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Abstract: Optimization of the acoustic resonant sensor requires a clear understanding of 

how the output responses of the sensor are affected by the variation of different factors. 

During this work, output responses of a capacitive acoustic transducer, such as membrane 

displacement, quality factor, and capacitance variation, are considered to evaluate the sensor 

design. The six device parameters taken into consideration are membrane radius, backplate 

radius, cavity height, air gap, membrane tension, and membrane thickness. The effects of 

factors on the output responses of the transducer are investigated using an integrated 

methodology that combines numerical simulation and design of experiments (DOE). A 

series of numerical experiments are conducted to obtain output responses for different 

combinations of device parameters using finite element methods (FEM). Response surface 

method is used to identify the significant factors and to develop the empirical models for the 

output responses. Finally, these results are utilized to calculate the optimum device 

parameters using multi-criteria optimization with desirability function. Thereafter, the 

validating experiments are designed and deployed using the numerical simulation to 

crosscheck the responses. 
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1. Introduction 

For many years, acoustic sensors have been used in many civilian and military applications, such as 

in cellular phones, hearing aids, and computers, in addition to high quality studio microphones for sound 

recording [1], sonar for underwater objects detection [2], and in the acoustic sensor systems for target 

acquisition and surveillance purposes [3] etc. An acoustic transducer provides analog output that is 

proportional to the variation of acoustic pressure acting upon a flexible diaphragm. Most familiar 

examples of acoustic sensors are the microphone, earphone etc. There are different types of acoustic 

sensors: namely, piezoelectric, piezoresistive, and capacitive [4]. Among them, capacitive acoustic 

sensors show the highest sensitivity while maintaining low power consumption [5]. Capacitive sensing 

is independent of the base materials and relies on the variation of the capacitance when geometry of a 

capacitor is changing. Furthermore, capacitive acoustic sensor can be used as both an active and passive 

sensing device. 

A capacitive acoustic transducer is an electromechanical-acoustic system. It usually consists of a 

fixed backplate electrode and a flexible diaphragm that acts as a second electrode, separated by a 

dielectric material, such as air, to form a parallel plate capacitor. The deflection of the diaphragm occurs 

due to incident acoustic pressure, thereby providing capacitance variation in response to the change in 

air gap. In general, capacitive acoustic transducer suffers from over-damping, as a thin layer of air is 

trapped in between the electrodes; therefore, capacitive acoustic transducers are usually designed and 

fabricated with porous membranes or/and perforated backplates to reduce the damping effect. 

To date, many capacitive acoustic sensors have been developed, and some of them are commercially 

available. However, its design varies based on the application domains, and the majority of these are 

targeted for audio applications with nearly uniform sensitivity over a relatively wide range of frequencies 

in the human hearing range, 20 Hz–20 kHz [4–10]. 

Recently, a new simplified design concept has been proposed to fabricate a capacitive acoustic 

transducer, which consists of a central cylindrical rigid backing electrode of small radius surrounded by 

a flat annular cavity below a vibrating membrane clamped at its periphery separated by an air gap, which 

provides good sensitivity and a large frequency bandwidth [9,10]. Honzik et al. [9] have reported that 

this design leads to a higher sensitivity, as well as a larger frequency bandwidth. 

A capacitive acoustic sensor, similar to that of a condenser microphone, can also be used as an 

acoustic resonant sensor by modifying different parameters related to the device fabrication. The 

characteristics of the damping material and other geometric parameters determine the transducer 

bandwidth. Generally, transducers respond to incident acoustic pressure over the entire range of relevant 

frequencies, whereas resonant transducers provide higher sensitivity at their natural frequencies. 

The design presented in Figure 1 can be a potential candidate to fabricate a capacitive acoustic 

resonant sensor with good selectivity at a certain frequency. During this work, we investigate the 

possibilities to develop the acoustic resonator based on this simplified design concept. To fulfill the 
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specific system requirement, a capacitive resonant sensor with strong sensitivity at specified frequency 

with narrow bandwidth is desired. To do so, one needs to optimize structural parameters, such as 

membrane radius, backplate radius, air gap, cavity height, membrane thickness, of the design of the 

acoustic sensor (Figure 1). In addition, the membrane tension and material uses to fabricate the device 

needed to be optimized, as well. 

 

Figure 1. Schematic diagram of acoustic transducer.  

As a large number of parameters are involved in acoustic sensor optimization, numerical simulation 

can be a powerful and economical tool for virtual device prototyping. However, the extensive 

computational effort is involved in numerical simulation and thus it usually takes a substantial amount 

of time to complete simulation runs of a complex structure. This paper presents a new design scheme 

for acoustic sensor optimization that combines numerical simulation using the COMSOL Multiphysics 

software and design of experiments (DOE) approach to optimize the acoustic sensor of the proposed 

design to obtain the acoustic resonator. DOE helps to develop a plan of experiments that provides a great 

deal of information about the effect of input parameters on responses. In this scheme, a set of numerical 

experiments is conducted to generate responses. Thereafter, based on the numerical simulation results, 

namely, membrane displacement, capacitance variation, quality factor, etc., the response surface method 

(RSM) is used to derive empirical models for each of the responses, which will later be used for 

optimization process. The empirical model reduces computational efforts in the acoustic sensor 

optimization, since they are far less complex than the original finite element model. 

In case of a single response characteristic, optimization can simply be obtained by determining the 

experimental conditions that satisfied the expected response [11]. However, the performance of a 

capacitive acoustic resonant sensor is often characterized by a group of responses, such as static 

capacitance, capacitance variation, quality factor, etc. If more than one response comes into 

consideration, it is very difficult to select the optimal setting that can achieve all quality  

requirements simultaneously. 

Vogel et al. [12] have applied FEM and a sequential quadratic programming (SQP) method as part 

of the CAPA optimization module to optimize micromachined capacitive ultrasound transducer array 

(CMUT), the design of comb structures for use in acceleration sensors, and the optimization of an 

electrostatic membrane device for an integrated silicone microphone. The SQP method is generally used 

for a nonlinearly constrained optimization problem that approximately solves a sequence of optimization 

subproblems, each of which optimizes a quadratic model of the objective subject to a linearization of the 

constraints. However, it is difficult to implement SQP methods so that exact second derivatives can be 
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used efficiently and reliably [13]. The alternative of this approach, is to make use of a desirability 

function that transforms an estimated response into a scale-free value, known as global  

desirability [11,14,15]. With the multi-objective nature of our problem, desirability function is employed 

during this work to avoid the disadvantages of other methods. 

The objectives of this study are to investigate the effect of different parameters of the transducer on 

the output responses using the numerical analysis and DOE approach, and to optimize device parameters 

to develop acoustic resonator that provides good sensitivity and selectivity. In this regard, the first part 

of this paper is devoted to the theoretical analysis to understand the system, and then the construction of 

the finite element (FE) model of the acoustic sensor (based on the design presented in Figure 1). 

Thereafter, DOE is introduced to achieve greater information about the effects of different input 

parameters on output responses with the least possible number of experiments. Finally, multi-criteria 

optimization is performed to obtain the optimum set of parameters, which is verified using  

numerical simulation. 

2. Theoretical Analysis 

A capacitive acoustic sensor is an electro-mechanical transducer that transforms the mechanical 

deformation of the diaphragm in an output signal. The capacitance (ܥ) of a parallel plate capacitor, with 

a fixed distance between the two electrodes ℎ and area of overlap of the two electrodes plates ܵ, also 

known as effective area, is given by 

0
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=  (1)

where 0ε  represents electric constant ( 112
0 10854.8 −−×= Fmε ) and rε  represents the relative static 

permittivity of the materials between the plates (for a vacuum, 1=rε ). When an external DC voltage 

( ܸ) is applied, an electrostatic force (ܨ௦) as presented by Equation (2), is created across the electrodes 

and induces a membrane deformation. 
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where the expression has been expanded to the first order (Taylor series). Therefore, the capacitance 

variation (ܥ߂) can be obtained by subtracting Equation (4) from Equation (3), 
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=−=Δ  (5)

On the other hand, the total voltage (ܸ) across the capacitor is the sum of the quiescent polarization 

voltage ( ܸ) and the small-signal output voltage ( ܸ௨௧). The charge (ܳ) in the capacitor can be expressed as, 

CVQ =  (6)

Its differentiation is given as: 
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The expression has been expanded to the first order (Taylor series), and the higher order term is 

negligible and thus removed. Based on the analysis, it has been observed that the capacitance variation 

as well as output voltage of the acoustic sensor mainly depends on the membrane displacement. 

Therefore, to improve the sensitivity of the sensor, we have to design the sensor which will provide high 

membrane displacement. 

2.1. Equations Governing the Membrane Displacement 

The equation governing the vibration of the thin circular membrane of thickness ݐ, radius ܴ, and 

density ߩ  under constant radial force per unit length ( ܶ ) acting on its edge, driven by uniform 

harmonic incident acoustic pressure  over the membrane surface, loaded by the pressure field (ݎ), 
also known as reaction pressure at the membrane surface, can be expressed as [9,10,16,17]: 

( ) ( ) ( ) mirm Rr     ,rpprKT <<−=+Δ 02 ξ  (10)

Here, )(rξ being the vertical membrane displacement, ∆  (equals to ∇ଶ ) represents the Laplace 

operator, and ܭଶ defines the wavenumber of the free flexural vibration of the membrane,  
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where, ܿ denotes the speed of sound in the membrane, ߩ௦ being the surface density or mass per unit 

area of the membrane and ߱ is the angular frequency. The membrane is supported on a rigid circular 

frame at its periphery ݎ = ܴ (Dirichlet boundary condition), therefore 

0)( =mRξ  (12)

The reaction pressure (ݎ), loading the diaphragm, is due to the underlying air layer squeezed in the 

air gap and in the annular cavity under the membrane, where 
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Here, )(rpg and )(rpc  represent the pressure in the air gap and the pressure in the cavity volume 

which is assumed to be quasi-uniform, respectively, and ܴ represents the effective radius and is equal 

to the radii of the backplate electrode (ܴ). 

The incident acoustic signal (with the time factor given by tje ω ) triggers the membrane displacement 
)(rξ , which is assumed to be small and harmonic ( tjer ωξ )( ). The membrane displacement gives rise to 

the motion of the air in the domain below the circular membrane, composed of the air gap and annular 

cavity. It is assumed that the pressure variation in air gap and cavity region are constant throughout the 

thickness of the fluid film; it depends only on the tangent coordinate ݎ. As the pressure variation does 

not depend on the ݖ-coordinate, the ݖ-component of the particle velocity (ߥ) can be neglected. On the 

other hand, the temperature variation (߬), depends on both coordinates ݎ and ݖ, which is approximately 

proportional to the pressure variation outside the boundary layers. The temperature variation vanishes at 

the interfaces between the fluid layer and the membrane ݖ = 0, and between the fluid layer and the 
backing electrode ghz −= . Thus the boundary conditions associated with the system are, 

0),()0,( ,),(),( =−= cgcgrcgr hrvrv
 
and 0),()0,( ,,, =−= cgcgcg hrr ττ  (14)

The solution of the mean displacement of the circular membrane over the backplate electrode driven 

by the constant incident pressure  due to the sound field can be expressed as follows [9,10]:  
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2.2. Pressure Sensitivity 

The sensitivity level (ܮ) of the acoustic sensor for the given polarization voltage ܸ, represents the 

relation between the input pressure and the output voltage, and can be expressed as follows: 
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2.3. Resonance Frequency 

The selectivity of the acoustic resonant sensor depends on its natural frequency or resonance 

frequency. At resonance frequency, all parts of the membrane vibrate sinusoidally with the same 
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frequency and with a fixed phase relation, which provides maximum displacement of membrane and is 

known as normal mode of vibration. Resonance frequencies of the membrane in vacuum are solely 

determined by its physical dimensions and mechanical constants: namely, Young’s modulus, density of 

the membrane materials, size of membrane, and boundary conditions. As the maximum membrane 

displacement occurs at resonance frequency, it leads to the maximum sensitivity for the capacitive 

acoustic sensor. The natural frequencies of the pre-tensioned circular vibrating membrane in vacuum is 

given by [18,19], 
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The values ݇  are derived from the roots of the Bessel functions of the first kind. The natural 

frequencies of vibration and mode shapes are identified by two integers (݅, ݆) that characterize the mode 

shape. The index ݅ = 1, 2, 3, . .. corresponds to the number of circumferential lines (with ݎ =  on (.ݐݏ݊ܿ

the membrane that have zero displacement, while ݆ = 	0, 1, 2, … corresponds to the number of diametral 
lines (with ߠ =  that have zero displacement. The values ݇ for the first six modes are listed in (.ݐݏ݊ܿ

Table 1. 

Table 1. Values of ݇ derived from the roots of the Bessel functions of the first kind for 

first six modes. 

Mode Number Factor 

1 k10 = 2.4048 
2 k11 = 3.8317 
3 k11 = 3.8317 
4 k12 = 5.1356 
5 k12 = 5.1356 
6 k20 = 5.5201 

However, in the case of a capacitive acoustic resonator, the membrane is usually loaded with an air 

cavity rather than vibrating in free space [20]. The presence of the cavity generally detunes the membrane 

resonance [21]. The shifts of first resonance frequency of the system towards the higher frequency than 

that of the membrane in vacuum occurs due to viscous damping and acoustic stiffness of the cavity. 

2.4. Quality Factor 

The quality factor (ܳ ), which is related to the energy loss of the vibrating diaphragm [22], is 

characterized by a resonator’s bandwidth relative to its center frequency. Generally, in frequency 

domain, ܳ-factor is expressed as, 

ω
ω
Δ

=
Δ

= rr
f f

f
Q  (18)

where, ݂ is the resonance frequency, ∆݂ is the half-power bandwidth (i.e., the bandwidth over which 

the power of the vibration is greater than half the power at the resonance frequency), ߱ = ߨ2 ݂ is the 

angular resonance frequency and ∆߱ the angular half power bandwidth. 
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High ܳ value represents low damping, which indicate low rate of energy loss relative to the stored 

energy of the resonator [23,24]. ܳ-factor is inversely proportional to the damping coefficient of the 

oscillating system and define as [23], 

r

r
f

Km
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W
Q

γωγ
ωπ ==

Δ
= 2  (19)

where ܹ is the total energy stored in the resonator, ∆ܹ is the sum of the energy loss per cycle, ܭ is the 

spring constant of the resonator, ߛ  is the coefficient of the damping force, and ݉  is the mass of  

the oscillator. 

Thus, in the case of the acoustic resonator, higher ܳ-factor represents high selectivity. The ܳ-factor 

of the system can be improved by enhancing the total stored energy, while reducing the energy loss  

per cycle. 

3. Numerical Simulation 

3.1. Finite Element Model (FEM) 

The capacitive acoustic sensor works by transforming the mechanical deformation of the thin 

membrane (diaphragm), induced by an external incident pressure, into an AC voltage signal. Numerical 

simulation is performed using finite element method (FEM) not only to understand but also to quantify 

the effect of different input parameters on the membrane displacement, capacitance variation, ܳ-factor 

etc. The finite element simulation of the acoustic sensor is a moving boundary problem, in which the 

computational air domain within the sensor changes continuously, because of membrane vibration under 

harmonic acoustic wave. Three-dimensional (3D) FEM model is developed using half-slice of the air 

domain (symmetrical part), as illustrated in Figure 2, to reduce the computational time. 

 

Figure 2. Schematic diagram of top view of the proposed acoustic sensor after removing  

the diaphragm. 
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Figure 3 illustrates the half-slice of the 3D air domain with finite element mesh, which was solved 

considering the periodicity and symmetry of the boundary value. The custom mesh is used in such a way 

that it resolves the acoustic boundary layer for the frequency range of 0 Hz to 250 kHz without mesh 

regeneration. The physical parameters of the air and the membrane materials are given in Table 2. 

 

Figure 3. Half-slice of air domain (symmetrical part) of the acoustic sensor with finite 

element mesh. 

Table 2. List of parameters of the thermoviscous fluid (air) and material properties of  

the membrane. 

Parameter Value Unit 

Bulk viscosity (μ) 10 × 10−6 Pa·s 
Gas constant (ܴ௦) 281.4 J/(kg·K) 

Density of Membrane (ߩ) 1390 kg/m3 
Young’s modulus of membrane (ܧ) 4 × 109 Pa 

Poisson’s ratio of membrane (߭) 0.38 - 

 

Figure 4. Measured displacement field of the membrane of the acoustic sensor at first 

resonance frequency ( ݂ 	= 16,737 Hz) for ܴ	= 5 mm, ܴ	= 0.75 mm, ℎ	= 3000 µm, 	ℎg = 30 µm, ܶ	= 500 N/m and ݐ	= 8 µm. 
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The resulting finite element model with fully coupled thermoacoustic, electrostatic, moving mesh and 

membrane physics interface was solved using the linear-perturbation solver, PARDISO, in the frequency 

domain. Solution of the numerical simulation provides the membrane displacement with respect to 

frequencies. Figure 4 presents the membrane displacement at first resonance frequency ( ݂). 

COMSOL Multiphysics software (version 4.4) is used to perform 3D numerical simulation. All the 

numerical works have been executed on a workstation, DELL PRECISION T7600, having 32 Gigabytes 

RAM and 16 cores (two 3.1 GHz eight-core Intel Xeon E5-2687W processors). 

The validation of the numerical model is checked by comparing the maximum membrane 

displacement of the numerical analysis with that of the theoretical analysis as presented in Equation (15). 

The results show proximate similarity as depicted in Figure 5. A little shift of the resonance frequency 

and a slightly smaller magnitude of the membrane displacement are obtained in the FEM results. They 

are caused by the presence of the interconnection channel to electrically connect the bottom electrode 

with the outside and venting hole in the geometry as it is in the real device; whereas for simplicity the 

effect of the interconnecting channel and venting hole are not considered in the theoretical analysis. 

 

Figure 5. Comparison of the membrane displacement of theoretical and numerical analysis 

of the acoustic transducer (for ܴ= 5 mm, ܴ= 0.75 mm, ℎ= 3000 µm, ℎg = 30 µm,  ܶ	= 500 N/m and ݐ	= 8 µm). 

3.2. Selection of Parameters and Responses 

Based on the theoretical analysis and the device structure, several parameters, such as membrane 

radius (ܴ), bottom electrode radius (ܴ), cavity height (ℎ), air gap (ℎg), membrane tension ( ܶ), 

membrane thickness (ݐ), materials properties (e.g., Young’s modulus, density of the materials and 

Poisson ratio), and the venting hole geometry, are involved with device performance. During this study, 

geometry of the venting hole was kept unchanged and the polyethylene terephthalate (PET) thin film 

was used as a membrane material, whose properties are listed in Table 2. Thus venting-hole geometry 

and material properties were omitted from the further analysis. 

The static capacitance of the system is generally determined by the effective surface area of the 

electrodes and air gap, whereas the quality factor depends on the damping loss mechanism that is related 
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to the device geometry. On the other hand, the sensitivity of the acoustic sensor, such as capacitance 

variation, is basically driven by the membrane displacement. Therefore, the first step of this work is 

identification of major input parameters that strongly influence the membrane displacement and quality 

factor. In this regard, the classic one-variable-at-a-time method is used, where the effect of individual 

parameter on the membrane displacement at first resonance frequency was studied for a fixed set of other 

parameters at some nominal value using numerical simulation. The process is repeated for each of the 

parameters involved in the study until all the parameters have been studied. 

 

Figure 6. Effect of individual input parameter on the membrane displacement (other 

parameters kept at constant value: ܴ	= 5 mm, ܴ	= 0.75 mm, ℎ	= 3000 µm, ℎg = 30 µm, ܶ	= 500 N/m and ݐ	= 8 µm). 

It has been observed that the increase of the membrane displacement and quality factor, and shift of 

the resonance frequency are observed for the increasing membrane radius, as shown in Figure 6A. On 

the other hand, the increase of the bottom electrode radius leads to reduction of membrane displacement 

and quality factor (Figure 6B). Figure 6C illustrates the effect of cavity height on the membrane 

displacement. Large cavity height helps to reduce the air damping in the cavity and thus helps to increase 
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the membrane displacement and quality factor. Similarly, increase in air gap provides higher membrane 

displacement and quality factor (Figure 6D); however, the increase in air gap leads to the lower static 

capacitance. In addition, as shown in Figure 6E, higher membrane tension reduces the membrane 

displacement, and also shifts the resonance at a higher frequency. Thickness of the membrane also affects 

the membrane displacement and the resonance frequency (Figure 6F). 

Based on the initial tests, it has been observed that all six input parameters, namely ܴ, ܴ, ℎ, ℎg, ܶ  and ݐ , have some influence on the membrane displacement and ܳ-factor, and therefore on the 

output responses. Moreover, to achieve better selectivity, the sensitivity at other natural frequencies than 

the first resonance frequency has to be reduced. Therefore, in order to study and eventually to optimize 

the capacitive acoustic resonator to fulfill the requirements, several output responses, specifically static 
capacitance (ܥ), membrane displacement at first resonance (|˂ξSe˃|fr1), quality factor (ܳ), capacitance 

variation ( ܥ∆ ), and membrane displacement at second resonance (|˂ξSe˃|fr2) were studied for  

each experiment. 

However, the one-variable-at-a-time approach cannot predict the interaction between the factors. In 

addition, this approach is not applicable for multiple response problems, and does not permit the 

construction of a model for the system [25]. Therefore, the study of the influence of all the input 

parameters and their interactions, and the optimization of the system requires methodical experimental 

strategies based on DOE. A good experimental strategy will provide the necessary information to 

estimate effects of factors and to develop empirical models for each system outputs and to optimize the 

multiple responses simultaneously to fulfill the objectives. 

4. Experimental Design 

DOE provides a systematic way to study the effects of the input variables of a system or process, also 

known as factors, on outputs or responses. It is an effective tool for maximizing the amount of 

information gained from a study while minimizing the number of tests to be performed. In practice, DOE 

is applicable to both physical processes and numerical simulation models [26,27]; however, unlike 

physical measurement, numerical experimentation is not subject to noise or uncertainty [28,29]. 

Compared to other experimental strategies, namely one-variable-at-a-time and sequential simplex, 

RSM is intended to predict the response with a good quality all over the experimental domain. RSM 

approach has four basic steps: the data collection according to an experimental design, an empirical 

model (e.g., polynomial), calculation by least squares regression for each of the responses, generation 

of response surface contour plots or maps that are examined to the region of the desired response, and 

finally, the experimental verification of the predicted optimum [25]. DOE coupled with RSM can 

achieve rapid process development for minimal cost. 

The selection of appropriate experiments is very important to build a reliable response surface model 

and therefore on its precise prediction [30]. According to the postulated model, there are different 

optimal design of experiments with a guarantee of good prediction in the domain of interest. One of the 

best known for a second-order model is the class of central composite design (CCD), consisting of a 

two-level complete or fractional factorial design, an “axial” design, and center points [30]. 

A series of FEM analyses of an acoustic sensor based on DOE have been performed to investigate 

the possibility of determining the optimal set of parameters to fabricate a sensor with optimum sensitivity 
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and selectivity. The optimization is carried out to maximize the membrane displacement at first 

resonance frequency of the system, while minimizing the membrane displacement at other frequencies. 

The feasible domain is defined by the six factors, namely ܴ, ܴ, ℎ, ℎg, ܶ, and ݐ. The ranges of the 

six factors used in the numerical experiments are presented in Table 3; these values were selected based 

on the process capabilities of our equipment to fabricate devices. 

Table 3. List of experimental variables (factors) and their ranges. 

Factors Code Range 

Membrane Radius (ܴ) ݔଵ 4–10 mm 
Bottom Electrode Radius (ܴ) ݔଶ 0.25–3 mm 

Cavity Height (ℎ) ݔଷ 1000–4000 μm 
Air gap (ℎg) ݔସ 3–80 μm 

Membrane Tension ( ܶ) ݔହ 100–3000 N/m 
Film Thickness (ݐ) ݔ 8–25 μm 

The variation domains of the six factors define a hypercube in six dimensions, and a second-order 

model was postulated to represent the evolution of the responses in this domain and optimize the acoustic 

resonant sensor. To estimate the coefficients of the model, a CCD was built with some additional points 

corresponding to a space-filling design to cover the entire domain. A total of 62 experiments were 

employed and listed in Table 4. These experiments were performed using numerical simulation, and for 
each experimental run, ܥ , |˂ξSe˃|fr1, ܳ ܥ∆ ,  and |˂ξSe˃|fr2 were collected for further analysis and 

empirical model building. During this study, “nemrodW” statistical software [31] is used to develop 

experimental strategies and search for optimal settings. 

Table 4. DOE Table for acoustic sensor study. 

N°Exp Rm Rb hc hg Tm tm N°Exp Rm Rb hc hg Tm tm 

 mm mm µm µm N/m µm  mm mm µm µm N/m µm 

1 4 0.25 1000 3 3000 8 32 10 3 4000 80 100 25 

2 10 0.25 1000 3 100 8 33 10 0.25 1000 3 3000 25 

3 4 3 1000 3 100 8 34 4 3 1000 3 3000 25 

4 10 3 1000 3 3000 8 35 4 0.25 4000 3 3000 25 

5 4 0.25 4000 3 100 8 36 10 3 4000 3 3000 25 

6 10 0.25 4000 3 3000 8 37 4 0.25 1000 80 3000 25 

7 4 3 4000 3 3000 8 38 10 3 1000 80 3000 25 

8 10 3 4000 3 100 8 39 10 0.25 4000 80 3000 25 

9 4 0.25 1000 80 100 8 40 4 3 4000 80 3000 25 

10 10 0.25 1000 80 3000 8 41 10 1.625 2500 41.5 1550 16.5 

11 4 3 1000 80 3000 8 42 7 0.25 2500 41.5 1550 16.5 

12 10 3 1000 80 100 8 43 7 1.625 1000 41.5 1550 16.5 

13 4 0.25 4000 80 3000 8 44 7 1.625 2500 3 1550 16.5 

14 10 0.25 4000 80 100 8 45 7 1.625 2500 41.5 100 16.5 

15 4 3 4000 80 100 8 46 7 1.625 2500 41.5 3000 16.5 
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Table 4. Cont. 

N°Exp Rm Rb hc hg Tm tm N°Exp Rm Rb hc hg Tm tm 

16 10 3 4000 80 3000 8 47 5.9 1.322 2266 36.9 1407 15.8 

17 4 1.625 2500 41.5 1550 8 48 8.1 1.322 2266 36.9 1407 15.8 

18 10 1.625 2500 41.5 1550 8 49 7 2.231 2266 36.9 1407 15.8 

19 7 0.25 2500 41.5 1550 8 50 7 1.625 3202 36.9 1407 15.8 

20 7 3 2500 41.5 1550 8 51 7 1.625 2500 60.1 1407 15.8 

21 7 1.625 1000 41.5 1550 8 52 7 1.625 2500 41.5 2265 15.8 

22 7 1.625 4000 41.5 1550 8 53 7 1.625 2500 41.5 1550 20.8 

23 7 1.625 2500 3 1550 8 54 4 0.5 1000 80 100 8 

24 7 1.625 2500 80 1550 8 55 4 0.5 4000 80 3000 8 

25 4 0.25 1000 3 100 25 56 10 0.5 4000 80 100 8 

26 10 3 1000 3 100 25 57 7 0.5 2500 41.5 1550 8 

27 10 0.25 4000 3 100 25 58 7 0.5 2500 80 1550 8 

28 4 3 4000 3 100 25 59 4 0.5 4000 80 100 25 

29 10 0.25 1000 80 100 25 60 4 0.5 1000 80 3000 25 

30 4 3 1000 80 100 25 61 10 0.5 4000 80 3000 25 

31 4 0.25 4000 80 100 25 62 7 0.5 2500 60.1 1407 15.8 

5. Result and Discussion 

5.1. Empirical Model Building and Analysis 

To perform data analysis, the experimental data are first transformed into logarithmic scale to get 

symmetric distribution. The coefficients of the models are then estimated using common regression 

analysis techniques [27,32] to solve ࢄଶ×ଶ଼ࢼଶ଼×ଵ =  indicates the matrix of factors and ࢄ ଶ×ଵ, whereݕ

factor interactions, vector ݕ is the experimental results for one response in logarithmic scale, and vector ࢼ is the unknown coefficients. Generally, ࢼ is estimated by resolving the linear system of equations, and 

can be expressed as ࢼ =  ,where “ܶ” and “−1” represent the transpose and inverse matrix ,ݕࢀࢄଵି(ࢄࢀࢄ)

respectively. Once the coefficients are computed, the equation of the empirical model for each response 

is entirely defined. For simplicity only the most significant terms of the empirical models are mentioned 

in the Equations (20) to (24) below, although each second order polynomial response equation consists 

of 28 terms. 

ܻ = 0.29743 + ଵݔ0.09489 + ଶݔ0.61423 − ସݔ0.71485 − ଵଶݔ0.04947 − +ଶଶݔ0.09846 ସଶݔ0.43464 −  ଶݔଵݔ0.08399
(20)

|ܻ〈కೄ〉|ଵ = 1.28557 + ଵݔ0.22517 − ଶݔ0.87877 + ଷݔ0.25368 + −ସݔ0.95558 ହݔ0.24669 + ݔ0.11454 + ଶଶݔ0.51751 − ସଶݔ0.46702 − +ହଶݔ0.29140 ଶݔଵݔ0.14770 + ଷݔଵݔ0.18454 − ଷݔଶݔ0.06673 − +ସݔଶݔ0.19040 ହݔଵݔ0.09034 + ହݔଶݔ0.11223 − ହݔଷݔ0.06130 + +ݔସݔ0.06152  ݔହݔ0.13720

(21)
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ொܻ = 1.16077 − ଶݔ0.45781 + ଷݔ0.09958 + ସݔ0.12209 + ݔ0.09090 + −ଶଶݔ0.75406 ଷଶݔ0.31853 + ଶݔଵݔ0.24556 + ଷݔଵݔ0.30512 − ଷݔଶݔ0.19310 − −ସݔଶݔ0.61056 ସݔଷݔ0.16106 − ହݔଵݔ0.19291 + ହݔଶݔ0.15244 + ହݔଷݔ0.19565 + +ହݔସݔ0.36619 ݔଶݔ0.12421 +  ݔସݔ0.17754

(22)

∆ܻ = −0.11475 + ଵݔ0.24282 + ଶݔ0.16241 + ଷݔ0.26101 − −ସݔ0.44159 ହݔ0.24636 + ݔ0.11822 + ସଶݔ0.64695 + ଶݔଵݔ0.15244 + −ଷݔଵݔ0.19087 ସݔଶݔ0.20920 + ହݔଵݔ0.09150 + ହݔଶݔ0.11199 +  ݔହݔ0.14269

(23)

|ܻ〈కೄ〉|ଶ	 = 0.43405 + ଵݔ0.24954 − ଶݔ0.61280 + ସݔ0.44395 − −ହݔ0.40514 ସଶݔ0.76316 + ଶݔ0.45812 − ଷݔଶݔ0.11145 + +ସݔଶݔ0.21407 ହݔଶݔ0.14111 − ହݔଷݔ0.15529 − ହݔସݔ0.24556 −  ݔହݔ0.24635

(24)

where YC0, Y|˂ξse˃|fr1, YQf, Y∆C and Y|˂ξse˃|fr2 represent the empirical models of the responses for ܥ , 
|˂ξSe˃|fr1, ܳ, ∆ܥ and |˂ξSe˃|fr2, respectively, and ݔଵ, ݔଶ, ݔଷ, ݔସ, ݔହ, and ݔ are the coded values of ܴ, ܴ, ℎ, hg, ܶ and ݐ, respectively. 

Table 5. Analysis of variance (ANOVA) table of estimated models. 

Model Source of Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

Ratio Sig. 

Y
C

0 
=

 L
og

(C
0)

 Regression 42.2128 27 1.5634 6205.1558 <0.01 

Residuals 0.0076 30 0.0003   

Total 42.2204 57    

R-Squared (R2) 1     

Adj. R-Squared (Ra
2) 1     

Y
|˂
ξS

e˃
|f

r1
 =

 
L

og
(|
˂
ξ S

e˃
| fr

1)
 Regression 99.2762 27 3.6769 112.9190 <0.01 

Residuals 1.0094 31 0.0326   

Total 100.2856 58    

R-Squared (R2) 0.990     

Adj. R-Squared (Ra
2) 0.981     

Y
Q

f =
 L

og
(Q

f) Regression 37.0305 27 1.3715 20.3269 <0.01 

Residuals 2.0242 30 0.0675   

Total 39.0546 57    

R-Squared (R2) 0.948     

Adj. R-Squared (Ra
2) 0.902     

Y
∆

C
 =

 L
og

(∆
C

) Regression 24.8283 27 0.9196 14.0307 <0.01 

Residuals 2.0317 31 0.0655   

Total 26.8600 58    

R-Squared (R2) 0.924     

Adj. R-Squared (Ra
2) 0.858     

Y
|˂
ξS

e˃
|f

r2
 =

 
L

og
(|
˂
ξ S

e˃
| fr

2)
 Regression 43.6303 27 1.6159 18.1856 <0.01 

Residuals 2.7546 31 0.0889   

Total 46.3849 58    

R-Squared (R2) 0.941     

Adj. R-Squared (Ra
2) 0.889     
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To evaluate the significance of empirical models, analysis of variance (ANOVA) [33] is employed. 
The evaluated ANOVA of the model for logarithm of ܥ , logarithm of |˂ξSe˃|fr1, logarithm of ܳ , 

logarithm of ∆ܥ, and logarithm of |˂ξSe˃|fr2 are summarized in Table 5, respectively. The column “Sig.” 

represents the p-values of the null hypothesis, which indicates the significance of the relation between 

factors and response, i.e., the model significance. With the p-values being less than 0.01 in all five 

models, it can be concluded that the five response surface models are statistically significant with 99% 

confidence level. Furthermore, the goodness of the fit of the regression model is measured by R-Squared 

(ܴଶ) and adjusted R-squared (ܴଶ) values, which indicate the amount of variability in the response 

explained by the factors and range from 0 to 1. Therefore, the larger value is desirable. For all the models, ܴଶ-values are closer to 1, thereby indicating that the regression line perfectly fits the data. On the other 

hand, ܴଶ-value provides the predictive accuracy. From the table, it has been observed that the value of ܴଶ and ܴଶ are very close to each other, suggesting that the models for all responses are adequately 

reproducing the experimental data. This approach ensures the inclusion of only those variables that have 

a significant effect in the statistical model. 

To further check the model behavior, response surface plots can provide a quick view to observe the 

maximum membrane displacement at first resonance frequency and the ܳ-factor for different values of 

factors and help to identify the type of interactions between these factors. Only two factors can be 

displayed on a plot while other factors are kept at constant levels at a central value. For example, the 3D 

graphical representations of the response surface of maximum membrane displacement at first resonance 

frequency and quality factor are illustrated in Figures 7 and 8. 

 

Figure 7. Response surface plots of logarithm of maximum membrane displacement at first 

resonance frequency (Log (|˂ξSe˃|fr1)) in different planes with respect to other factors kept 

constants at the central values. 
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Figure from 7A to 7E illustrate the interaction among different factors on the maximum membrane 

displacement at first resonance frequency for a fixed set of other factors at central values of their 

respective variation domain. It has been observed that all the six parameters, and some of the quadratic, 

as well as interaction between those parameters, have the strongest influence on the membrane 

displacement as presented by Equation (21). On the other hand, Figure 8A–E show the interaction of 

different factors on the quality factor of the membrane displacement at first resonance while other factors 

fixed at central levels. Observation reveals that the ܳ-factor has been influenced by linear terms ܴ, ℎ, ℎg, ݐ, quadratic terms ܴଶ, ℎଶ, and interaction terms ܴܴ, ܴℎ , ܴ ܶ, ܴℎ , ܴℎg, ܴ ܶ, ܴݐ, ℎℎg, ℎ ܶ, ℎg ܶ, ℎgݐ etc. The response surface plots also show the local maxima and minima of the 

responses in terms of different factors within their investigated ranges. As an example, membrane 

displacement of an acoustic resonator can be maximized by increasing the value of ܴ, ℎ, ℎg and ݐ, 

and by reducing the value of ܴ and ܶ as illustrated by red color zone in Figure 7. 

 

Figure 8. Response surface plots of logarithm of quality factor (Log(Qf)) in different planes 

with respect to other factors kept constant at the central values. 

5.2. Optimization Process 

As observed, the effects of factors are not only additive but also interactive. The presence of 

interaction effects makes it imperative that all the factors be optimized simultaneously to determine the 

best compromise and multi-criteria optimization is necessary. Desirability function approach is 

employed to achieve simultaneous optimization in our multi-response problems. In this approach, an 

objective function, also known as desirability function, is used to transform the existing values of the 
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considered response in to a scale-free value called desirability. The desirability lies between 0 and 1 and 

it represents the closeness of a response to its ideal value. 

Multi-response optimization problem generally involves several processing steps after the models 

being fitted with the experimental data. Initially, the desirability index (݀ ) was defined for each 

response, based on the part of desirability function as presented in Equations (25) to (27), for the cases 

of bilateral desirability function, maximization and minimization [11,15]. 
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where “ܽ” represents the lower tolerance limit, “ܾ” represents the upper tolerance limit, and “ܽଵ and ܾଵ” 

represent the target interval. The ݓ  ଶ in Equations (25) to (27) represent the consideredݓ ଵ andݓ ,

weights. Shape of desirability functions are respectively illustrated in Figure 9. 

 

Figure 9. Schematic diagram of different desirability functions: (A) bilateral desirability 

function, (B) maximization and (C) minimization. 

Global desirability is then calculated by accumulating the “ ݊ ” individual desirability values 

corresponding to the “݊” studied responses, as follows, 
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Here, ܦ  is the global desirability, ݀ ’ represents the respective individual desirability, and ∑ݓ	represents the total weight. 

Thereafter, the optimum combination of levels of parameters is determined based on the highest 

global desirability value. Finally, the response of the sensor based on the optimum level of parameters 

is predicted and validated. 

In this study, the optimization is performed to obtain an acoustic resonant sensor, whereby the  ܳ-factor and capacitance variation are maximized, while the value of static capacitance is held within 

the fixed value range and the membrane displacement at second resonance frequency is minimized to 

achieve better selectivity. Table 6 represents the list of optimization criteria and the desirability functions 

for responses that have been used during the optimization process. Figure 10A–10D illustrate the 

desirability functions. 

Table 6. Optimization criteria and desirability functions for the optimization of an acoustic 

resonant sensor. 

Response 
(unit) 

Partial 
Desirability 

Code 
Functions 

Weight 
(wi) 

a b 
Predicted 
Response 

Partial 
Desirability 

C0 (pF) d1 Bilateral 1 0.5 3.2 0.5 100% 
Qf d2 Maximization 1 25 1450 210 52.4% 

∆C (fF) d3 Maximization 1 1 36 1.72 15.1% 
|˂ξSe˃|fr2(nm) d4 Minimization 1 0.03 3 1.12 21.3% 

 

Figure 10. Desirability functions for multi-criteria optimization of acoustic resonant sensor 
(for (A) 0.5 ≤ ܥ ≤ 3.2 pF; (B) ܳ ≥ 25; (C) ∆1 ≤ ܥfF; (D) |˂ξSe˃|fr2 ≤ 3 nm). 
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The solution found based on multi-criteria optimization is presented by response surface of global 

desirability with respect to different planes in Figure 11A–E, where white region represents the 

acceptable zone that satisfies all the criteria. Finally, the global desirability is evaluated based on which 

optimum level of parameters is decided to satisfy the desirability. The estimated set of optimized 

parameters based on multi-criteria optimization is listed in Table 7, which provides the global 

desirability of 36%. 

 

Figure 11. Optimum zone for acoustic resonant sensor with desired responses. 

Table 7. Set of optimized parameters based on multi-criteria desirability functions optimization. 

Factor Value 

Membrane radius (ܴ) 8.1 mm 
Backplate radius (ܴ) 0.871 mm 

Cavity height (ℎ) 3987 µm 
Air gap (ℎg) 80.0 µm 

Membrane tension ( ܶ) 2158 N/m 
Membrane thickness (ݐ) 19.8 µm 

5.3. Verification 

Once the optimum set of parameters is determined, the numerical analysis has been performed to 

verify the responses of the acoustic sensor with optimum parameters. Figure 12 shows the maximum 

membrane displacement of the acoustic resonant sensor with respect to frequencies. It has been observed 

according to numerical analysis that the acoustic sensor with a set of optimum parameters provides good 

sensitivity and selectivity, with static capacitance (ܥ) of 0.50 pF, capacitance variation (∆ܥ) of 2.6 fF, 
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and ܳ-factor (ܳ) of 522, alone with capacitance ratio (∆ܥ/ܥ) of 0.52% at first resonance frequency of 

the acoustic sensor for an incident acoustic pressure level of (or equal to) 80 dBSPL. 

 

Figure 12. Maximum membrane displacement of the acoustic resonant sensor with set of 

optimum parameters. 

6. Conclusions 

Numerical simulation and the DOE approach can be used to investigate the virtual prototyping of an 

acoustic sensor to understand the linear, quadratic, and interaction effects of different parameters on the 

outputs of the sensor. DOE helps to reduce the computation efforts in the acoustic resonant sensor 

optimization process since the empirical model is far less complex than the numerical simulation. RSM 

helps to develop empirical model for each response. It has been observed that the maximum membrane 

displacement at first resonance frequency and quality factor are influenced by several linear, quadratic, 

and interaction terms. Based on the empirical model, the region of the optimum set of parameters for an 

acoustic resonant sensor was obtained using multi-criteria optimization. During this work, global 

desirability of 36% was achieved. Cross-verification using numerical simulation shows that the 

capacitance of 0.50 pF, capacitance variation of 2.6 fF, and quality factor of 522 can be achieved. Hence, 

the optimum set of parameters satisfies the targeted output response of the acoustic resonator. 
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