family proteinswhich also contain ITAM-
like motifs [86]. The activation of Syk also requires the Src-family kinase
Fgr which is likely responsible for phosphorylation of the ITAM tyrosines
of DAP12 and FcRγ [85]. Accordingly, Hck−/−Fgr−/− and Hck−/−Fgr−/−

Lyn−/− neutrophils show reduced binding to E-selectin-expressing CHO
cells [87]. PSGL-1 signaling then activates the closely coupled SLP-76 and
ADAP adaptors which then activate the Btk tyrosine kinase [88]. The sig-
naling then diverges into a PLCγ2- and PI3Kγ-mediated pathway (Fig. 3),
both of which are required for PSGL-1-mediated LFA-1 activation and
inflammation-induced slow rolling of neutrophils [89]. The final steps
of PSGL-1-mediated LFA-1 activation involve the Rap1 small GTPase by
CALDAG-GEFI [90], as well as talin-1 [91]. The steps of LFA-1 regulation
by selectin-mediated signal transduction in neutrophils have been
discussed in detail in excellent recent reviews [92,93].

4.4. Signal transduction by neutrophil integrins

Integrin signaling can be divided into signals triggered by integrin
ligation (outside-in signaling) and the regulation of integrin ligand
binding (e. g. affinity) by intracellular signals (inside-out signaling) [94].

Integrin outside-in signaling can be triggered by placing neutrophils
on integrin ligand-coated surfaces (such as ICAM-1,fibrinogen orwhole
serum) in the presence of a proinflammatory stimulus (such as TNF-α
or chemoattractants) [95]. This triggers cell spreading, respiratory
burst and degranulation responses which are dependent on cell surface
β2-integrins [34,96]. β2 integrin ligation leads to activation of Src-family
kinases and the combined genetic deficiency of Hck and Fgr or Hck, Fgr
and Lyn blocks β2 integrin-mediated functional and signaling responses
of neutrophils [28,34,97,98] without affecting inside-out activation [99].
β2 integrin-mediated neutrophil activation also requires the Syk tyro-
sine kinase [34,61]. Interestingly, integrin-mediated Syk activation is
mediated by two ITAM-bearing adapter proteins, DAP12 and FcRγ, in
a classical phospho-ITAM-mediatedmanner [98] (Fig. 3). Further down-
stream signaling requires the SLP-76 adapter protein [68], the PLCγ2
phospholipase [69,100] and members of the Vav gunanine nucleotide
exchange factor family [100,101]. These results indicate that outside-
in signaling by neutrophil integrins triggers a signal transduction path-
way similar to that of classical immunoreceptors (such as B- and T-cell-
receptors and Fc-receptors) (Fig. 3) [61,102].

Further downstream steps of outside-in signaling by β2 integrins in
neutrophils are less understood. Though pharmacological studies sug-
gested a role for the Abl tyrosine kinase in that process [103], no genetic
studies have yet confirmed that conclusion. The mammalian actin-
bundling protein mAbp1 was shown to be activated by Syk and to me-
diate some of its effects in neutrophils [104]. Though p190RhoGAP was
proposed to play a major role in β2 integrin signal transduction [105],
later genetic studies using p190RhoGAP−/− neutrophils failed to con-
firm that conclusion [106]. Neutrophils also express α4 integrins such
as VLA-4 which also signal through Src-family kinases [78].

Significantly less is known about integrin inside-out signaling in neu-
trophils, likely because of the technical difficulties involved. The above-
described E-selectin-mediated LFA-1 activation pathway is likely specific
for E-selectin. Though Rap1 is generally believed to regulate inside-out
integrin activation in various hematopoietic lineages [107,108], this has
not yet been directly confirmed in neutrophils, likely in part because of
the embryonic lethality of Rap1−/− mice [109]. Rap1 is nevertheless ac-
tivated by a number of stimuli including G-protein-coupled receptors or
E-selectin ligands and it has been proposed that this is mediated by
VASP, the Rap1 guanine nucleotide exchange factor C3G and Epac1 in
neutrophils [110,111] (Fig. 3). CALDAG-GEFI was also shown to activate
Rap1 and regulate integrin inside-out activation [112]. In addition, talin-
1 and kindlin-3 are both necessary for the induction of the high-affinity
LFA-1 conformation required for neutrophil arrest at the endothelium
[91,113].

It should also be mentioned that the recently identified LAD Type 3
variant in humans causes defective integrin inside-out activation in
neutrophils and other cell types [114–117]. After initially suspecting
CALDAG-GEFI to carry the responsible mutation [112,118], it was later
shown that the actual defect lies in the kindlin-3 molecule [119–121],
providing additional evidence for kindlin-3 in inside-out signaling of
neutrophil β2 integrins.

It should also be mentioned that the role of the above molecules in
integrin-mediated neutrophil activation may not necessarily translate
to their role in integrin-mediated neutrophil migration as indicated by
mostly normal migration of neutrophils lacking Src-family kinases, Syk,
ITAM-bearing adapters (DAP12 and/or FcRγ), PLCγ2 or Vav-family
exchange factors [34,36,69,98,101]. Therefore, integrins may use
different signal transduction pathways to trigger adherent activation
and migration of neutrophils.

5. Cytokine receptor signal transduction

Neutrophils express a number of cytokine receptors including con-
ventional cytokine receptors, members of the IL-1-receptor/Toll-like
receptor family, and TNF-receptor family members (Table 1). Those
receptors are involved in intercellular communication regulating
various neutrophil functions.

5.1. Type I and type II cytokine receptors

Conventional cytokine receptors are grouped into type I and type II
cytokine receptors (Table 1). Those are multimeric (mostly dimeric)
molecules with several phosphorylatable tyrosine residues in their in-
tracellular sequences.

Type I cytokines consist of 4α-helices and bind to type I cytokine re-
ceptors which have a conserved extracellular WSXWS motif. The most
important type I cytokine receptors expressed by neutrophils are IL-4,
IL-6, IL-12 and IL-15 receptors, as well as G-CSF and GM-CSF receptors.
Type I cytokine receptors are either homodimeric (e. g. G-CSF-receptor)
or are heterodimers (or heteromultimers) of ligand-specific chains and
common receptor chains shared with other receptors (see [122] for fur-
ther details).

Type II cytokines consist of 6 α-helices and bind to type II cytokine
receptors which do not contain theWSXWSmotif. Important type II cy-
tokine receptors on neutrophils are receptors for IFNα, IFNβ, IFNγ and
the inhibitory IL-10 cytokine. Sharing of receptor chains between type
II cytokine receptors is less common.

Type I and type II cytokine receptors are involved in a number of
neutrophil functions. G-CSF and GM-CSF direct the differentiation, sur-
vival and activation of neutrophils [123]. Additional cytokines such as
IL-4 [124,125], IL-6 [126–128] and IL-15 [129,130] are also involved in
activation of neutrophils and the coordination of the inflammatory re-
sponse. Of type II cytokines, IFNα/β (type I interferons) delay apoptosis
of neutrophils [131] whereas IFNγ (type II interferon) enhances the re-
spiratory burst, triggers gene expression changes and delays apoptosis
of neutrophils [132]. IL-10, another member of the type II cytokine
family, exerts an inhibitory effect on various functional responses
of neutrophils, including chemokine and cytokine production [133].

Type I and type II cytokine receptors trigger the activation of the
JAK-STAT pathway [134–136] (Fig. 4).Members of the JAK kinase family
are constitutively associated with the receptor and become activated



Fig. 4. Signal transduction of cytokine receptors. Type I and type II cytokine receptors signal via activation of the JAK-STAT pathway. IL-1 and IL-18 receptors activate IRAK family proteins
throughMyD88. TNF-family receptors trigger two different signal transduction pathways through recruiting two different complexes of intracellular adapters (Complex I and Complex II).
DD, death domain. See the text for further details.
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upon receptor ligation. Activated JAKs lead to phosphorylation of other
JAK molecules within the receptor complex and also phosphorylate in-
tracellular tyrosine residues on the receptor chain. This recruits STAT
transcription factors from the cytoplasmwhich also become phosphor-
ylated by the receptor-associated JAK-family kinases. Phosphorylated
STATs are then released from the receptor, dimerize and shuttle to the
nucleus where they bind to cognate DNA sequences and regulate gene
transcription (Fig. 4).

There is a wide diversity of JAK and STAT proteins utilized by the dif-
ferent cytokine receptors [135,136]. IL-4 and IL-15 receptors (which
share a common γ-chain) use both Jak1 and Jak3 and activate Stat5 or
Stat6. The β-chain-containing GM-CSF and the homodimeric G-CSF re-
ceptors utilize Jak2 and Stat5 or Stat3. The gp130-containing IL-6 and
IL-12 receptors use various JAK proteins (most importantly Jak1 and
Tyk2) and activate Stat3 or Stat4. The type II cytokine receptors for
IFNs and IL-10 primarily utilize Jak1 with some accessory role for Jak2
and Tyk2, and activate Stat1, Stat2 or Stat3. An additional level of com-
plexity may be caused by the expression of different JAK and STAT
isoforms in different cellular lineages. It is at present unclear how the
specificity of the receptor is carried over through different JAK and
STAT family members and how a limited number of JAK and STAT com-
ponents are able to trigger additional specific signals.

Type I and type II cytokine receptors also activate a number of addi-
tional signal transduction processes in neutrophils. Those include acti-
vation of Src-family kinases [137–140], the PI3-kinase-Akt pathway
[138,140–142], the ERK and p38 MAP kinases [143,144], and the inhib-
itory SOCS molecules [145–147].

5.2. IL-1 receptor family

The IL-1 isoforms IL-1α and IL-1β are among the most potent cyto-
kines and are important mediators of the inflammatory response
[148]. While IL-1β is synthesized as an inactive precursor (pro-IL-1β)
and is processed to its final form by an intracellular protease complex
called the inflammasome, no such processing is required for release of
IL-1α. Despite a major role in the overall inflammation response, IL-1
isoforms do not trigger a robust neutrophil activation and theirmain ef-
fect on neutrophils is to prolong the survival of the cells [149]. IL-18 is a
structurally related proinflammatory cytokine which is also processed
by inflammasome-mediated proteolytic cleavage. IL-18 triggers various
responses of neutrophils including chemokine and cytokine release, en-
hanced activation of the respiratory burst and inhibition of neutrophil
apoptosis [150,151], in part as an autocrine regulator of the cells [152].

Receptors for IL-1 isoforms (IL-1RI) and IL-18 (IL-18R) are members
of the IL-1-receptor/Toll-like receptor (IL-1R/TLR) superfamily with Ig-
like extracellular domains [153]. Both IL-1 ans IL-18 receptors consist of
a principal chain and an accessory protein (IL-1RAcP and IL-18RAcP, re-
spectively) [153]. There are two IL-1 receptors: IL-1RI which mediates
the biological effects of IL-1 isoforms and IL-1RII which is a truncated re-
ceptor lacking intracellular signaling domains and works primarily as a
decoy receptor [149,154]. IL-1RI binds IL-1α, IL-1β and IL-1R antagonist
(IL-1Ra). Neutrophils express the IL-1 receptors [155], and the expression
of these receptors is increased in septic patients [156]. Though neutro-
phils predominantly express the non-functional decoy receptor IL-1RII
[149,157], the cells also express IL-1RI and respond to IL-1 stimulation
(though not as strongly as other immune cells).

Ligand binding recruits theMyD88 adaptor protein to the TIR domain
within the cytoplasmic region of IL-1RI and IL-18R, resulting in recruit-
ment, activation and autophosphorylation of IRAK-family kinases [153]
(Fig. 4). IRAKs are then released from the receptor-MyD88 complex
and couple to the E3 ubiquitin ligase TRAF6 which auto-ubiquitinates it-
self and binds and activates TAK1. TAK1 then activates the IKK complex
to release NF-κB from IκBα-mediated inhibition, and also triggers MKK
enzymes resulting in activation of ERK, JNK and p38 MAP kinase path-
ways (Fig. 4). Accordingly, activation of the NF-κB and the ERK, JNK
and p38 MAP kinase cascades can be observed in neutrophils activated
by IL-18 [152,158].
5.3. TNF receptor family

The TNF-receptor superfamily consists of various receptors with
diverse biological functions, and is divided into receptors carrying an
intracellular death domain (such as TNFR-1, Fas, TRAIL-R2) and those
having no death domains (such as TRAIL-R3, LTβR or RANK). TNF-α is
a major cytokine triggering neutrophil activation [95,159–161] and
priming of responses to additional stimuli [162,163]. Neutrophils also ex-
press the TNF receptor-related Fas [164,165], TRAIL receptors (TRAIL-R2
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and TRAIL-R3) [166,167], RANK [168], and LTβ receptor [169]. Neutro-
phils express both the 55 kDa TNFR1 and the 75 kDa TNFR2.

TNF-receptors trigger intracellular signaling by recruiting adapter
proteins to the receptor complex [170,171]. In general, while both
TNFR1 and TNFR2 trigger pro-inflammatory (anti-apoptotic) signals,
only TNFR1 triggers pro-apoptotic responses. The pro-inflammatory
signal is mediated by the so-called complex 1, generated by the direct
association of TNFR1 with TRADD and RIP1, leading to the secondary
recruitment of TRAF2, TRAF3, cIAP1 and cIAP2 and eventual activation
of the JNK and NF-κB pathways (Fig. 4). The same pro-inflammatory
(JNK and NF-κB) pathways are also triggered by TNFR2, but in that
case, TRAF2, TRAF3, cIAP1 and cIAP2 are directly recruited to the receptor
itself. TNFR1 (but not TNFR2) is also able to transmit a pro-apoptotic
signal by recruiting another complex (complex 2, also known as death-
induced signaling complex or DISC) following conformation and
ubiquitination changes and internalization of the receptor complex
(Fig. 4). In that signaling pathway, RIP3, FADD, and procaspase-8 are
recruited to the receptor leading to caspase activation and apoptosis
[171]. This general scheme may be modified in neutrophils with the
additional role of PKCδ, PI3K, p38 MAP kinase and caspase-3 activation
[172,173], as well as by SHP-1-mediated disruption of anti-apoptotic
signaling of G-CSF and GM-CSF [174]. In addition, TNFR1 and TNFR2
cooperate during TNF-induced respiratory burst of neutrophils [175].
5.4. Additional cytokines: TGFβ and IL-17

Neutrophils also respond to additional cytokines, whose function
will only briefly described here. Though neutrophils express receptors
for TGFβ, its importance in regulating neutrophil function is poorly un-
derstood, except for a proposed effect on functional polarization of
tumor-associated neutrophils towards a pro-tumorigenic phenotype
[176]. While neutrophils are among the major components of antimi-
crobial and inflammatory responses triggered by IL-17 family members
Fig. 5. Signalingby innate immune receptors. Toll-like receptors activate IRAK family proteins th
is an intracellular sensor activating the NF-κB pathway. The NLRP3 inflammasome processes p
(primarily IL-17A and IL-17F), neutrophils do not express IL-17 recep-
tors and do not respond to IL-17 directly [177]. Instead, IL-17 triggers
the release of various other cytokines (such as TNF-α, CXC chemokines
and G/GM-CSF) which affect neutrophil function in an indirect manner.
Further details on TGFβ-receptor signal transduction [178,179] and IL-
17-mediated inflammatory responses and IL-17 receptor signaling
[180–184] can be found in excellent recent reviews.

6. Signaling by innate immune receptors

Neutrophils express a number of innate immune receptors (so-called
pattern recognition receptors) involved in the direct recognition of
pathogens and tissue damage. Those include Toll-like receptors, C-type
lectins, Nod-like receptors, andRIG-like receptors (Table 1). An additional
group recognizing bacterial- and mitochondrial-derived formyl-peptides
has been discussed in the section on GPCR signaling above.

6.1. Toll-like receptors in neutrophils

Toll-like receptors (TLRs) are the best known innate immune recep-
tors present on the cell surface or in intracellular endocytic compartments
[185,186]. Neutrophils express all tested TLRs except TLR3 [187–190] (the
expression of TLR7 is debated [188]). Neutrophil TLRs recognize various
microbial structures such as bacterial lipopolysaccharide (TLR4) or pepti-
doglycans (TLR2), leading to increased cytokine and chemokine produc-
tion, priming and delayed apoptosis of the cells [189–192].

Toll-like receptors belong to the IL-1R/TLR family with leucine-rich
repeats in their extracellular domains [153]. The principal TLR signal
transduction pathway is mediated by recruitment of the MyD88 adapt-
er. MyD88 recruits IRAK family kinases (primarily IRAK4), leading to
IRAK phosphorylation and further recruitment of TRAF6 and TAK1
(Fig. 5). TAK1will then trigger activation of the NF-κB pathway through
IKK, as well as the p38 and JNK pathways through MKK proteins
roughMyD88. C-type lectins signal through an ITAM-likemechanism activating Syk. NOD2
ro-IL-1β and pro-IL-18 to their active form. See the text for further details.
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[153,193], resulting in transcriptional regulation of cytokine production
and other proinflammatory processes.

Most of the above information has been obtained from cell types
other than neutrophils. The role of IRAK4 in TLR signaling in neutrophils
has been confirmed by defective signaling of most TLR family members
(except TLR9) in neutrophils from IRAK4-deficient patients [194,195].
TLR2-dependent IL-10 production by neutrophils was also defective in
MyD88−/− mouse neutrophils [196]. Besides the above components,
additional players such as peroxynitrite, PI3-kinases or various MAP-
kinases have also been proposed to transmit TLR signals in neutrophils
[197–200].
6.2. C-type lectins

Neutrophils express innate immune receptors belonging to the C-
type lectins, such as Dectin-1 (CLEC7A) [201,202], Mincle (CLEC4E)
[203], MDL-1 (CLEC5A) [204], Mcl (CLEC4D) [205] and CLEC2 [206]
(Table 1). Dectin-1 is the principal receptor for fungal β-glucans [207]
and was proposed to participate in fungal recognition by neutrophils
[202]. Mincle is a multifunctional receptor recognizing Malassezia fungi
[208], mycobacterial structures [203,209] and cytoplasmic danger sig-
nals (such as SAP130) [210]. MDL-1 is likely involved in viral recognition
[211] and CLEC2 is a receptor for the guidance molecule podoplanin
[212,213] with little information on their role in neutrophils. The ligand
and functional role of Mcl are at present mainly unknown.

Most C-type lectins signal through an ITAM-based mechanism
similar to that of Fc-receptors (Fig. 5). Mincle and MDL-1 are associ-
ated with ITAM-bearing transmembrane adapters (FcRγ and DAP12,
respectively) [210,214]. In contrast, Dectin-1 and CLEC-2 contain so-
called hemITAMs (half of an ITAM) within the principal receptor
chain which likely act similar to full ITAMs following receptor dimer-
ization [215]. Receptor ligation leads to phosphorylation of the ITAM/
hemITAM tyrosine residues, leading to recruitment and activation of
Syk [61]. Mcl (which does not couple to known ITAM/hemITAMmotifs)
also activates Syk by a yet unknown mechanism [205]. Syk activation
triggers tyrosine phosphorylation of downstream molecules including
Vav-family proteins [216]. Based on studies on other Syk-coupled
receptors and other cell types, it is expected that SLP-76, PLCγ2,
the CARD9 adapter, NF-κB-mediated gene transcription and the
NLRP3 inflammasome are also involved in signaling by C-type lectins
[61,217,218].
6.3. NOD-like receptors

NOD-like receptors are cytoplasmic sensors of pathogens and
danger signals which lead to transcriptional changes or activate
cytokine-processing caspases.

NOD1 and NOD2 are sensitive to bacterial structures such as proteo-
glycan degradation products. Their ligation leads to ubiquitination of
RICK and subsequent activation of TAK1, NF-κB and MAP-kinase path-
ways, triggering inflammatory cytokine production [219]. Neutrophils
express NOD2 but not NOD1, and the administration of NOD2-specific
(but not NOD1-specific) proteoglycan components trigger IL-8 release
and cellular activation [220]. No further details of NOD2 signaling in
neutrophils are available at the moment.

The NOD-like receptor NLRP3 is sensitive to bacterial products, as
well as various forms of cellular damage such as ATP, uric acid or deple-
tion of intracellular K+ [219]. Unlike NOD1/2, NLRP3 does not affect
gene transcription but triggers the so-called NLRP3 inflammasome
(consisting of NLRP3, Asc and caspase-1), leading to processing of pro-
IL-1β and pro-IL-18 to their mature form by caspase-1-mediated pro-
teolytic cleavage (Fig. 5) [221,222]. Neutrophils express all components
of the NLRP3 inflammasome and genetic deficiency of its components
blocks IL-1β production of neutrophils by danger signals [223].
6.4. RIG-like receptors

Though neutrophils were originally thought to fight exclusively
against extracellular microbes, they also appear to be involved in host
defense against viral pathogens (see e.g. [224]). Intracellular viruses are
in part recognized by RIG-I-like receptors, a family of RNA helicases that
function as cytoplasmic sensors of double-strandedRNA [225]. Upon liga-
tion, they associatewith the IPS-1 adaptor and activate interferon regula-
tory factors (IRF3 and IRF7) and NF-κB, triggering type I interferon
production and expression of other antiviral genes [225]. Neutrophils
express both RIG-I and the related MDA5 receptor [187,188], and are
able to release cytokines and change gene expression when activated
by poly(I:C), a synthetic mimetic of viral double-stranded RNA [187].
Poly(I:C)-induced responses of neutrophils require, among others,
MAP-kinases, NF-κB and IRF3 [187].

7. Other receptors in neutrophils

Neutrophils also express a number of additional receptors that
cannot be grouped into the above categories. Those include DAP12-
and FcRγ-associated receptors such as TREM-1 [226,227] and OSCAR
[228]; the Neisseria recognition receptor CEACAM3 [229,230]; as well
as scavenger receptors, complement receptors and various intracellular
lipid-sensing receptors. The signaling pathways of those receptors have
been omitted from this review because of uncertainties related to their
function and/or signaling in neutrophils.

Most of the above information relates to effects of activating recep-
tors on neutrophils. However, neutrophils also express a number of
inhibitory receptors which inhibit or terminate their responses. Those
include the immunoreceptor tyrosine-based inhibitory motif (ITIM)
containing FcγRIIB and PIR-B which likely signal through the SHP-1
tyrosine phosphatase [44,45,231], as well as the inhibitory IL-10 re-
ceptor [133]. Due to space limitation, details of inhibitory signaling
in neutrophils have been omitted from this review.

8. Neutrophil receptors and signaling as therapeutic targets

Neutrophils participate in the development of various autoimmune
and inflammatory diseases, including rheumatoid arthritis, systemic
lupus erythematosus, blistering skin diseases, autoimmune vasculitides,
anaphylactic reactions, aswell asmetabolic-vascular diseases such as ath-
erosclerosis, thrombosis, ischemia–reperfusion injury, or even insulin
resistance [232–237]. Though it is technically challenging to directly link
neutrophil receptors or their signaling molecules to specific diseases,
there are at least two studies indicating that neutrophil-specific expres-
sion of Fc-receptors, C5a-receptors and LFA-1 [238], as well as the Syk
tyrosine kinase [239] are required for autoantibody-mediated arthritis.
There are also very strong correlation between neutrophil functions
and autoantibody-induced disease development in mice lacking the
PI3-kinase isoforms PI3Kβ and PI3Kδ [72] or the PLCγ2 protein
[69]. Genetic deficiency of Syk [239,240], as well as a novel Syk inhib-
itor [241] protected mice from autoantibody-induced arthritis but
also prevented neutrophil activation in various assay systems
[34,98,241,242]. Fostamatinib, an orally available pro-drug of that
inhibitor has recently produced very promising effects in a Phase II
clinical trial in human rheumatoid arthritis [243] and it is reasonable
to assume that at least some of those are due to targeting Syk within
the neutrophil compartment. Dasatinib, a combined Abl/Src tyrosine
kinase inhibitor used for the treatment of chronic myelogenous
leukemia also shows robust inhibitory effects on certain neutrophil
functions [35] and may prove to be a suitable starting point of develop-
ment of novel tyrosine kinase inhibitor anti-inflammatory molecules.
Those and other studies suggest that neutrophil receptors and their signal
transduction processes may prove to be suitable targets of the future
pharmacological therapy of diseases characterized by excessive neutro-
phil activation.
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9. Concluding remarks and future directions

Neutrophils are crucial players of innate immunity and inflammation
and they also participate in the effector phase of adaptive immunity.
Their function is mediated by a number of cell surface receptors which
trigger complex intracellular signal transduction pathways that we are
only beginning to understand. However, given the major role of neutro-
phils in various human diseases, understanding signal transduction in
neutrophils is of major biomedical importance. Novel transgenic
approaches allowing the lineage-specific analysis of signal transduction
processes in live animals (such as a recent study showing the protective
effect of neutrophil-specific deletion of Syk in the development of
autoantibody-induced arthritis [239]) will provide major advances in
the field, and may later be utilized for therapeutic purposes in diseases
with a neutrophil-mediated pathogenetic component.
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