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Abstract. This paper examines the convergence properties of a class of learn-
ing schemes for concave N -person games – that is, games with convex action
spaces and individually concave payoff functions. Specifically, we focus on a
family of learning methods where players adjust their actions by taking small
steps along their individual payoff gradients and then “mirror” the output back
to their feasible action spaces. Assuming players only have access to gradient
information that is accurate up to a zero-mean error with bounded variance,
we show that when the process converges, its limit is a Nash equilibrium. We
also introduce an equilibrium stability notion which we call variational stabil-
ity (VS), and we show that stable equilibria are locally attracting with high
probability whereas globally stable states are globally attracting with probabil-
ity 1. Additionally, in finite games, we find that dominated strategies become
extinct, strict equilibria are locally attracting with high probability, and the
long-term average of the process converges to equilibrium in 2-player zero-sum
games. Finally, we examine the scheme’s convergence speed and we show that
if the game admits a strict equilibrium and the players’ mirror maps are sur-
jective, then, with high probability, the process converges to equilibrium in a
finite number of steps, no matter the level of uncertainty.

Contents

1. Introduction 1
2. Preliminaries 5
3. A class of mirror-based learning schemes 9
4. Convergence analysis 13
5. Learning in finite games 21
6. Speed of convergence 24
7. Discussion 29
Appendix A. Auxiliary results 30
References 32

1. Introduction

In the standard framework of online sequential optimization, an optimizing agent
selects at each instance n = 0, 1, . . . an action xn from some set X and obtains a
reward un(xn) based on an a priori unknown payoff function un : X → R. The
agent then receives some problem-dependent feedback (e.g. a noisy estimate of the
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gradient of un at xn), and updates xn with the goal of minimizing the instantaneous
payoff gap εn = maxx∈X un(x) − un(xn) or an averaged version thereof – such as
the induced regret Rn = maxx∈X

∑n
k=0 [uk(x)− uk(xk)].

Game-theoretic learning is a multi-agent variant of the above framework in which
a set of players interact at each stage n = 0, 1, . . . , and each player’s payoff function
is determined by the actions of all other players at stage n – so the dependence of
un on n is implicit, not explicit. Since the mechanism that determines the players’
payoff functions is now fixed (though possibly unknown and/or opaque to the play-
ers), finer convergence criteria apply, chief among them being that of convergence
to a Nash equilibrium. With this in mind, this paper focuses on the following ques-
tion: if the players of a repeated game concurrently employ some learning rule to
increase their individual payoffs (for instance, if they follow a no-regret algorithm),
do their strategies converge to a Nash equilibrium of the underlying one-shot game?

This question is largely motivated by the extremely successful applications of
game theory to data networks and distributed systems where fast convergence to
a stable equilibrium state is essential. In this setting, players naturally have an
imperfect, localized view of their environment, typically subject to random – and
possibly unbounded – estimation errors and noise. Thus, to improve their individ-
ual payoffs as the game is repeated over time, we posit that players try to learn
from their past experiences by employing adaptive algorithms that induce relatively
small, careful adjustments at each step.

In the case of finite games, Hart and Mas-Colell [16] showed that learning based
on (external) regret minimization leads to the so-called Hannan set, a set of corre-
lated strategies which includes the game’s set of Nash equilibria. However, as was
recently shown by Viossat and Zapechelnyuk [50], the Hannan set also contains
thoroughly non-rationalizable strategies that assign positive weight only on strictly
dominated strategies. As a result, blanket no-regret statements in finite games do
not indicate convergence to Nash equilibrium; worse still, they do not even imply
the long-run elimination of dominated strategies.

In games with continuous, convex action sets (such as the ones we consider here),
learning typically takes place at the level of pure strategies – as opposed to mixed or
correlated strategies that are more common in finite games. In this general context,
starting with the seminal work of Zinkevich [53] on online convex programming, the
most widely used class of algorithms for no-regret learning is the family of online
mirror descent (OMD) schemes pioneered by Shalev-Shwartz and Singer [45] and
the closely related “Follow the Regularized Leader” (FoReL) method of Kalai and
Vempala [22].1 If the players’ action spaces are convex and their payoff functions
are individually concave, employing an OMD-based scheme guarantees that players
have no regret in the long run. However, except for certain special cases, this does
not imply that the induced sequence of play converges to Nash equilibrium – and
indeed, in many cases, it doesn’t.

In view of the above, our aim in this paper is to (i) analyze the equilibrium
convergence properties of no-regret, mirror-based learning in concave games; and
(ii) assess the speed and robustness of this convergence in the presence of noise,

1The terminology “mirror descent” dates back to Nemirovski and Yudin [33] who introduced
these methods in ordinary (static) convex programming. This class includes the standard online
gradient descent (OGD) method of Zinkevich [53] and the widely used exponential weights (EW)
scheme of Vovk [52] and Littlestone and Warmuth [27] for online learning.
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uncertainty, and other feedback impediments. To this end, instead of restricting
our attention to a specific class of games (such as zero-sum or potential games), we
introduce a notion of equilibrium stability which we call variational stability (VS),
and which is formally similar to the influential notion of evolutionary stability that
was introduced in population games by Maynard Smith and Price [28]. By means
of this stability notion, we are able to establish a series of convergence results that
hold irrespective of the magnitude of the errors affecting the players’ observations.

Paper organization and outline of results. In Section 2, we describe in detail
the class of N -person concave games under study and we introduce the notion of
variational stability. The family of mirror-based learning (ML) methods that we
consider is then presented in Section 3. In a nutshell, the main idea of ML is as
follows: at each stage n = 0, 1, . . . , every player takes a step along (an estimate of)
the individual gradient of their payoff function and the output is “mirrored” onto
each player’s action space by means of a “choice map” that is analogous to ordinary
Euclidean projection – in fact, it is a natural generalization thereof. Regarding the
players’ gradient information, we only assume that players have access to unbiased,
bounded-in-mean-square estimates of their true payoff gradients; apart from these
bare-bones hypotheses, we make no other tameness or independence assumptions
on the errors affecting the players’ feedback process.

Our main results can be summarized as follows: First, in Section 4, we show that
when it exists, the limit of the process is a Nash equilibrium of the underlying game
(a.s.). Subsequently, we show that stable states are locally attracting with high
probability while globally stable states are globally attracting with probability 1.
As a corollary, if the game admits a concave potential or if it is diagonally concave
in the sense of Rosen [41], ML converges to Nash equilibrium almost surely, no
matter the level of uncertainty.

In Section 5, we briefly outline some applications to learning in finite games.
Specifically, we show that: (i) dominated strategies become extinct; (ii) strict
Nash equilibria are locally attracting with high probability; and (iii) in zero-sum
games, the long-term average of the players’ mixed strategies converges to Nash
equilibrium.

Finally, in Section 6, we examine the convergence speed of ML schemes. To
do so, we focus again on variationally stable states, and we show that the long-
term average gap from such states decays as O(n−1/2) if the scheme’s step-size
is chosen appropriately. In a similar fashion, we also show that the algorithm’s
expected running length until players reach an ε-neighborhood of a stable state is
O(1/ε2). Up to factors that do not depend on n or ε, these rates hold for all ML
schemes. However, if such an algorithm is run with a surjective choice map and
the underlying game admits a strict equilibrium (a direct extension of the notion
of strict equilibrium in finite games), then, with high probability, players converge
to equilibrium in a finite number of steps.

Our analysis relies heavily on tools and techniques from the theory of stochastic
approximation, martingale limit theory and convex/variational analysis. In partic-
ular, with regard to the latter, we make heavy use of a “primal-dual divergence”
measure between action and gradient variables, which we call the Fenchel coupling.
This coupling is a primal-dual analogue of the well-known Bregman divergence,
and thanks to its Lyapunov-like properties, it provides a potent tool for proving
convergence – both pointwise and setwise.
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Related work. Mirror descent methods were pioneered by Nemirovski and Yudin
[33] and have since given rise to an extensive literature in mathematical optimiza-
tion. In this context, the works that are closest to our paper are those of Nemirovski
et al. [32], Nesterov [35] and Juditsky et al. [21], where sharp convergence rate es-
timates are derived for (stochastic) convex programs, variational inequalities (VIs)
and saddle-point problems. Motivation and setting aside, a fundamental difference
between these works and the current one is that the former focus almost exclusively
on the averaged sequence x̄n =

∑n
k=0 γkxk/

∑n
k=0 γk, where γn is the step-size of

the method. By contrast, in game theory and sequential optimization, the figure of
merit is the actual sequence of play xn that determines the players’ payoffs at each
stage, and whose behavior may diverge considerably from that of x̄n. Specifically,
because there is no inherent averaging in xn, almost sure (or high probability) con-
vergence requires a completely different analysis so, beyond our averaging results
(Theorems 4.13 and 6.2), there is very little overlap with these works.

In finite games, mirror-based techniques are closely related to the family of
smooth (or perturbed) best response maps which have been studied extensively
in models of stochastic fictitious play by Fudenberg and Levine [14], Hofbauer and
Sandholm [17], and many others. In particular, in a discrete-time setting, Leslie and
Collins [26] and Coucheney et al. [10] showed that a discounted, mirror-like scheme
based only on observations of the players’ realized, in-game payoffs converges to ε-
equilibrium in potential games.2 More recently, Mertikopoulos and Sandholm [30]
showed that a broad class of continuous-time, mirror-based learning dynamics also
eliminates dominated strategies and converges to strict equilibria from all nearby
initial conditions; our analysis in Section 5 extends these results to a bona fide
discrete-time, stochastic setting.

In games with continuous action sets, Perkins and Leslie [37] and Perkins et al.
[38] recently examined the convergence properties of a related class of logit-based
learning algorithms. The key difference between their approach and ours is that
they focus on mixed-strategy learning and obtain convergence to ε-equilibria that
assign positive weight on all (pure) strategies. Otherwise, with regard to pure-
action learning in concave games, several authors have considered VI-based ap-
proaches, Gauss–Seidel best-response schemes, and Nikaido–Isoda relaxation meth-
ods for solving generalized Nash equilibrium problems; for a survey, see Facchinei
and Kanzow [11] and Scutari et al. [43]. The intersection of these works with the
current paper is when the game at hand satisfies a global monotonicity condition
similar to the diagonal strict concavity condition of Rosen [41]; in this case VI meth-
ods converge to Nash equilibrium globally. However, these works do not consider
the implications for the players’ regret, the impact of imperfect information and/or
local convergence/stability issues, so there is minimal overlap with our analysis.

Finally, during the final preparation stages of this manuscript (a few days before
the actual submission date), we were made aware of a preprint by Bervoets et al.
[4] where the authors consider pure-strategy learning in concave games with one-
dimensional action sets, and they establish convergence to Nash equilibrium in
ordinal potential games and games with strategic complements. A key feature of
Bervoets et al. [4] is that players are assumed to observe only their realized, in-
game payoffs, and they choose actions based on how their payoff has varied from
the previous period. The resulting mean dynamics boil down to an interior-point,

2For a related treatment, see also Cominetti et al. [9] and Bravo [6].
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primal variant of mirror-based learning induced by the entropic kernel θ(x) = x log x
(cf. Section 3), suggesting several interesting links with our paper.

2. Preliminaries

In this section, we present some basic elements from game theory. First, in
Section 2.1, we define the class of concave games under consideration and we
present a few examples thereof. Subsequently, in Section 2.2, we discuss some
variational/geometric properties of Nash equilibria in concave games, and we intro-
duce the notion of variational stability (VS), an analogue of evolutionary stability
which plays a central role throughout our paper.

Notation. If V is a finite-dimensional real space with norm ‖·‖, the conjugate (or
dual) norm on the dual space V∗ of linear functionals on V is defined as ‖y‖∗ =
sup{〈y |x〉 : ‖x‖ ≤ 1}, where 〈y |x〉 denotes the canonical pairing between y ∈ V∗
and x ∈ V. Also, if C is a closed convex subset of V, the tangent cone TCC(x) to
C at x ∈ C is defined as the closure of the set of all rays emanating from x and
intersecting C in at least one other point. Building on this, the polar cone PCC(x)
to C at x is defined as the polar cone of TCC(x), i.e. PCC(x) = {y ∈ V∗ : 〈y |z〉 ≤
0 for all z ∈ TCC(x)}. For concision, when C is understood from the context, we
drop it altogether and write TC(x) and PC(x) instead. Finally, we write C◦ ≡ ri(C)
for the relative interior of C, ‖C‖ = sup{‖x′ − x‖ : x, x′ ∈ C} for the diameter of C,
and dist(C, x) = infx′∈C‖x′ − x‖ for the distance between x ∈ V and C.

2.1. Concave games and examples. Throughout this paper, we focus on games
played by a finite set of players i ∈ N = {1, . . . , N}, each of whom selects an action
xi from a compact convex subset Xi of a finite-dimensional space Vi. The players’
rewards are then determined by their action profile x = (x1, . . . , xN ) which we often
denote as x ≡ (xi;x−i) to highlight the action xi of player i against the ensemble
of actions x−i = (xj)j 6=i of all other players. Specifically, writing X ≡

∏
i Xi for

the game’s action space, each player’s payoff is determined by an associated payoff
function ui : X → R which is assumed to be individually concave, i.e.

ui(xi;x−i) is concave in xi for all x−i ∈
∏
j 6=i Xj, i ∈ N . (2.1)

In terms of regularity, we also assume that ui is continuously differentiable in xi
and we write

vi(x) ≡ ∇xi
ui(xi;x−i) (2.2)

for the individual gradient of ui at x.3

Putting all this together, a concave game is a tuple G ≡ G(N ,X , u) with players,
actions and payoffs defined as above. Below, we briefly discuss some widely studied
examples of such games:

Example 2.1 (Mixed extensions of finite games). In a finite game Γ ≡ Γ(N ,S, u),
each player i ∈ N chooses an action si from a finite set Si of “pure strategies”
and no assumptions are made on the players’ payoff functions ui : S ≡

∏
j Sj → R.

Players can further “mix” these choices by playing mixed strategies, i.e. probability

3In the above, it is tacitly assumed that ui is defined on an open neighborhood of Xi; doing so
allows us to use ordinary differential calculus (instead of more advanced subgradient notions) but
none of our results depend on this device. We also note that vi(x) acts naturally on vectors zi ∈ Vi
via the directional derivative mapping zi 7→ 〈vi(x) |zi〉 ≡ u′i(x; zi) = d/dτ |τ=0 ui(xi + τzi;x−i).
In view of this, vi(x) is treated throughout as an element of the dual space V∗i of Vi.
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distributions xi ∈ ∆(Si) over their pure strategies si ∈ Si. In this case (and in
a slight abuse of notation), the expected payoff of player i in the mixed profile
x = (x1, . . . , xN ) is

ui(x) =
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN ) x1,s1 · · · xN,sN , (2.3)

so the players’ individual gradients are simply their payoff vectors:

vi(x) = ∇xi
ui(x) = (ui(si;x−i))si∈Si . (2.4)

Writing Xi = ∆(Si) for the players’ mixed strategy spaces, we will refer to the game
G = G(N ,X , u) as the mixed extension of the finite game Γ ≡ Γ(N ,S, u). Since Xi
is convex and ui is linear in xi, G is clearly concave in the sense of (2.1).

Example 2.2 (Cournot competition). Consider the following asymmetric Cournot
oligopoly: There is a finite set N = {1, . . . , N} of firms, each supplying the market
with a quantity xi ∈ [0, Ci] of the same good (or service) up to the firm’s production
capacity Ci. The good is then priced as a decreasing function P (x) of each firm’s
production; for concreteness, we focus on the linear model P (x) = a −

∑
i bixi

where a is a positive constant and the coefficients bi > 0 reflect the price-setting
power of each firm. In this oligopoly model, the utility of firm i is given by

ui(x) = xiP (x)− cixi, (2.5)

where ci represents the marginal production cost of firm i. Letting Xi = [0, Ci], the
resulting game G(N ,X , u) is easily seen to be concave in the sense of (2.1).

Example 2.3 (Atomic splittable congestion games). Congestion games are game-
theoretic models that arise in the study of traffic networks (such as the Internet).
To define them, fix a set of players N that share a set of resources r ∈ R, each
associated with a nondecreasing convex cost function cr : R+ → R (for instance,
links in a data network and their corresponding delay functions). Each player i ∈ N
has a certain resource load ρi > 0 which is split over a collection Si ⊆ 2R of resource
subsets si of R – e.g. sets of links that form paths in the network. Accordingly,
the action space of player i ∈ N is the scaled simplex Xi = ρi∆(Si) = {xi ∈ R|Si|+ :∑
si∈Si xisi = ρi} of load distributions over Si.
Given a distribution profile x = (x1, . . . , xN ), costs are determined based on the

utilization of each resource as follows: First, the demand wr of the r-th resource
is defined as the total load wr =

∑
i∈N

∑
si3r xisi induced on said resource from

all players. This demand is then assumed to incur a cost cr(wr) per unit of load
to each player utilizing resource r, where cr : R+ → R is a convex, nondecreasing
function. Therefore, the aggregate cost to player i ∈ N is given by

ci(x) =
∑
si∈Si

xisicisi(x), (2.6)

where cisi(x) =
∑
r∈si cr(wr) is the total cost incurred to player i by the utilization

of si ⊆ R. The resulting atomic splittable congestion game G ≡ G(N ,X ,−c) is
then easily seen to be concave in the sense of (2.1).
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X

TC(x∗)

PC(x∗)

x∗

x

v(x∗)

Figure 1. Geometric characterization of Nash equilibria in concave games.

2.2. Nash equilibria: characterization and stability. Our analysis focuses
primarily on Nash equilibria (NE), i.e. strategy profiles x∗ ∈ X that discourage
unilateral deviations in the sense that

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

With ui assumed concave and smooth in xi, (NE) can be rewritten equivalently as

u′i(x
∗; zi) = 〈vi(x∗) |zi〉 ≤ 0 for all zi ∈ TCi(x

∗
i ), i ∈ N , (2.7)

where TCi(x
∗
i ) denotes the tangent cone to Xi at x∗i . Thus, in geometric terms, x∗

is a Nash equilibrium if and only if each player’s individual gradient vi(x∗) belongs
to the polar cone PCi(x

∗
i ) to Xi at x∗i (see also Fig. 1). Following Facchinei and

Pang [12], this can be encoded even more concisely as follows:

Proposition 2.1. x∗ ∈ X is a Nash equilibrium if and only if v(x∗) ∈ PC(x∗), i.e.

〈v(x∗) |x− x∗〉 ≤ 0 for all x ∈ X . (2.8)

Remark 2.1. In the above (and what follows), v = (vi)i∈N denotes the collective
profile of the players’ individual payoff gradients and 〈v |z〉 ≡

∑
i∈N 〈vi |zi〉 stands

for the pairing between v and the vector z = (zi)i∈N ∈
∏
i∈N Vi. For concision, we

also write V ≡
∏
i Vi for the ambient space of X ≡

∏
i Xi and V∗ for its dual.

Proposition 2.1 shows that Nash equilibria can be characterized as solutions to
the variational inequality (2.8), so their existence follows from standard results. Us-
ing a similar variational characterization, Rosen [41] further provided the following
sufficient condition for equilibrium uniqueness:

Theorem 2.2 (Rosen, 1965). Assume that G ≡ G(N ,X , u) satisfies the payoff
monotonicity condition

〈v(x′)− v(x) |x′ − x〉 ≤ 0 for all x, x′ ∈ X , (MC)

with equality if and only if x = x′. Then, G admits a unique Nash equilibrium.

Remark 2.2. In his original paper, Rosen [41] referred to (MC) as diagonal strict
concavity (DSC). Later, in an evolutionary context, Hofbauer and Sandholm [18]
used the term “stable” to describe games that satisfy a condition that is formally
similar to (MC). More recently, Sandholm [42] has been advocating the use of the
term “contractive” while Sorin and Wan [47] employ the term “dissipative”. Our
use of the term “monotonicity” is simply intended to highlight the fact that, under
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(MC), v(x) is a monotone operator in the sense of convex/variational analysis – for
a detailed discussion, see Rockafellar and Wets [40], Facchinei and Pang [12] and
Facchinei and Kanzow [11].

Now, if (MC) holds and x∗ is a Nash equilibrium of G, we readily obtain

〈v(x) |x− x∗〉 ≤ 〈v(x∗) |x− x∗〉 ≤ 0, (2.9)

where the second inequality follows from Proposition 2.1. In turn, (2.9) implies that
the aggregate quantity

∑
i ui(xi + t(x∗i − xi);x−i) increases with t for small t, so,

on average, players would tend to move unilaterally towards x∗. This variational
property plays a key part in our analysis, so we formalize it as follows:

Definition 2.3. Let G ≡ G(N ,X , u) be a concave game. A closed set X ∗ ⊆ X is
called variationally stable (or simply stable) if

〈v(x) |x− x∗〉 ≤ 0 for all x∗ ∈ X ∗ and all x close to X ∗, (VS)

with equality if and only if x ∈ X ∗. In particular, if (VS) holds for all x ∈ X , we
say that X ∗ is globally stable.

As an immediate consequence of (2.9), we then get:

Corollary 2.4. If a game satisfies (MC), its (necessarily unique) Nash equilibrium
is globally stable.

The variational stability condition (VS) is strongly reminiscent of the seminal
notion of evolutionary stability due to Maynard Smith and Price [28]. Specifically,
if v(x) denotes the payoff field of a population game and X ∗ is a singleton, (VS) is
formally equivalent to the definition of an evolutionarily stable state (ESS).4 As it
turns out, just as evolutionary stability plays a crucial role in the convergence anal-
ysis of evolutionary dynamics, variational stability plays a similar part in ensuring
the convergence of the class of learning schemes presented in the next section.

In addition, (VS) also has important consequences for the structure of the set of
Nash equilibria of a concave game:

Proposition 2.5. If X ∗ ⊆ X is stable, it is an isolated convex set of Nash equilib-
ria; in particular, if X ∗ is globally stable, the game admits no other equilibria.

Proof. Assume X ∗ is stable, pick some x∗ ∈ X ∗, and let zi = x′i − x∗i for some
x′i ∈ Xi, i ∈ N . Then, for all sufficiently small τ ≥ 0, (VS) gives

d

dτ
ui(x

∗
i + τzi;x

∗
−i) = 〈vi(x∗i + τzi;x

∗
−i) |zi〉 ≤ 0. (2.10)

Thus, letting τ → 0, (2.7) shows that x∗ is a Nash equilibrium (recall that zi =
x′i − x∗i has been chosen arbitrarily).

Assume now that x′ /∈ X ∗ is a Nash equilibrium lying in a neighborhood U of
X ∗ where (VS) holds. By Proposition 2.1, we have 〈v(x′) |x−x′〉 ≤ 0 for all x ∈ X .
However, since x′ /∈ X ∗, (VS) implies that 〈v(x′) |x∗ − x′〉 > 0 for all x∗ ∈ X ∗,
a contradiction. We conclude that there are no other equilibria in U , i.e. X ∗ is
an isolated set of Nash equilibria; the global version of our claim then follows by
taking U = X .

Finally, to prove the convexity of X ∗, take x∗0, x∗1 ∈ X ∗ and set x∗λ = (1−λ)x∗0 +
λx∗1 for λ ∈ [0, 1]. Substituting in (VS), we get 〈v(x∗λ) |x∗λ−x∗0〉 = λ〈v(x∗λ) |x∗1−x∗0〉 ≤

4This concise characterization of ESSs is due to Hofbauer et al. [19] and Taylor [49].
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0 and 〈v(x∗λ) |x∗λ − x∗1〉 = −(1 − λ)〈v(x∗λ) |x∗1 − x∗0〉 ≤ 0, showing that 〈v(x∗λ) |x∗1 −
x∗0〉 = 0. By (VS), this means that x∗λ ∈ X ∗ for all λ ∈ [0, 1], i.e. X ∗ is convex. �

We close this section with a second derivative test that can be used to verify
whether (VS) holds. To state it, define the Hessian of a game G ≡ G(N ,X , u) as
the block matrix HG(x) = (HGij(x))i,j∈N with

HGij(x) = 1
2∇xj

∇xi
ui(x) + 1

2 (∇xi
∇xj

uj(x))
>
. (2.11)

We then have:

Proposition 2.6. If HG(x) is negative-definite on TC(x) for all x ∈ X , the game
admits a unique, globally stable Nash equilibrium. More generally, if x∗ is a Nash
equilibrium of G and HG(x∗) ≺ 0 on TC(x∗), x∗ is stable and isolated.

Proof. Assume first that HG(x) ≺ 0 on TC(x) for all x ∈ X . By Theorem 6 in
Rosen [41], G satisfies (MC) so our claim follows from Corollary 2.4. For our second
claim, if HG(x∗) ≺ 0 on TC(x∗) for some Nash equilibrium x∗ of G, we also have
HG(x) ≺ 0 for all x in a product neighborhood U =

∏
i∈N Ui of x

∗ in X . The
above reasoning shows that x∗ is the unique equilibrium of the restricted game
G|U (N , U, u|U ), so x∗ is locally stable and isolated in G. �

We provide two straightforward applications of Proposition 2.6 below:

Example 2.4 (Potential games). Following Monderer and Shapley [31], a game G is
called a potential game if there exists a potential function V : X → R such that

ui(xi;x−i)−ui(x′i;x−i) = V (xi;x−i)−V (x′i;x−i) for all x, x′ ∈ X , i ∈ N . (2.12)
In potential games, local maximizers of V are Nash equilibria and the converse also
holds if V is concave – cf. Neyman [36]. Moreover, by differentiating (2.12), it is
easy to see that the Hessian of a potential game G is equal to the Hessian of its
potential. Hence, if a game admits a concave potential V , the game’s Nash set
X ∗ = arg maxx∈X V (x) is globally stable.

Example 2.5 (Cournot revisited). Consider again the Cournot oligopoly model of
Example 2.2. A simple differentiation yields

HGij(x) =
1

2

∂2ui
∂xi∂xj

+
1

2

∂2uj
∂xj∂xi

= −biδij − 1
2 (bi + bj), (2.13)

where δij = 1{i = j} is the Kronecker delta. This shows that a Cournot oligopoly
admits a unique, globally stable equilibrium whenever the RHS of (2.13) is negative-
definite. This is always the case if the model is symmetric (bi = b for all i ∈ N ), but
not necessarily otherwise: quantitatively, if the coefficients bi are independent and
identically distributed (i.i.d.) on [0, 1], a Monte Carlo simulation shows that (2.13)
is negative-definite with probability between 65% and 75% for N ∈ {2, . . . , 100}.

3. A class of mirror-based learning schemes

In this section, we present a distributed learning scheme based on the method of
mirror descent, a widely used optimization procedure pioneered by Nemirovski and
Yudin [33] and studied further by (among others) Beck and Teboulle [2], Nesterov
[35], Nemirovski et al. [32], Juditsky et al. [21] and Shalev-Shwartz [44]. Intuitively,
the main idea of the method is as follows: At each stage n = 0, 1, . . . , each player
i ∈ N estimates the individual gradient vi(xn) of their payoff function at the current
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action profile xn ∈ X , possibly subject to noise and uncertainty. Subsequently,
every player takes a step along this estimated gradient in the dual space V∗i (where
gradients live), and they “mirror” the output back to the primal space Xi in order
to choose an action xi,n+1 for the next stage and continue playing.

Formally, this multi-agent mirror-based learning (ML) scheme can be written as
yi,n+1 = yi,n + γnv̂i,n,

xi,n+1 = Qi(yi,n+1),
(ML)

where:
1) n = 0, 1, . . . denotes the stage of the process.
2) v̂i,n ∈ V∗i is a stochastic estimate of the individual payoff gradient vi(xn) of

player i at stage n (more on this below).
3) yi,n ∈ V∗i is an auxiliary “score” variable that aggregates the player’s individ-

ual gradient steps up to stage n.
4) γn > 0 is a nonincreasing step-size sequence, typically of the form 1/(n+ 1)β

for some β ∈ [0, 1].
5) Qi : V∗i → Xi is the mirror (or choice) map that outputs the i-th player’s ac-

tion as a function of their score vector yi (see below for a rigorous definition).
In view of the above, the core components of (ML) are a) the players’ gradient

estimates v̂i; and b) the choice maps Qi that determine the players’ actions. In the
rest of this section, we discuss both in detail.

3.1. Feedback and uncertainty. Regarding the players’ gradient observations,
we will be assuming that each player i ∈ N has access to a “black box” feedback
mechanism – an oracle – which returns an estimate v̂i of the player’s individual
gradient vi(x) at a given action profile x. Of course, this information may be
imperfect for a multitude of reasons: for instance i) gradient estimates may be
susceptible to random measurement errors; ii) the transmission of this information
could be subject to noise; and/or iii) the game’s payoff functions may be stochastic
expectations of the form

ui(x) = E[ûi(x;ω)] for some random variable ω, (3.1)

and players may only observe the realized gradients ∇xi
ûi(x;ω) of ûi(x;ω).

With all this in mind, we will focus on the general model

v̂i,n = vi(xn) + ξi,n, (3.2)

where the noise process ξn = (ξi,n)i∈N satisfies the following statistical hypotheses:
1. Zero-mean:

E[ξn | Fn] = 0 for all n = 0, 1, . . . (a.s.). (H1)

2. Finite mean squared error: there exists some σ∗ ≥ 0 such that

E[‖ξn‖∗2 | Fn] ≤ σ2
∗ for all n = 0, 1, . . . (a.s.). (H2)

In the above, Fn denotes the natural filtration induced by xn, i.e. the history of
xn up to stage n. Thus, (H1) and (H2) simply posit that the players’ individual
gradient estimates are conditionally unbiased and bounded in mean square, viz.

E[v̂n | Fn] = v(xn), (3.3a)

E[‖v̂n‖∗2 | Fn] ≤ V 2
∗ for some finite V∗ > 0 (a.s.). (3.3b)
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The above allows for a broad range of error distributions, including all compactly
supported, (sub-)Gaussian, (sub-)exponential and log-normal distributions.5 In
fact, both hypotheses can be relaxed (for instance, by assuming a vanishing bias or
asking for finite moments up to order q < 2), but we do not do so for simplicity.

3.2. Choosing actions. Since the players’ score variables yi aggregate gradient
steps, a reasonable choice for Qi would be the arg max correspondence yi 7→
arg maxxi∈Xi

〈yi |xi〉 that outputs those actions which are most closely aligned with
yi. Notwithstanding, there are two problems with this approach: a) this assignment
is too aggressive in the presence of uncertainty; and b) generically, the output action
would be an extreme point of X so (ML) could never converge to an interior point.
Thus, instead of taking a “hard” arg max approach, we will focus on regularized
choice maps of the form

yi 7→ arg max
xi∈Xi

{〈yi |xi〉 − h(xi)}, (3.4)

where the “regularization penalty” hi : Xi → R satisfies the following requirements:

Definition 3.1. Let C be a compact convex subset of a finite-dimensional normed
space V. We say that h : C → R is a penalty function (or regularizer) on C if:

(1) h is continuous.
(2) h is strongly convex, i.e. there exists some K > 0 such that

h(tx+ (1− t)x′) ≤ th(x) + (1− t)h(x′)− 1
2Kt(1− t)‖x

′ − x‖2 (3.5)

for all x, x′ ∈ C and all t ∈ [0, 1].
The choice (or mirror) map Q : V∗ → C induced by h is then defined as

Q(y) = arg max{〈y |x〉 − h(x) : x ∈ C}. (3.6)

In what follows, we will be assuming that each player i ∈ N is endowed with an
individual penalty function hi : Xi → R that is Ki-strongly convex. Furthermore,
to emphasize the interplay between primal and dual variables (the players’ actions
xi and their score vectors yi respectively), we will write Yi ≡ V∗i for the dual space
of Vi and Qi : Yi → Xi for the choice map induced by hi. More concisely, this
information can be encoded in the aggregate penalty function h(x) =

∑
i hi(xi)

with associated strong convexity constant K ≡ miniKi.6 The induced choice map
is simply Q ≡ (Q1, . . . , QN ) so we will write x = Q(y) for the action profile induced
by the score vector y = (y1, . . . , yN ) ∈ Y ≡

∏
i Yi.

Remark 3.1. When G is the mixed extension of a finite game, McKelvey and Pal-
frey [29] originally referred to Qi as a “quantal response function” (the notation
Q alludes precisely to this terminology). In the same game-theoretic context, the
composite map Qi ◦ vi is often called a smooth, perturbed, or regularized best
response; for a detailed discussion, see Fudenberg and Levine [14], Hofbauer and
Sandholm [17], and Mertikopoulos and Sandholm [30]. Finally, in online learning
and optimization, h is usually referred to as a “Bregman” or “prox” function, and the
induced regularization process is variously known as a “link”, “softmax”, or “Breg-
man/prox projection”; for a comprehensive account, see Nemirovski and Yudin [33],
Shalev-Shwartz [44] and references therein.

5In particular, we will not be assuming i.i.d. errors; this point is crucial for applications to
distributed control where measurements are typically correlated with the state of the system.

6We assume here that V ≡
∏
i Vi is endowed with the product norm ‖x‖2V =

∑
i‖xi‖

2
Vi .
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Algorithm 1: Learning with lazy Euclidean projections (Example 3.1).

Parameter: step-size γn ∝ 1/nβ , 0 < β ≤ 1.
Initialization: n← 0; y ← arbitrary.
repeat

n← n+ 1;
foreach player i ∈ N do

project xi ← ΠXi(yi); # choose actions
observe v̂i; # estimate gradients
update yi ← yi + γnv̂i; # gradient step

until termination criterion is reached.

We discuss below a few examples of this regularization process; for a more general
treatment, see Kiwiel [23], Bolte and Teboulle [5] and Alvarez et al. [1].

Example 3.1 (Euclidean projections). Let h(x) = 1
2‖x‖

2
2. Then, h is 1-strongly

convex with respect to ‖·‖2 and the corresponding choice map is the closest point
projection

ΠX (y) ≡ arg max
x∈X

{
〈y |x〉 − 1

2‖x‖
2
2

}
= arg min

x∈X
‖y − x‖22. (3.7)

The induced learning scheme (cf. Algorithm 1) may thus be treated as a multi-
agent variant of gradient ascent with lazy projections – cf. Zinkevich [53], Beck
and Teboulle [2], and Shalev-Shwartz [44]. For future reference, note that h is
differentiable on X and ΠX is surjective (i.e. im ΠX = X ).

Example 3.2 (Entropic regularization). Motivated by mixed strategy learning in
finite games (Example 2.1), let ∆ = {x ∈ Rd+ :

∑d
j=1 xj = 1} denote the unit

simplex of Rd. Then, a standard regularizer on ∆ is provided by the (negative)
Gibbs entropy

h(x) =

d∑
j=1

xj log xj . (3.8)

This penalty function is 1-strongly convex with respect to the `1 norm on Rd and
a straightforward calculation shows that the induced choice map is

Λ(y) =
1∑d

j=1 exp(yj)
(exp(y1), . . . , exp(yd)). (3.9)

This model is known as logit choice and the associated learning scheme has been
studied extensively in evolutionary game theory and online learning (where it is
sometimes referred to as “hedging”); for a detailed account, see Vovk [52], Littlestone
and Warmuth [27], Fudenberg and Levine [14], Laraki and Mertikopoulos [25] and
references therein. In contrast to the previous example, h is differentiable only on
the relative interior ∆◦ of ∆ and im Λ = ∆◦ (i.e. Λ is “essentially” surjective).

3.3. Choice map surjectivity and steepness. We close this section with an
important dichotomy concerning the boundary behavior of penalty functions and
the induced choice maps. To describe it, it will be convenient to treat h as an
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extended-real-valued function h : V → R ∪ {+∞} by setting h = +∞ outside X .
The subdifferential of h at x ∈ V is then defined as

∂h(x) = {y ∈ V∗ : h(x′) ≥ h(x) + 〈y |x′ − x〉 for all x′ ∈ V}, (3.10)

and we say that h is subdifferentiable at x ∈ X whenever ∂h(x) is nonempty. This
is always the case if x ∈ X ◦, so we have X ◦ ⊆ dom ∂h ≡ {x ∈ X : ∂h(x) 6= ∅} ⊆ X
(Rockafellar [39, Chap. 26]).

Intuitively, h fails to be subdifferentiable at a boundary point x ∈ bd(X ) if
it becomes “infinitely steep” near x. We thus say that h is steep at x whenever
x /∈ domh; otherwise, h is said to be nonsteep at x. The following result shows
that penalty functions that are everywhere nonsteep (as in Example 3.1) induce
choice maps that are surjective; on the other hand, penalty functions that are
everywhere steep (cf. Example 3.2) induce choice maps that are interior-valued:

Proposition 3.2. Let h be a K-strongly convex penalty function with induced
choice map Q : Y → X , and let h∗ : Y → R be the convex conjugate of h, i.e.

h∗(y) = max{〈y |x〉 − h(x) : x ∈ X}, y ∈ Y. (3.11)

Then:

1) x = Q(y) if and only if y ∈ ∂h(x); in particular, imQ = dom ∂h.
2) h∗ is differentiable on Y and ∇h∗(y) = Q(y) for all y ∈ Y.
3) Q is (1/K)-Lipschitz continuous.

Proposition 3.2 is essentially part of the oral tradition in optimization and convex
analysis; for a rigorous proof of the various statements, see Rockafellar [39, Theorem
23.5] and Rockafellar and Wets [40, Theorem 12.60(b)].

4. Convergence analysis

A first important property of the mirror-based learning scheme (ML) is that it
leads to no regret, viz.

max
xi∈Xi

n∑
k=0

[ui(xi;x−i,n)− ui(xn)] = o(n) for all i ∈ N , (4.1)

provided that (H1)–(H2) hold and γn is chosen appropriately – for a precise state-
ment, see Shalev-Shwartz [44] and Kwon and Mertikopoulos [24]. In other words,
(ML) has the desirable attribute that, in the long run, every player’s average payoff
matches – or exceeds – that of the best fixed action in hindsight.

In this section, we expand on this worst-case performance guarantee and we de-
rive some general convergence results for the sequence of play induced by (ML).
Specifically, in Section 4.1 we show that, if it exists, the limit of (ML) is a Nash
equilibrium (a.s.). Subsequently, to obtain stronger convergence results, we intro-
duce in Section 4.2 the so-called Fenchel coupling, a “divergence” measure between
primal and dual variables – that is, between the players’ actions xi ∈ Xi and their
score vectors yi ∈ Yi. Using this coupling as a primal-dual Lyapunov function, we
show in Sections 4.3 and 4.4 that globally (resp. locally) stable states are glob-
ally (resp. locally) attracting under (ML). Finally, in Section 4.5, we examine the
convergence properties of (ML) in zero-sum games.
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4.1. Termination states. Our first result is that if the sequence of play induced
by (ML) converges, its limit is a Nash equilibrium:

Theorem 4.1. Suppose that (ML) is run with imperfect gradient information sat-
isfying (H1)–(H2) and a step-size sequence γn such that

∞∑
n=0

(γn
τn

)2
<

∞∑
n=0

γn =∞, (4.2)

where τn =
∑n
k=0 γk. If xn → x∗ as n→∞, then x∗ is a Nash equilibrium (a.s.).

Remark 4.1. The summability requirement (4.2) is fairly mild and holds for every
step-size policy of the form γn ∝ (n+ 1)−β , β ≤ 1 (i.e. even for increasing γn).

Proof of Theorem 4.1. Let v∗ = v(x∗) and assume ad absurdum that x∗ is not a
Nash equilibrium. Then, by the characterization (2.7) of Nash equilibria, there
exists a player i ∈ N and a unilateral deviation qi ∈ Xi such that 〈v∗i |qi − x∗i 〉 > 0.
Thus, by continuity, there exists some a > 0 and neighborhoods U , V of x∗ and v∗
respectively, such that

〈v′i |qi − x′i〉 ≥ a (4.3)
whenever x′ ∈ U and v′ ∈ V .

Since xn → x∗, we may assume without loss of generality that xn ∈ U and
v(xn) ∈ V for all n. Then, (ML) yields

yn+1 = y0 +

n∑
k=0

γkv̂k = y0 + τnv̄n, (4.4)

where we have set v̄n = τ−1n
∑n
k=0 γkv̂k = τ−1n

∑n
k=0 γk [v(xk) + ξk]. We now claim

that v̄n → v∗ (a.s.). Indeed, combining (4.2) with (H2), we get
∞∑
n=0

1

τ2n
E[‖γnξn‖2∗ | Fn] ≤

∞∑
n=0

γ2n
τ2n
σ2
∗ <∞. (4.5)

Therefore, by the law of large numbers for martingale differences (Hall and Heyde
[15, Theorem 2.18]), we obtain τ−1n

∑n
k=0 γkξk → 0 (a.s.). Moreover, since v(xn)→

v∗ by assumption, we infer that v̄n → v∗ as well.
Thus, given that yi,n ∈ ∂hi(xi,n) by Proposition 3.2, we get

hi(qi)− hi(xi,n) ≥ 〈yi,n |qi − xi,n〉 = 〈yi,0 |qi − xi,n〉+ τn〈v̄i,n |qi − xi,n〉. (4.6)

Since v̄n → v∗, (4.3) readily yields 〈v̄i,n |qi − xi,n〉 ≥ a > 0 for all sufficiently large
n. By substituting in (4.6), we then obtain hi(qi) − hi(xi,n) & aτn ↗ ∞ (a.s.), a
contradiction which implies that x∗ is a Nash equilibrium. �

4.2. The Fenchel coupling. A key tool in establishing the convergence properties
of mirror descent schemes is the so-called Bregman divergence D(p, x) between a
given state x ∈ X and a base point p ∈ X . Following Kiwiel [23], this is defined as
the difference between h(p) and the best linear approximation of h(p) from x, i.e.

D(p, x) = h(p)− h(x)− h′(x; p− x), (4.7)

where h′(x; z) = limt→0+ t
−1[h(x + tz) − h(x)] denotes the one-sided derivative of

h at x along z ∈ TC(x). Owing to the (strict) convexity of h, we have D(p, x) ≥ 0
and xn → p whenever D(p, xn)→ 0 (Kiwiel [23]); as a result, the convergence of a
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sequence xn to a target point p can be checked directly by means of the associated
divergence D(p, xn).

Nevertheless, it is often impossible to glean any useful information on D(p, xn)
from (ML) when xn = Q(yn) is not interior. By this token, given that (ML)
alternates between primal and dual variables (actions and scores respectively), it
will be more convenient to use the following “primal-dual divergence” between dual
vectors y ∈ Y and base points p ∈ X :

Definition 4.2. Let h : X → R be a penalty function on X . Then, the Fenchel
coupling induced by h is defined as

F (p, y) = h(p) + h∗(y)− 〈y |p〉 for all p ∈ X , y ∈ Y. (4.8)

The terminology “Fenchel coupling” is due to Mertikopoulos and Sandholm [30]
and refers to the fact that (4.8) collects all terms of Fenchel’s inequality. As a
result, F (p, y) is nonnegative and strictly convex in both arguments (though not
jointly so). Moreover, it enjoys the following core properties:

Proposition 4.3. Let h be a K-strongly convex penalty function on X . Then, for
all p ∈ X and all y, y′ ∈ Y, we have:

a) F (p, y) = D(p,Q(y)) if Q(y) ∈ X ◦ (but not necessarily otherwise). (4.9a)

b) F (p, y) ≥ 1
2K ‖Q(y)− p‖2. (4.9b)

c) F (p, y′) ≤ F (p, y) + 〈y′ − y |Q(y)− p〉+ 1
2K ‖y

′ − y‖2∗. (4.9c)

Proposition 4.3 (proven in Appendix A) justifies the description “primal-dual
divergence” for F (x∗, y) and plays a key role in our analysis. Specifically, the lower
bound (4.9b) yields Q(yn) → p for every sequence yn such that F (p, yn) → 0, so
F (p, yn) can be used to check convergence of Q(yn) to p. For technical reasons, it
is convenient to assume that the converse also holds, namely

F (p, yn)→ 0 whenever Q(yn)→ p. (H3)

When (H3) holds (Examples 3.1 and 3.2 both satisfy it), Proposition 4.3 gives:

Corollary 4.4. Under (H3), F (p, yn)→ 0 if and only if Q(yn)→ p.

Finally, to extend the above to subsets of X , we define the setwise coupling

F (C, y) = inf{F (p, y) : p ∈ C}, C ⊆ X , y ∈ Y. (4.10)

In analogy to the pointwise case, we then have:

Proposition 4.5. Let C be a closed subset of X . Then, Q(yn) → C whenever
F (C, yn)→ 0; in addition, the converse is also true under (H3).

The proof of Proposition 4.5 is a straightforward exercise in point-set topology so
we omit it. What’s more important is that, thanks to Proposition 4.5, the Fenchel
coupling can also be used to test for convergence to a set; in what follows, we
employ this property freely.

4.3. Global convergence. In this section, we focus on globally stable Nash equi-
libria (and sets thereof). We begin with the perfect feedback case:

Theorem 4.6. Suppose that (ML) is run with perfect gradient information (σ∗ =
0), choice maps satisfying (H3), and a vanishing step-size sequence γn such that∑n
k=0 γ

2
k

/∑n
k=0 γk → 0. If X ∗ is globally stable, xn converges to X ∗.
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Hypothesis Precise statement

(H1) Zero-mean errors E[ξn | Fn] = 0

(H2) Finite error variance E[‖ξn‖2∗ | Fn] ≤ σ2
∗

(H3) Regular choice maps F (p, yn)→ 0 whenever Q(yn)→ p

(H4) Lipschitz gradients v(x) is Lipschitz continuous

Table 1. Overview of the various regularity hypotheses used in the paper.

Proof. Fix some ε > 0 and let Uε = {x = Q(y) : F (X ∗, y) < ε}. Then, by
Proposition 4.5, it suffices to show that xn ∈ Uε for all sufficiently large n.

To that end, for all x∗ ∈ X ∗, Proposition 4.3 yields

F (x∗, yn+1) ≤ F (x∗, yn) + γn〈v(xn) |xn − x∗〉+
γ2n
2K
‖v(xn)‖2∗. (4.11)

Assume now by induction that xn ∈ Uε. By (H3), there exists some δ > 0 such
that cl(Uε/2) contains a δ-neighborhood of X ∗.7 Consequently, with X ∗ assumed
globally stable, there exists some a ≡ a(ε) > 0 such that

〈v(x) |x− x∗〉 ≤ −a for all x ∈ Uε − Uε/2, x∗ ∈ X ∗. (4.12)

Therefore, if xn ∈ Uε − Uε/2 and γn ≤ 2Ka/V 2
∗ , (4.11) yields F (x∗, yn+1) ≤

F (x∗, yn). Hence, minimizing over x∗ ∈ X ∗, we get F (X ∗, yn+1) ≤ F (X ∗, yn) < ε,
so xn+1 ∈ Uε. Otherwise, if xn ∈ Uε/2 and γ2n < Kε/V 2

∗ , combining (VS) with
(4.11) yields F (x∗, yn+1) ≤ F (x∗, yn) + ε/2 so, again, F (X ∗, yn+1) ≤ F (X ∗, yn) +
ε/2 ≤ ε, i.e. xn+1 ∈ Uε. We thus conclude that xn+1 ∈ Uε whenever xn ∈ Uε and
γn < min{2Ka/V 2

∗ ,
√
Kε/V∗}.

To complete the proof, Lemma A.3 shows that xn visits Uε infinitely often under
the stated assumptions. Since γn ↘ 0, our assertion follows. �

We next show that Theorem 4.6 extends to the case of imperfect feedback under
the additional regularity requirement:

The gradient field v(x) is Lipschitz continuous. (H4)

With this extra assumption, we have:

Theorem 4.7. Suppose that (ML) is run with a step-size sequence γn such that∑∞
n=0 γ

2
n <

∑∞
n=0 γn = ∞. If (H1)–(H4) hold and X ∗ is a globally stable set of

Nash equilibria, we have xn → X ∗ (a.s.).
Corollary 4.8. If G satisfies the payoff monotonicity condition (MC), xn converges
to the (necessarily unique) Nash equilibrium of G (a.s.).

Corollary 4.9. If G admits a concave potential, xn converges to the set of Nash
equilibria of G (a.s.).

Because of the noise affecting the players’ gradient estimates, our proof strategy
for Theorem 4.7 is quite different from that of Theorem 4.6. In particular, instead
of working directly in discrete time, we first consider the continuous-time system

ẏ = v(x),

x = Q(y),
(ML-C)

7Indeed, if this were not the case, there would exist a sequence y′n in Y such that Q(y′n)→ X ∗
but F (X ∗, y′n) ≥ ε/2, in contradiction to (H3).



LEARNING IN CONCAVE GAMES WITH IMPERFECT INFORMATION 17

which can be seen as a “mean-field” approximation of the recursive scheme (ML).
As it turns out, the orbits x(t) = Q(y(t)) of (ML-C) converge to X ∗ in a certain,
“uniform” way. Moreover, under the assumptions of Theorem 4.7, the sequence yn
generated by the discrete-time, stochastic process (ML) comprises an asymptotic
pseudotrajectory (APT) of the dynamics (ML-C) in the sense of Benaïm [3]. APTs
have the key property that, in the presence of a globally attracting set, they can-
not stray too far from the flow of (ML-C); however, given that Q often fails to
be invertible, the trajectories x(t) = Q(y(t)) do not consitute a semiflow, so the
theory of Benaïm [3] does not apply. Instead, to overcome this difficulty, we exploit
the derived convergence bound for x(t) = Q(y(t)), and we then use an inductive
shadowing argument to show that (ML) converges itself to X ∗.

Proof of Theorem 4.7. Fix some ε > 0, let Uε = {x = Q(y) : F (X ∗, y) < ε}, and
write Φt : Y → Y for the semiflow induced by (ML-C) on Y – i.e. (Φt(y))t≥0 is the
solution orbit of (ML-C) that starts at y ∈ Y.8

We first claim there exists some finite τ ≡ τ(ε) such that F (X ∗,Φτ (y)) ≤
max{ε, F (X ∗, y) − ε} for all y ∈ Y. Indeed, since cl(Uε) is a closed neighborhood
of X ∗ by (H3), (VS) implies that there exists some a ≡ a(ε) > 0 such that

〈v(x) |x− x∗〉 ≤ −a for all x∗ ∈ X ∗, x /∈ Uε. (4.13)

Consequently, if τy = inf{t > 0 : Q(Φt(y)) ∈ Uε} denotes the first time at which an
orbit of (ML-C) reaches Uε, Lemma A.2 in Appendix A gives:

F (x∗,Φt(y)) ≤ F (x∗, y)− at for all x∗ ∈ X ∗, t ≤ τy. (4.14)

In view of this, set τ = ε/a and consider the following two cases:
(1) τy ≥ τ : then, (4.14) gives F (x∗,Φτ (y)) ≤ F (x∗, y) − ε for all x∗ ∈ X ∗, so

F (X ∗,Φτ (y)) ≤ F (X ∗, y)− ε.
(2) τy < τ : then, Q(Φτ (y)) ∈ Uε, so F (X ∗,Φτ (y)) ≤ ε.

In both cases we have F (X ∗,Φτ (y)) ≤ max{ε, F (X ∗, y)− ε}, as claimed.
Now, let (Y (t))t≥0 denote the affine interpolation of the sequence yn generated

by (ML), i.e. Y is the continuous curve which connects linearly the values yn+1 at
all times τn =

∑n
k=0 γk. Under the stated assumptions, a standard result of Benaïm

[3, Propositions 4.1 and 4.2] shows that Y (t) is an asymptotic pseudotrajectory of
Φ, i.e.

lim
t→∞

sup
0≤h≤T

‖Y (t+ h)− Φh(Y (t))‖∗ = 0 for all T > 0 (a.s.). (4.15)

Thus, with some hindsight, let δ ≡ δ(ε) be such that δ‖X‖ + δ2/(2K) ≤ ε and
choose t0 ≡ t0(ε) so that sup0≤h≤τ‖Y (t+h)−Φh(Y (t))‖∗ ≤ δ for all t ≥ t0. Then,
for all t ≥ t0 and all x∗ ∈ X ∗, Proposition 4.3 gives

F (x∗, Y (t+ h)) ≤ F (x∗,Φh(Y (t)))

+ 〈Y (t+ h)− Φh(Y (t)) |Q(Φh(Y (t)))− x∗〉

+
1

2K
‖Y (t+ h)− Φh(Y (t))‖2∗

≤ F (x∗,Φh(Y (t))) + δ‖X‖+
δ2

2K
≤ F (x∗,Φh(Y (t))) + ε. (4.16)

8That such a trajectory exists and is unique is a consequence of (H4).



18 P. MERTIKOPOULOS

Hence, minimizing over x∗ ∈ X ∗, we get

F (X ∗, Y (t+ h)) ≤ F (X ∗,Φh(Y (t))) + ε for all t ≥ t0. (4.17)

By Lemma A.3 in Appendix A, there exists some t ≥ t0 such that F (X ∗, Y (t)) ≤
2ε (a.s.). Thus, given that F (X ∗,Φh(Y (t))) is nonincreasing in h by Lemma A.2,
Eq. (4.17) yields F (X ∗, Y (t+h)) ≤ 2ε+ε = 3ε for all h ∈ [0, τ ]. However, by the def-
inition of τ , we also have F (X ∗,Φτ (Y (t))) ≤ max{ε, F (X ∗, Y (t))−ε} ≤ ε, implying
in turn that F (X ∗, Y (t+ τ)) ≤ F (X ∗,Φτ (Y (t))) + ε ≤ 2ε. Therefore, by repeating
the above argument at t+τ and proceeding inductively, we get F (X ∗, Y (t+h)) ≤ 3ε
for all h ∈ [kτ, (k+ 1)τ ], k = 0, 1, . . . (a.s.). Since ε has been chosen arbitrarily, we
conclude that F (X ∗, yn)→ 0, so xn → X ∗ by Proposition 4.5. �

Theorem 4.7 shows that (almost) all realizations of (ML) converge to equilibrium,
but the summability requirement

∑∞
n=0 γ

2
n <∞ suggests that players must be more

conservative in their gradient steps under uncertainty. To make this more precise,
note that the step-size assumptions of Theorem 4.6 are satisfied for all step-size
policies of the form γn ∝ (n + 1)−β , β ∈ (0, 1]; however, in the presence of errors
and uncertainty, Theorem 4.7 guarantees convergence only when β ∈ (1/2, 1].

The “critical” value β = 1/2 above is tied to the finite mean squared error
hypothesis (H2). If the players’ gradient observations have finite moments up to
some order q > 2, a more refined stochastic approximation argument as in Benaïm
[3, Proposition 4.2] can be used to show that Theorem 4.7 still holds under the
lighter requirement

∑∞
n=0 γ

1+q/2
n <∞. Consequently, even in the presence of noise,

(ML) can be used with any step-size sequence of the form γn ∝ (n+1)−β , β ∈ (0, 1],
provided that the noise process ξn has E[‖ξn‖q∗ | Fn] < ∞ for some q > 2/β − 2.
In particular, if the noise affecting the players’ observations has finite moments of
all orders (for instance, if ξn is sub-exponential or sub-Gaussian), it is possible to
recover essentially all the step-size policies covered by Theorem 4.6.

4.4. Local convergence. The results of the previous section show that (ML) con-
verges globally to states (or sets) that are variationally stable on X , even under
noise and uncertainty. In this section, we show that (ML) remains locally con-
vergent to states that are only locally stable with probability arbitrarily close to
1.

For simplicity, we begin with the deterministic, perfect feedback case:

Theorem 4.10. Suppose that (ML) is run with perfect gradient information (σ∗ =
0), choice maps satisfying (H3), and a sufficiently small step-size sequence with∑n
k=0 γ

2
k

/∑n
k=0 γk → 0. If X ∗ is stable, there exists a neighborhood U of X ∗ such

that xn converges to X ∗ whenever x0 ∈ U .

Proof. As in the proof of Theorem 4.6, let Uε = {x = Q(y) : F (X ∗, y) < ε}. Since
X ∗ is stable, there exists some ε > 0 and some a > 0 satisfying (4.12) and such
that (VS) holds throughout Uε. If x0 ∈ Uε and γ0 ≤ min{2Ka/V 2

∗ ,
√
Kε/V∗},

the same induction argument as in the proof of Theorem 4.6 shows that xn ∈ Uε
for all n. Since (VS) holds throughout Uε, Lemma A.3 shows that xn visits any
neighborhood of X ∗ infinitely many times; thus, by repeating the same argument
as in the proof of Theorem 4.6, we get xn → X ∗. �

The key idea in the proof of Theorem 4.10 is that if the step-size of (ML) is small
enough, the process xn = Q(yn) always remains within the “basin of attraction” of
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X ∗. On the other hand, if the players’ feedback is subject to estimation errors and
uncertainty, a single unlucky instance could drive xn away from said basin, possibly
never to return. As a result, any local convergence result in the presence of noise
must be probabilistic in nature. This is seen clearly in our next result:

Theorem 4.11. Fix a confidence level δ > 0 and suppose that (ML) is run with a
sufficiently small step-size γn satisfying

∑∞
n=0 γ

2
n <

∑∞
n=0 γn =∞. If X ∗ is stable

and (H1)–(H4) hold, then X ∗ is locally attracting with probability at least 1 − δ;
more precisely, there exists a neighborhood U of X ∗ such that

P(xn → X ∗ |x0 ∈ U) ≥ 1− δ. (4.18)

Corollary 4.12. Let x∗ be a Nash equilibrium with negative-definite Hessian ma-
trix HG(x∗) ≺ 0. Then, with assumptions as above, x∗ is locally attracting with
probability arbitrarily close to 1.

Proof of Theorem 4.11. Let Uε = {x = Q(y) : F (X ∗, y) < ε} and pick ε > 0 small
enough so that (VS) holds for all x ∈ U3ε. Assume further that x0 ∈ Uε so there
exists some x∗ ∈ X ∗ such that F (x∗, y0) < ε. Then, for all n, Proposition 4.3 yields

F (x∗, yn+1) ≤ F (x∗, yn) + γn〈v(xn) |xn − x∗〉+ γnψn +
1

2K
γ2n‖v̂2n‖∗, (4.19)

where we have set ψn = 〈ξn |xn − x∗〉.
We first claim that supn

∑n
k=0 γkψk ≤ ε with probability at least 1 − δ/2 if γn

is chosen appropriately. Indeed, let Sn =
∑n
k=0 γkψk and let En,ε denote the event

{sup0≤k≤n|Sk| ≥ ε}. Since Sn is a martingale, Doob’s maximal inequality (Hall
and Heyde [15, Theorem 2.1]) yields

P(En,ε) ≤
E[|Sn|2]

ε2
≤
σ2
∗‖X‖

2∑n
k=0 γ

2
k

ε2
, (4.20)

where we used the variance estimate

E[ψ2
k] = E[E[|〈ξk |xk − x∗〉|2 | Fk]] ≤ E[E[‖ξk‖2∗‖xk − x

∗‖2 | Fk]] ≤ σ2
∗‖X‖

2
, (4.21)

and the fact that E[ψkψ`] = E[E[ψkψ`] | Fk∨`] = 0 whenever k 6= `. Since En+1,ε ⊇
En,ε ⊇ . . . , it follows that the event Eε =

⋃∞
n=0En,ε occurs with probability

P(Eε) ≤ Γ2σ
2
∗‖X‖

2
/ε2, where Γ2 ≡

∑∞
n=0 γ

2
n. Thus, if γn is chosen so that Γ2 ≤

δε2/(2σ2
∗‖X‖

2
), we get P(Eε) ≤ δ/2.

We now claim that the process Rn =
∑n
k=0 γ

2
k‖v̂k‖

2
∗ is also bounded from above

by ε with probability at least 1− δ/2 if γn is chosen appropriately. Indeed, working
as above, let Fn,ε denote the event {sup0≤k≤nRk ≥ ε}. Since Rn is a nonnegative
submartingale, Doob’s maximal inequality again yields

P(Fn,ε) ≤
E[Rn]

ε
≤
V 2
∗
∑n
k=0 γ

2
k

ε
. (4.22)

Consequently, the event Fε =
⋃∞
n=0 Fn,ε occurs with probability P(Fε) ≤ Γ2V

2
∗ /ε ≤

δ/2 if γn is chosen so that Γ2 ≤ δε/(2V 2
∗ ).

Assume therefore that Γ2 ≤ min{δε2/(2σ2
∗‖X‖

2
), δε/(2V 2

∗ )}. The above shows
that P(Ēε ∩ F̄ε) = 1− P(Eε ∪Fε) ≥ 1− δ/2− δ/2 = 1− δ, i.e. Sn and Rn are both
bounded from above by ε for all n and all x∗ with probability at least 1− δ. Since
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F (x∗, y0) ≤ ε by assumption, we readily get F (x∗, y1) ≤ 3ε if Ēε and F̄ε both hold.
Furthermore, telescoping (4.19) yields

F (x∗, yn+1) ≤ F (x∗, y0) +

n∑
k=0

〈v(xn) |xn − x∗〉+ Sn +Rn for all n, (4.23)

so if we assume inductively that F (x∗, yk) ≤ 3ε for all k ≤ n (implying that
〈v(xk) |xk − x∗〉 ≤ 0 for all k ≤ n), we also get F (x∗, yn+1) if neither Eε nor Fε
occur. Since P(Eε ∪ Fε) ≤ δ, we conclude that xn stays in U3ε for all n with
probability at least 1 − δ. In turn, when this is the case, Lemma A.3 shows that
X ∗ is recurrent under xn; hence, by repeating the same steps as in the proof of
Theorem 4.7, we get xn → X ∗ with probability at least 1− δ, as asserted. �

4.5. Convergence in zero-sum games. We close this section by examining the
asymptotic behavior of (ML) in 2-player zero-sum games (N = {1, 2}, u1+u2 = 0).
Letting u ≡ u1 = −u2, the value of such a game is defined as

u∗ = max
x1∈X1

min
x2∈X

u(x1, x2) = min
x2∈X2

max
x1∈X1

u(x1, x2), (4.24)

and its existence is guaranteed by the original minmax theorem of von Neumann
[51]. On that account, the solutions of the saddle-point problem (4.24) are the Nash
equilibria of G and the players’ equilibrium payoffs are u∗ and −u∗ respectively.

With this in mind, we show below that the long-term average of the sequence of
play generated by (ML) converges to equilibrium with probability 1:

Theorem 4.13. Let G be a 2-player zero-sum game. If (ML) is run with imperfect
gradient information satisfying (H1)–(H2) and a step-size γn such that

∑∞
n=0 γ

2
n <∑∞

n=0 γn = ∞, the long-term average x̄n =
∑n
k=0 γkxk

/∑n
k=0 γk of the induced

sequence of play converges to the set of Nash equilibria of G (a.s.).

Nemirovski et al. [32] and Juditsky et al. [21] showed that, under a “greedy”
variant of (ML) run with similar noise and step-size assumptions, x̄n converges to
the Nash set of G in L1 (see also Nesterov [35] for a deterministic, perfect feedback
version of this result). Our proof is inspired by that of Nemirovski et al. [32], but
we focus throughout on almost sure convergence instead of convergence in L1.

Proof of Theorem 4.13. Consider the gap function

ε(x) = u∗ − min
p2∈X2

u(x1, p2) + max
p1∈X1

u(p1, x2)− u∗ = max
p∈X

∑
i∈N

ui(pi;x−i). (4.25)

Obviously, ε(x) ≥ 0 with equality if and only if x is a Nash equilibrium, so it suffices
to show that ε(x̄n)→ 0 (a.s.).

To that end, pick an arbitrary state p ∈ X . Then, arguing as in the proof of
Theorem 4.7, we get

F (p, yn+1) ≤ F (p, yn) + γn〈v(xn) |xn − p〉+ γnψn +
1

2K
γ2n‖v̂n‖

2
∗, (4.26)

and hence, after rearranging and telescoping
n∑
k=0

γk〈v(xk) |p− xk〉 ≤ F (p, y0) +

n∑
k=0

γkψk +
1

2K

n∑
k=0

γ2k‖v̂k‖
2
∗, (4.27)
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where ψn = 〈ξn |xn − p〉 and we used the fact that F (p, yn+1) ≥ 0. Since ui is
concave in xi, we also have

〈v(x) |p− x〉 =
∑
i∈N
〈vi(x) |pi − xi〉 ≥

∑
i∈N

[ui(pi;x−i)− ui(x)] =
∑
i∈N

ui(pi;x−i),

(4.28)
for all x ∈ X . Therefore, letting τn =

∑n
k=0 γk, we get

1

τn

n∑
k=0

γk〈v(xk) |p− xk〉 ≥
1

τn

n∑
k=0

γk
∑
i∈N

ui(pi;x−i,k)

≥ u(p1, x̄2,n)− u(x̄1,n, p2) =
∑
i∈N

ui(pi; x̄−i,n), (4.29)

where we used the fact that u is concave-convex in the second line. Thus, combining
(4.27) and (4.29), we finally obtain∑

i∈N
ui(pi; x̄−i,n) ≤

F (p, y0) +
∑n
k=0 γkψk + (2K)−1

∑n
k=0 γ

2
k‖v̂k‖

2
∗

τn
. (4.30)

As before, the law of large numbers (Hall and Heyde [15, Theorem 2.18]) yields
τ−1n

∑n
k=0 γkψk → 0 (a.s.). Furthermore, given that E[‖v̂n‖2∗] ≤ V 2

∗ and
∑n
k=0 γ

2
k <

∞, we also get τ−1n
∑n
k=0 γ

2
k‖v̂k‖

2
∗ → 0 by Doob’s martingale convergence theorem

(Hall and Heyde [15, Theorem 2.5]), implying in turn that
∑
i∈N ui(pi; x̄−i,n)→ 0

(a.s.). Since p is arbitrary, we conclude that ε(x̄n)→ 0 (a.s.), as claimed. �

5. Learning in finite games

As a concrete application of the analysis of the previous section, we turn to
the asymptotic behavior of (ML) in finite games. Briefly recalling the setup of
Example 2.1, each player in a finite game Γ ≡ Γ(N ,S, u) chooses a pure strategy si
from a finite set Si and receives a payoff of ui(s1, . . . , sN ). Pure strategies are drawn
based on the players’ mixed strategies xi ∈ Xi ≡ ∆(Si), so each player’s expected
payoff is given by the multilinear expression (2.3). Accordingly, the individual
payoff gradient of player i ∈ N in the mixed profile x = (x1, . . . , xN ) is the (mixed)
payoff vector vi(x) = ∇xi ui(xi;x−i) = (ui(si;x−i))si∈Si – cf. Eq. (2.4).

Consider now the following learning scheme: At each stage n = 0, 1, . . . , every
player i ∈ N selects a pure strategy si,n ∈ Si according to their individual mixed
strategy xi,n ∈ Xi at stage n. Subsequently, each player observes – or calculates
in some other way – the payoffs of his pure strategies si ∈ Si against the chosen
actions s−i,n of all other players, possibly subject to some random estimation error.
Specifically, we posit that each player observes the “noisy” payoff vector

v̂i,n = (ui(si; s−i,n))si∈Si + ξi,n, (5.1)

where the error process ξn = (ξi,n)i∈N is assumed to satisfy Hypotheses (H1)
and (H2). Then, based on this feedback, players update their mixed strategies
using (ML) and the process repeats (for a concrete example, see Algorithm 2).

In the rest of this section, we study the long-term behavior of this game-theoretic
learning process. Specifically, we focus on: a) the elimination of dominated strate-
gies; b) convergence to strict Nash equilibria; and c) convergence to equilibrium in
2-player, zero-sum games.
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Algorithm 2: Logit-based learning (“hedging”) in finite games (Example 3.2).

Parameter: step-size γn ∝ 1/nβ , 0 < β ≤ 1.
Initialization: n← 0; yi ← chosen by player i.
repeat

n← n+ 1;
foreach player i ∈ N do

set xi ← Λi(yi); # update mixed strategies
draw si ∈ Si based on xi; # choose actions
observe v̂i; # estimate payoffs
update yi ← yi + γnv̂i; # update scores

until termination criterion is reached.

5.1. Dominated strategies. A pure strategy si ∈ Si of a finite game Γ is said to
be dominated by s′i ∈ Si (and written si ≺ s′i) if

ui(si;x−i) < ui(s
′
i;x−i) for all x−i ∈ X−i ≡

∏
j 6=i Xj . (5.2)

Put differently, we have si ≺ s′i if and only if visi(x) < vis′i(x) for all x ∈ X . In
turn, this implies that the payoff gradient of player i points consistently towards
the face xisi = 0 of Xi, so it is natural to expect that si is eliminated under (ML).
Indeed, we have:

Theorem 5.1. Suppose that (ML) is run with noisy payoff observations of the
form (5.1) and a step-size sequence γn satisfying the summability condition (4.2).
If si ∈ Si is dominated, then xisi,n → 0 (a.s.).

Proof. Suppose that si ≺ s′i for some s′i ∈ Si. Then, suppressing the player index i
for simplicity, (ML) gives

ys′,n − ys,n = cs′s +

n∑
k=0

γk [v̂s′,k − v̂s,k]

= cs′s +

n∑
k=0

γk [vs′(xk)− vs(xk)] +

n∑
k=0

γkζk, (5.3)

where we set cs′s = ys′,0 − ys,0 and ζk = E[v̂s′,k − v̂s,k | Fk] − [vs′(xk) − vs(xk)].
Since s ≺ s′, there exists some a > 0 such that vs′(x) − vs(x) ≥ a for all x ∈ X .
Then, (5.3) yields

ys′,n − ys,n ≥ cs′s + τn

[
a+

∑n
k=0 γkζk
τn

]
, (5.4)

where τn =
∑n
k=0 γk. As in the proof of Theorem 4.1, the law of large num-

bers for martingale differences (Hall and Heyde [15, Theorem 2.18]) implies that
τ−1n

∑n
k=0 γkζk → 0 under the step-size assumption (4.2), so ys′,n−ys,n →∞ (a.s.).

Suppose now that lim supn→∞ xs,n = 2ε for some ε > 0. By descending to
a subsequence if necessary, we may assume that xs,n ≥ ε for all n, so if we let
x′n = xn + ε(es′ − es′), the definition of Q gives

〈yn |xn〉 − h(xn) ≥ 〈yn |x′n〉 − h(x′n) = 〈yn |xn〉+ ε(ys,n − ys′,n)− h(x′n). (5.5)

Therefore, after rearranging, we get h(x′n) − h(xn) ≤ ε(ys,n − ys′,n) → −∞, a
contradiction. This implies that xs,n → 0 (a.s.), as asserted. �
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5.2. Strict equilibria. A Nash equilibrium x∗ of a finite game is called strict when
(NE) holds as a strict inequality for all xi 6= x∗i , i.e. when no player can deviate
unilaterally from x∗ without reducing their payoff (or, equivalently, when every
player has a unique best response to x∗). This implies that strict Nash equilibria
are pure strategy profiles x∗ = (s∗1, . . . , s

∗
N ) such that

ui(s
∗
i ; s
∗
−i) > ui(si; s

∗
−i) for all si ∈ Si \ {s∗i }, i ∈ N . (5.6)

In particular, we have the following characterization of strict Nash equilibria:

Proposition 5.2. Let G ≡ G(N ,X , u) be the mixed extension of a finite game
Γ ≡ Γ(N ,S, u). Then, the following are equivalent:

a) x∗ is a strict Nash equilibrium.
b) 〈v(x∗) |z〉 ≤ 0 for all z ∈ TC(x∗) with equality if and only if z = 0.
c) x∗ is stable.

Thanks to the above characterization of strict equilibria (proven in Appendix A),
the convergence analysis of Section 4 yields:

Proposition 5.3. Let x∗ be a strict equilibrium of a finite game Γ ≡ Γ(N ,S, u).
Suppose further that (ML) is run with noisy payoff observations of the form (5.1)
and a sufficiently small step-size γn satisfying

∑∞
n=0 γ

2
n <

∑∞
n=0 γn = ∞. If

(H1)–(H3) hold, x∗ is locally attracting with arbitrarily high probability; specifically,
for all δ > 0, there exists a neighborhood U of x∗ such that

P(xn → x∗ |x0 ∈ U) ≥ 1− δ. (5.7)

Proof. We first show that the noisy payoff vector v̂n of (5.1) satisfies E[v̂n | Fn] =
v(xn). Indeed, for all i ∈ N , si ∈ Si, we have

E[v̂isi,n | Fn] =
∑

s−i∈S−i

ui(si; s−i)xs−i,n + E[ξisi,n | Fn] = ui(si;x−i,n), (5.8)

where, in a slight abuse of notation, we write xs−i,n for the joint probability as-
signed to the pure strategy profile s−i of all players other than i at stage n. Thus,
comparing with (2.4), we get E[v̂n | Fn] = v(xn).

The above shows that (5.1) is an unbiased estimator of v(xn) that satisfies (H1).
Hypothesis (H2) can be verified similarly, so (5.1) satisfies (3.3). Since x∗ is sta-
ble by Proposition 5.2 and v(x) is multilinear (meaning in particular that (H4) is
satisfied automatically), our assertion follows from Theorem 4.11. �

Remark 5.1. In the special case of logit-based learning (cf. Example 3.2), Cohen
et al. [8] recently showed that Algorithm 2 converges locally to strict Nash equilibria
under similar information assumptions. Proposition 5.2 essentially extends this
result to the entire class of regularized learning processes induced by (ML) in finite
games, thus showing that the logit choice map (3.9) has no distinctive attributes
in this respect. Cohen et al. [8] further showed that the convergence rate of logit-
based learning is exponential in the algorithm’s “running horizon” τn =

∑n
k=0 γk.

This rate is closely linked to the logit choice model, and different choice maps yield
different convergence speeds; we discuss this issue in more detail in Section 6.
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5.3. Convergence in zero-sum games. Proposition 5.2 shows that the learning
scheme (ML) is locally convergent in generic finite games that admit a Nash equi-
librium in pure strategies, even in the presence of observation noise and estimation
errors. To complement this result, we now turn to zero-sum games where Nash
equilibria are often interior – in a sense, the “opposite” of strict equilibria.

In this setting, the analysis of Section 4.5 readily yields:

Corollary 5.4. Let Γ ≡ Γ(N ,S, u) be a finite 2-player zero-sum game. If (ML)
is run with noisy payoff observations of the form (5.1) and a step-size γn such that∑∞
n=0 γ

2
n <

∑∞
n=0 γn = ∞, the long-term average x̄n =

∑n
k=0 γkxk

/∑n
k=0 γk of

the players’ mixed strategies converges to the set of Nash equilibria of Γ (a.s.).

Proof. As in the proof of Proposition 5.2, the estimator (5.1) satisfies E[v̂n | Fn] =
v(xn), so (H1) and (H2) also hold in the sense of (3.3). Our claim then follows
from Theorem 4.13. �

Remark 5.2. Extending a result of Hofbauer et al. [20] for the replicator dynamics,
Mertikopoulos and Sandholm [30] recently showed that the long-term average x̄(t) =

t−1
∫ t
0
x(s) ds of the players’ mixed strategies under (ML-C) converges to Nash

equilibrium in 2-player, zero-sum games.9 Under this light, Corollary 5.4 can be
seen as an extension of the results of Hofbauer et al. [20] and Mertikopoulos and
Sandholm [30] to a stochastic, discrete-time setting.

6. Speed of convergence

6.1. Mean convergence rate. In this section, we focus on the quantitative as-
pects of the long-run behavior of (ML) and, in particular, its rate of convergence
to stable equilibrium states (and/or sets thereof). To that end, we will quantify
the speed of convergence to a globally stable set X ∗ ⊆ X via the equilibrium gap
function

ε(x) = inf
x∗∈X∗

〈v(x) |x∗ − x〉. (6.1)

By Definition 2.3, ε(x) ≥ 0 with equality if and only if x ∈ X ∗, so ε(x) can be seen
as a (game-specific) measure of the distance between x and the target set X ∗. This
can be seen more clearly in the case of strongly stable equilibria, defined here as
follows:

Definition 6.1. We say that x∗ ∈ X is strongly stable if there exists some L > 0
such that

〈v(x) |x− x∗〉 ≤ −L‖x− x∗‖2 for all x ∈ X . (6.2)

More generally, a closed subset X ∗ of X is called strongly stable if

〈v(x) |x− x∗〉 ≤ −Ldist(X ∗, x)2 for all x ∈ X , x∗ ∈ X ∗. (6.3)

Obviously, ε(x) ≥ Ldist(X ∗, x)2 if X ∗ is L-strongly stable, i.e. ε(x) grows at
least quadratically near strongly stable sets – just like strongly convex functions
near their minimum points. With this in mind, we derive below an estimate of the
mean decay rate of the average equilibrium gap ε̄n =

∑n
k=0 γkε(xk)

/∑n
k=0 γk in

the spirit of Nemirovski et al. [32] and Juditsky et al. [21]:

9See also Bravo and Mertikopoulos [7] for a further extension of this result to the case where
the continuous-time dynamics (ML-C) are subject to Brownian payoff disturbances.
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Theorem 6.2. Suppose that (ML) is run with imperfect gradient information sat-
isfying (H1)–(H2). Then

E[ε̄n] ≤
F0 + V 2

∗ /(2K)
∑n
k=0 γ

2
k∑n

k=0 γk
, (6.4)

where F0 = F (X ∗, y0). If, in addition,
∑∞
n=0 γ

2
n <∞, we have

ε̄n ≤
A∑n
k=0 γk

for all n (a.s.), (6.5)

where A > 0 is a finite random variable such that, with probability at least 1− δ,
A ≤ F0 + σ∗‖X‖α+ V 2

∗ α
2, (6.6)

where α2 = 2δ−1
∑∞
n=0 γ

2
n.

Corollary 6.3. Suppose that (ML) is initialized at y0 = 0 and run for n iterations
with constant step-size γ = V −1∗

√
2KΩ/n where Ω = maxh−minh. Then,

E[ε̄n] ≤ 2V∗
√

Ω/(Kn). (6.7)

In addition, if X ∗ is L-strongly stable, we also have E[r̄n] ≤ 4
√

4L−2V 2
∗ Ω/(Kn).

Proof of Theorem 6.2. Let x∗ ∈ X ∗. Rearranging (4.19) and telescoping yields
n∑
k=0

γk〈v(xk) |x∗ − xk〉 ≤ F (x∗, y0) +

n∑
k=0

γkψk +
1

2K

n∑
k=0

γ2k‖v̂k‖
2
∗, (6.8)

where ψk = 〈ξk |xk − x∗〉. Thus, taking expectations, we obtain
n∑
k=0

γk E[〈v(xk) |x∗ − xk〉] ≤ F (x∗, y0) +
V 2
∗

2K

n∑
k=0

γ2k, (6.9)

and hence, minimizing both sides of (6.9) over x∗ ∈ X ∗, we have
n∑
k=0

γk E[ε(xk)] ≤ F0 +
V 2
∗

2K

n∑
k=0

γ2k, (6.10)

where we used Jensen’s inequality to interchange the inf and E operations. The
estimate (6.4) then follows immediately.

For the almost sure bound (6.5), set Sn =
∑n
k=0 γkψk and Rn =

∑n
k=0 γ

2
k‖vk‖

2
∗.

Then, (6.8) becomes
n∑
k=0

γk〈v(xk) |x∗ − xk〉 ≤ F (x∗, y0) + Sn +Rn, (6.11)

Arguing as in the proof of Theorem 4.11, it follows that supn E[|Sn|] and supn E[Rn]
are both finite, i.e. Sn andRn are both bounded in L1. Thus, Doob’s (sub)martingale
convergence theorem (Hall and Heyde [15, Theorem 2.5]) shows that Sn and Rn
both converge (a.s.) to a random, finite limit S∞ and R∞ respectively. Conse-
quently, by (6.11), there exists an a.s. finite random variable A > 0 such that

n∑
k=0

γk〈v(xk) |x∗ − xk〉 ≤ A for all n (a.s.). (6.12)

The bound (6.5) then follows by taking the minimum of (6.12) over x∗ ∈ X ∗ and
dividing both sides by

∑n
k=0 γk.
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Finally, applying Doob’s maximal inequality to (4.20) and (4.22), we obtain
P
(
supn Sn ≥ σ∗‖X‖α

)
≤ δ/2 and P

(
supnRn ≥ V 2

∗ α
2
)
≤ δ/2. Combining these

bounds with (6.11) then shows that A can be taken to satisfy (6.6) with probability
at least 1− δ, as claimed. �

Proof of Corollary 6.3. By the definition (4.10) of the setwise Fenchel coupling, we
have F0 ≤ h(x∗) + h∗(0) ≤ maxh −minh = Ω. Our claim then follows by noting
that E[dist(X ∗, xn)]

2 ≤ E[dist(X ∗, xn)2] ≤ L−1 E[ε(xn)] and applying (6.4). �

Although the mean bound (6.4) is valid for any step-size sequence, the summa-
bility condition

∑∞
n=0 γ

2
n < ∞ for the almost sure bound (6.5) rules out more

aggressive step-size policies of the form γn ∝ (n + 1)−β for β ≤ 1/2. Specifically,
the “critical” value β = 1/2 is again tied to the finite mean squared error hypothesis
(H2): if the players’ gradient measurements have finite moments up to some order
q > 2, a more refined application of Doob’s inequality reveals that (6.5) still holds
under the lighter summability requirement

∑∞
n=0 γ

1+q/2
n < ∞. In this case, the

exponent β = 1/2 is optimal with respect to the guarantee (6.4) and leads to an
almost sure convergence rate of the order of O(n−1/2 log n).

Except for this log n factor, the O(n−1/2) convergence rate of (ML) is the exact
lower complexity bound for black-box subgradient schemes for convex problems
(Nemirovski and Yudin [33]; Nesterov [34]). Thus, running (ML) with a step-size
policy of the form γn ∝ n−1/2 leads to a convergence speed that is optimal in the
mean, and near-optimal with high probability.

6.2. Running length. Intuitively, the main obstacle to achieving rapid conver-
gence is that, even with an optimized step-size policy, players may end up oscil-
lating around an equilibrium state because of the noise in their observations. To
quantify this behavior, we focus below on the running length of (ML), defined as

`n =

n−1∑
k=0

‖xk+1 − xk‖. (6.13)

Obviously, if xn converges to some limit point x∗, a shorter length signifies less
oscillations of xn around x∗; thus, in a certain way, `n is a more refined convergence
criterion than the induced equilibrium gap ε(xn).

Our next result shows that the expected running length of (ML) until players
reach an ε-neighborhood of a (strongly) stable set is at most O(1/ε2):

Theorem 6.4. Suppose that (ML) is run with imperfect gradient information sat-
isfying (H1)–(H2) and a step-size sequence γn such that

∑∞
n=0 γ

2
n <

∑∞
n=0 γn =∞.

If X ∗ is L-strongly stable and `ε is the length of xn until xn gets within ε of X ∗,
we have

E[`ε] ≤
V∗
KL

F0 + (2K)−1V 2
∗
∑∞
k=0 γ

2
k

ε2
. (6.14)

Proof. Define the stopping time nε = inf{n ≥ 0 : dist(X ∗, xn) ≤ ε} so `ε = `nε
.

Then, for all x∗ ∈ X ∗ and all n ∈ N, (4.19) yields

F (x∗, ynε∧n+1) ≤ F (x∗, y0)−
nε∧n∑
k=0

γk〈v(xk) |xk−x∗〉+
nε∧n∑
k=0

γkψk+
1

2K

nε∧n∑
k=0

γk‖v̂k‖2∗.

(6.15)
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Hence, after taking expectations and minimizing over x∗ ∈ X ∗, we get

0 ≤ F0 − Lε2 E

[
nε∧n∑
k=0

γk

]
+ E

[
nε∧n∑
k=0

γkψk

]
+
V 2
∗

2K

∞∑
k=0

γ2k, (6.16)

where we we used the fact that ‖xk − x∗‖ ≥ ε for all k ≤ nε.
Consider now the stopped process Snε∧n =

∑nε∧n
k=0 γkψk. Since nε ∧n ≤ n <∞,

Snε∧n is a martingale and E[Snε∧n] = 0. Thus, by rearranging (6.16), we obtain

E

[
nε∧n∑
k=0

γk

]
≤
F0 + (2K)−1V 2

∗
∑∞
k=0 γ

2
k

Lε2
. (6.17)

Hence, with nε ∧ n → nε as n → ∞, Lebesgue’s monotone convergence theorem
shows that the process τε =

∑nε

k=0 γk is finite in expectation and

E[τε] ≤
F0 + (2K)−1V 2

∗
∑∞
k=0 γ

2
k

Lε2
. (6.18)

Furthermore, by Proposition 3.2 and the definition of `n, we also have

`n =

n−1∑
k=0

‖xk+1 − xk‖ ≤
1

K

n−1∑
k=0

‖yk+1 − yk‖∗ =
1

K

n−1∑
k=0

γk‖v̂k‖∗. (6.19)

Now, let ζk = ‖v̂k‖∗ and Ψn =
∑n
k=0 γk [ζk − E[ζk | Fk]]. By construction, Ψn

is a martingale and E[Ψ2
n] = E[

∑n
k=0 γ

2
k [ζk − E[ζk | Fk]]

2
] ≤ 2V 2

∗
∑∞
k=0 γ

2
k < ∞

for all n. Thus, by the optional stopping theorem (Shiryaev [46, p. 485]), we get
E[Ψnε

] = E[Ψ0] = 0, so

E

[
nε∑
k=0

γkζk

]
= E

[
nε∑
k=0

γk E[ζk | Fk]

]
≤ V∗ E

[
nε∑
k=0

γk

]
= V∗ E[τε]. (6.20)

Our claim then follows by combining (6.19) and (6.20) with the bound (6.18). �

6.3. Fast convergence to strict equilibria. Because of the random shocks in-
duced by the noise in the players’ gradient observations, it is difficult to obtain
an almost sure (or high probability) estimate for the convergence rate of the last
iterate xn of (ML). Specifically, even with a rapidly decreasing step-size policy, a
single realization of the error process ξn may lead to an arbitrarily big jump of xn
at any time, thus destroying any almost sure bound on the convergence rate of xn.

On the other hand, in finite games, Cohen et al. [8] recently showed that logit-
based learning (cf. Algorithm 2) achieves a quasi-linear convergence rate with high
probability if the equilibrium in question is strict. Specifically, if x∗ is a strict Nash
equilibrium and x0 is not initialized too far from x∗, Cohen et al. [8] showed that,
with high probability, ‖xn−x∗‖ = O(−a

∑n
k=0 γk) for some positive constant a > 0

that depends only on the players’ relative payoff differences.
To extend this result to our setting, we employ the characterization of Proposi-

tion 5.2 and define strict equilibria in concave games as follows:

Definition 6.5. We say that x∗ ∈ X is a strict Nash equilibrium of G if

〈v(x∗) |z〉 ≤ 0 for all z ∈ TC(x∗), (6.21)

with equality if and only if z = 0.
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In contrast to finite games, the adjective “strict” above does not directly apply to
the definition (NE) of Nash equilibria, but to their variational characterization (2.8).
The reason for this is that, if a player’s payoff function is (individually) strictly
concave, every Nash equilibrium would satisfy (NE) as a strict inequality, so the
characterization “strict” would offer no new information if it were based on (NE).
In finite games, payoff functions are multilinear, so these two characterizations of
“strictness” coincide (cf. Proposition 5.2); however, in general concave games, it is
the variational characterization (6.21) that is less fragile – and, hence, more suitable
for characterizing equilibria with robust deviation disincentives.

Our next result shows that, with high probability, employing (ML) with surjec-
tive choice maps leads to strict Nash equilibrium in a finite number of steps:

Theorem 6.6. Fix a tolerance level δ > 0 and suppose that (ML) is run with
surjective choice maps and a sufficiently small step-size γn satisfying

∑∞
n=0 γ

2
n <∑∞

n=0 γn =∞. If x∗ is strict and (ML) is not initialized too far from x∗, we have

P(xn converges to x∗ in a finite number of steps) ≥ 1− δ, (6.22)

provided that (H1)–(H4) hold. In addition, if x∗ is also globally stable, xn converges
to x∗ in a finite number of steps from every initial condition (a.s.).

Proof. To begin with, note that v(x∗) lies in the interior of the polar cone PC(x∗)
to X at x∗.10 Hence, by continuity, there exists a neighborhood U∗ of x∗ such that
v(x) ∈ int(PC(x∗)) for all x ∈ U∗. In turn, this implies that 〈v(x) |x − x∗〉 < 0
for all x ∈ U∗ \ {x∗}, i.e. x∗ is stable. Thus, by Theorem 4.11, there exists a
neighborhood U of x∗ such that, under the stated assumptions, xn converges to x∗
with probability at least 1− δ.

Now, let U ′ ⊆ U∗ be a sufficiently small neighborhood of x∗ such that 〈v(x) |z〉 ≤
−a‖z‖ for some a > 0 and for all z ∈ TC(x∗).11 Then, with probability at least 1−δ,
there exists some (random) n0 such that xn ∈ U ′ for all n ≥ n0, so 〈v(xn) |z〉 ≤
−a‖z‖ for all n ≥ n0. Thus, for all z ∈ TC(x∗) with ‖z‖ = 1, we have

〈yn |z〉 = 〈yn0 |z〉+

n−1∑
k=n0

γk〈v(xk) |z〉+

n−1∑
k=n0

γk〈ξk |z〉

≤ ‖yn0
‖∗ − a

n−1∑
k=n0

γk +

n−1∑
k=n0

γk〈ξk |z〉. (6.23)

By the law of large numbers for martingale differences (Hall and Heyde [15, Theorem
2.18]), we also have

∑n−1
k=n0

γkξk/
∑n−1
k=n0

γk → 0 (a.s.), so there exists some n∗ such
that ‖

∑n−1
k=n0

γkξk‖∗ ≤ (a/2)
∑n−1
k=n0

γk for all n ≥ n∗ (a.s.). We thus obtain

〈yn |z〉 ≤ ‖yn0‖∗ − a
n−1∑
k=0

γk +
a

2
‖z‖

n−1∑
k=0

γk ≤ ‖yn0‖∗ −
a

2

n−1∑
k=0

γk, (6.24)

showing that 〈yn |z〉 → −∞ uniformly in z with probability at least 1− δ.
To proceed, Proposition A.1 in Appendix A shows that y∗ + PC(x∗) ⊆ Q−1(x∗)

whenever Q(y∗) = x∗. Since Q is surjective, there exists some y∗ ∈ Q−1(x∗), so
it suffices to show that, with probability at least 1− δ, yn lies in the pointed cone

10Indeed, if this were not the case, we would have 〈v(x∗) |z〉 = 0 for some nonzero z ∈ TC(x∗).
11That such a neighborhood exists is a direct consequence of Definition 6.5.
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y∗+PC(x∗) for all sufficiently large n. To do so, simply note that yn−y∗ ∈ PC(x∗) if
and only if 〈yn−y∗ |z〉 ≤ 0 for all z ∈ TC(x∗) with ‖z‖ = 1. Since 〈yn |z〉 converges
uniformly to −∞ with probability at least 1− δ, our assertion is immediate.

Finally, for the global case, simply recall that xn converges to x∗ with probability
1 from any initial condition by Theorem 4.7. The argument above shows that
xn = x∗ for all large n, so we conclude that xn converges to x∗ in a finite number
of steps (a.s.). �

As we discussed above, Theorem 6.6 extends the results of Cohen et al. [8]
to general concave games that admit a strict equilibrium. In addition, it also
drastically improves on the exponential O(e−a

∑n
k=0 γk) convergence rate of logit-

based learning (Algorithm 2) by showing that convergence can be achieved in a
finite number of steps if players employ surjective choice maps instead.

7. Discussion

A key question in the implementation of mirror descent methods is the optimum
choice of penalty function, which determines the players’ choice maps Qi : Yi →
Xi. From a qualitative point of view, our analysis shows that the specifics of this
regularization process do not matter too much: the convergence results of Sections 4
and 5 hold for all choice maps of the form (3.6). Quantitatively however, the specific
choice map employed by each player impacts the algorithm’s convergence speed, and
different choice maps could lead to vastly different rates of convergence.

As noted above, in the case of strict equilibria, this choice seems to favor nonsteep
penalty functions (that is, surjective choice maps). Nonetheless, in the general case,
the situation is less clear because of the dimensional dependence hidden in the Ω/K
factor that appears e.g. in the mean rate guarantee (6.7). This factor depends
crucially on the geometry of the players’ action spaces and the underlying norm,
and its optimum value may be attained by steep penalty functions – for instance,
the entropic regularizer (3.8) is well known to be asymptotically optimal in the case
of simplex-like feasible regions (Shalev-Shwartz [44, p. 140]).

Another challenge that arises in practice is that players may only be able to
estimate their individual payoff gradients via (possibly imperfect) derivative-free
observations of their realized, in-game payoffs. When this is the case, it is possible
to employ a simultaneous stochastic approximation estimator like the one proposed
by Spall [48] and Flaxman et al. [13]: roughly speaking, the idea there is to estimate
the gradient of an objective function at a given point by sampling it at a nearby,
randomly perturbed point, and then multiply the observed value by this random
perturbation vector. The resulting gradient estimate has bounded variance but it
also introduces a (controllably) small bias, so (H2) holds while (H1) fails – although
only by a hair. We believe our convergence analysis can be extended to this case by
properly controlling this “bias-variance” tradeoff and using more refined stochastic
approximation arguments; we intend to explore this direction in future work.12

12The very recent preprint of Bervoets et al. [4] essentially solves this estimation problem in
(strictly) concave games with one-dimensional action spaces. We believe that the work of Bervoets
et al. [4] provides a very encouraging first step along the direction outlined above.
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Appendix A. Auxiliary results

In this appendix, we collect some auxiliary results that would have otherwise
disrupted the flow of the main text. We begin with the basic properties of the
Fenchel coupling:

Proof of Proposition 4.3. For our first claim, let x = Q(y). Then, by definition

F (p, y) = h(p) + 〈y |Q(y)〉 − h(Q(y))− 〈y |p〉 = h(p)− h(x)− 〈y |p− x〉. (A.1)

Since y ∈ ∂h(x) by Proposition 3.2, we have 〈y |p − x〉 = h′(x; p − x) whenever
x ∈ X ◦, thus proving (4.9a). Furthermore, the strong convexity of h also yields

h(x) + t〈y |p− x〉 ≤ h(x+ t(p− x))

≤ th(p) + (1− t)h(x)− 1
2Kt(1− t)‖x− p‖

2
, (A.2)

leading to the bound
1
2K(1− t)‖x− p‖2 ≤ h(p)− h(x)− 〈y |p− x〉 = F (p, y) (A.3)

for all t ∈ (0, 1]. Eq. (4.9b) then follows by letting t→ 0+ in (A.3).
Finally, for our third claim, we have

F (p, y′) = h(p) + h∗(y′)− 〈y′ |p〉

≤ h(p) + h∗(y) + 〈y′ − y |∇h∗(y)〉+
1

2K
‖y′ − y‖2∗ − 〈y

′ |p〉

= F (p, y) + 〈y′ − y |Q(y)− p〉+
1

2K
‖y′ − y‖2∗, (A.4)

where the inequality in the second line follows from the fact that h∗ is (1/K)-
strongly smooth (Rockafellar and Wets [40, Theorem 12.60(e)]). �

Complementing Proposition 4.3, our next result concerns the inverse images of
the choice map Q:

Proposition A.1. Let h be a penalty function on X , and let x∗ ∈ X . If x∗ = Q(y∗)
for some y∗ ∈ Y, then y∗ + PC(x∗) ⊆ Q−1(x∗).

Proof. By Proposition 3.2, we have x∗ = Q(y) if and only if y ∈ ∂h(x∗), so it suffices
to show that y∗ + v ∈ ∂h(x∗) for all v ∈ PC(x∗). Indeed, we have 〈v |x − x∗〉 ≤ 0
for all x ∈ X , so

h(x) ≥ h(x∗) + 〈y∗ |x− x∗〉 ≥ h(x∗) + 〈y∗ + v |x− x∗〉. (A.5)

The above shows that y∗ + v ∈ ∂h(x∗), as claimed. �

Our next result concerns the evolution of the Fenchel coupling under the dynam-
ics (ML-C):

Lemma A.2. Let x(t) = Q(y(t)) be a solution orbit of (ML-C). Then, for all
p ∈ X , we have

d

dt
F (p, y(t)) = 〈v(x(t)) |x(t)− p〉. (A.6)

Proof. By definition, we have
d

dt
F (p, y(t)) =

d

dt
[h(p) + h∗(y(t))− 〈y(t) |p〉]

= 〈ẏ(t) |∇h∗(y(t))〉 − 〈ẏ(t) |p〉 = 〈v(x(t)) |x(t)− p〉, (A.7)

where, in the last line, we used Proposition 3.2. �
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Our last auxiliary result shows that, if the sequence of play generated by (ML)
is contained in the “basin of attraction” of a stable set X ∗, then it admits an
accumulation point in X ∗:

Lemma A.3. Suppose that X ∗ ⊆ X is stable and (ML) is run with a step-size
sequence such that

∑n
k=0 γ

2
k <

∑n
k=0 γk = ∞. Assume further that (xn)∞n=0 is

contained in a region R of X such that (VS) holds for all x ∈ R. Then, under
(H1) and (H2), every neighborhood U of X ∗ is recurrent; specifically, there exists
a subsequence xnk

of xn such that xnk
→ X ∗ (a.s.). Finally, if (ML) is run with

perfect gradient information (σ∗ = 0), the above holds under the lighter assumption∑n
k=0 γ

2
k

/∑n
k=0 γk → 0.

Proof of Lemma A.3. Let U be a neighborhood of X ∗ and assume to the contrary
that xn /∈ U for all sufficiently large n with positive probability. By starting the
sequence at a later index if necessary, we may further assume that xn /∈ U for
all n without loss of generality. Thus, with X ∗ stable and xn ∈ R for all n by
assumption, there exists some a > 0 such that

〈v(xn) |xn − x∗〉 ≤ −a for all x∗ ∈ X ∗ and for all n. (A.8)

As a result, for all x∗ ∈ X ∗, we get

F (x∗, yn+1) = F (x∗, yn + γnv̂n)

≤ F (x∗, yn) + γn〈v(xn) + ξn |xn − x∗〉+
1

2K
γ2n‖v̂n‖

2
∗

≤ F (x∗, yn)− aγn + γnψn +
1

2K
γ2n‖v̂n‖

2
∗, (A.9)

where we used Proposition 4.3 in the second line and we set ψn = 〈ξn |xn − x∗〉 in
the third. Telescoping (A.9) then gives

F (x∗, yn+1) ≤ F (x∗, y0)− τn

[
a−

∑n
k=0 γkψk
τn

− 1

2K

∑n
k=0 γ

2
k‖v̂k‖

2
∗

τn

]
, (A.10)

where τn =
∑n
k=0 γk.

Since E[ψn | Fn] = 〈E[ξn | Fn] |xn − x∗〉 = 0 and E[|ψn|2 | Fn] ≤ E[‖ξn‖2∗‖xn −
x∗‖2 | Fn] ≤ σ2

∗ ‖X‖
2
<∞ by (H1) and (H2) respectively, the law of large numbers

for martingale differences yields τ−1n
∑n
k=0 γkψk → 0 (Hall and Heyde [15, Theorem

2.18]). Furthermore, letting Rn =
∑n
k=0 γ

2
k‖v̂k‖

2
∗, we also get

E[Rn] ≤
n∑
k=0

γ2k E[v̂k]
2 ≤ V 2

∗

∞∑
k=0

γ2k <∞ for all n, (A.11)

so Doob’s martingale convergence theorem shows that Rn converges (a.s.) to some
random, finite value (Hall and Heyde [15, Theorem 2.5]). Combining the above,
(A.10) gives F (x∗, yn) ∼ −aτn → −∞ (a.s.), a contradiction.

Finally, if σ∗ = 0, we also have ψn = 0 and ‖v̂n‖2∗ = ‖v(xn)‖2∗ ≤ V 2
∗ for all n, so

(A.10) yields F (x∗, yn)→ −∞ provided that τ−1n
∑n
k=0 γ

2
k → 0, a contradiction. �

Finally, we turn to the characterization of strict equilibria in finite games:

Proof of Proposition 5.2. We will show that (a) =⇒ (b) =⇒ (c) =⇒ (a).
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(a) =⇒ (b). Suppose that x∗ = (s∗1, . . . , s
∗
N ) is a strict equilibrium. Then, the

weak inequality 〈v(x∗) |z〉 ≤ 0 follows from Proposition 2.1. For the strict part, if
zi ∈ TCi(x

∗
i ) is nonzero for some i ∈ N , we readily get

〈vi(x∗) |zi〉 =
∑
si 6=s∗i

zi,si
[
ui(s

∗
i ; s
∗
−i)− ui(si; s∗−i)

]
< 0, (A.12)

where we used the fact that zi is tangent to X at x∗i , so
∑
si∈Si zisi = 0 and zisi ≥ 0

for si 6= s∗i , with at least one of these inequalities being strict when zi 6= 0.
(b) =⇒ (c). Property (b) implies that v(x∗) lies in the interior of the polar cone
PC(x∗) to X at x∗. Since PC(x∗) has nonempty interior, continuity implies that
v(x) also lies in PC(x∗) for x sufficiently close to x∗. We thus get 〈v(x) |x−x∗〉 ≤ 0
for all x in a neighborhood of x∗, i.e. x∗ is stable.
(c) =⇒ (a). Assume that x∗ is stable but not strict, so uisi(x∗) = uis′i(x

∗) for some
i ∈ N , and some si ∈ supp(x∗i ), s′i ∈ Si. Then, if we take xi = x∗i + λ(eis′i − eisi)
and x−i = x∗−i with λ > 0 small enough, we get

〈v(x) |x− x∗〉 = 〈vi(x) |xi − x∗i 〉 = λuis′i(x
∗)− λuisi(x∗) = 0, (A.13)

contradicting the assumption that x∗ is stable. This shows that x∗ is strict. �
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