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Abstract 
Due to the social, economical and environmental impacts associated with waste management, it is necessary to 

move towards decision-making approaches which integrate each one of these aspects. Currently, the 

recommended approaches are rather static and linear in their application; furthermore, they do not allow an 

optimal use of the available materials. Consequently, the choice for a waste management process is often based on 

fixed parameters, while the systems are in constant evolution. But actually, the validity of the prioritization of a 

waste treatment process is directly related to the impacts associated with the length of paths, means of transport 

and characteristics of the road chosen. The available tools however neglect this dynamic aspect, which is critical to 

reduce the load of the studied system. In order to guarantee a sustainable and dynamic waste management, DWM 

suggests an evolutionary new approach which maintains a constant flow towards the most favourable waste 

treatment processes (facilities) within a system. To do so, the DWM is based on the law of conservation of energy, 

which allows balancing a network while considering the constraints associated with transport. To demonstrate the 

scope of the DWM, the following article outlines the approach and then presents an example of its application.  

 

Keywords: Waste management, decision-making tool, model simulation, systemic approach, integrated 

management, law of conservation of energy. 

Introduction 
Faced with problems associated with the exploitation of natural resources, industrialized countries now aim to 

achieve sustainable waste management. In spite of various tools developed to support the decision-making process 

of a waste management process, none combine the concepts of systemic analysis and impact minimization in a 

global and dynamic way (Woolridge et al., 2005, Ishii et al., 2010). Waste management must go beyond simply 

reducing the buried or incinerated volume; it must seek social acceptability, economical profitability and 

environmental compatibility, while supporting a responsible and equitable evolution of the society (Morrissey et 

al., 2004, Ghinea et al., 2012, Pires et al., 2011). In order to recommend the most adequate waste management 

processes, the specific needs of a society must be determined. To do so, decision makers require tools which will 

allow them to foresee the volume of waste, to warrant a constant and sufficient supply to the facilities and to 

determine the most appropriate site for the facilities (Gautam et al., 2005, Eskandari et al., 2012). 

HĂǀŝŶŐ ďĞĞŶ ĐƌŝƚŝĐŝǌĞĚ ŶƵŵĞƌŽƵƐ ƚŝŵĞƐ͕ ƚŚĞ ƚƌĂĚŝƚŝŽŶĂů ͞ĞŶĚ ŽĨ ƉŝƉĞ͟ ĂƉƉƌŽĂĐŚ ŚĂƐ ďĞĞŶ ƌĞƉůĂĐĞĚ  by the waste 

hierarchy. In spite of the advantages of this new approach, its linear aspect can lead to erroneous or even 

inadequate decisions (Kirkeby et al., 2006, Schmidt et al., 2007). Although the current tools, such as life cycle 

analysis (LCA), allow comparing various scenarios by taking into account impacts associated with transport, the 

results obtained rely on a static evaluation of the parameters contributing to essentially environmental indicators 

(Winkler et al., 2007, Liamsanguan et al., 2008). Because of the dynamic and stochastic characteristics of the 

studied networks, waste management must be based on the global load exerted on the system rather than on a 
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linear classification of the available options. Furthermore, the load is directly influenced by the impacts associated 

with transport (Bovea et al., 2007, Salhofer et al., 2007, Eisted et al., 2009), such as the means of transport chosen, 

the distance traveled and the road type. 

This article presents the Dynamic Waste Management approach (DWM), which combines the concepts of 

distribution in networks and conservation of energy. By integrating the intrinsic characteristics associated with 

transport during the decision-making process, DWM allows minimising the load applied to the waste management 

systems and ensures a constant supply to the available processes.  

Dynamic Waste Management 

Basic concepts 

In addition to the evolution of the waste treatment processes and means of transport, the quantities of available 

waste (generated or in reserve) vary constantly. This type of network is similar to a water distribution network, 

where varying volumes of water enter the system, are stored and then redistributed according to the demand. 

Indeed, in a water distribution network, the law of conservation of energy sends the flow towards the lowest 

heads. Thus, rather than responding to the demand in a linear way according to an established hierarchy, the 

distribution is dynamic and can ensure a continuous supply towards the areas considered priority (lowest heads). 

The distribution of flows then becomes complementary rather than substituting.  

In order to achieve acceptability, profitability and durability, waste management should follow the model of the 

law of conservation of energy, which allows a distribution of flows according to the global load (head) of the 

system. Unlike the waste hierarchy approach which loses its validity when unexpected events occur, DWM allows 

an optimal maiŶƚĞŶĂŶĐĞ ŽĨ Ă ƐǇƐƚĞŵ͛Ɛ load while seeking a steady state. Table 1 presents the analogy between 

DWM and hydraulic networks. 

 

Table 1.    Analogy: Water network vs. Waste management (Rojo et al., 2008) 

WATER DISTRIBUTION NETWORK WASTE MANAGEMENT SYSTEM 

Water treatment plant (source) Source of generated waste 

Water distribution network (pipes) Transport network (route, train, etc.) 

Reservoir Storage of materials (Reserve) 

Hydraulic head Load attributed to processes impacts 

Water demand (uses) Capacity of the facilities 

(Landfill, recycling, energy recovery, etc.) 

 

Influences of transport 

By using mass balances, as the one used in the LCA, it was demonstrated that transport significantly influences the 

prioritization of a treatment process compared to the other options in a waste management system (Merrild et al., 

2012). By considering that the load in the system corresponds to the impacts associated with processes and 

transport, the distribution of flows and the balance of the system depend directly on available volumes and on the 

characteristics of the network. 

Based on the law of conservation of energy, DWM allows studying the global behaviour of the systems by 

considering the impacts associated to transport as linear load losses. Thus, a higher linear load loss reduces the 

probability that the waste will follow those paths within the network. 

Law of conservation of energy 

As mentioned previously, DWM is based on the law of conservation of energy in order to ease the supply directed 

at the favoured process (the lowest load). However, this flow distribution is directly influenced by the impacts 

associated with means of transport and leans towards minimizing the global load of the system. By taking into 
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account the analogy with the water distribution networks, DWM is based on the energy conservation equation 

according to Bernoulli (Equation 1), which compares the hydraulic balance between two points in a network. 

 

                         (1) 

The parameters of this energy conservation equation are: fluid speed (ʐ), gravitational acceleration (g), elevation or 

head (h), pipe pressure (P), fluid density (ʌ) and head loss (ѐH).  

When considering flows go through circular pipes entirely filled by fluid, the speed becomes : 

                                          (2) 

and the head loss becomes : 

                        (3) 

The pipe parameters are represented by the head loss coefficient (ɶ), the flow (Q), the section (S), the diameter (D) 

and the length of the pipe (L). 

Knowing that the network undergoes no external influences, that the speed of the fluid is constant, the system is 

closed and full and the dynamic and static pressures both remain constant from one point to another, equations 1 

and 3 become:  

                             (4) 

In other words, the head loss between two points is expressed only by the potential energy (hydraulic head). 

Equation 4 illustrates that the flows in such networks are directed towards the lowest head levels, which are 

themselves influenced by the head losses associated with the flows and the characteristics of the pipes (length, 

diameter and roughness).  

The loads in DWM 

Using the concepts of hydraulics, available treatment processes in a waste management system must be supplied 

according to their load (head) within the network, and not simply one after the other (Ang et al., 2003). Besides 

optimizing the use of the available processes, this approach makes the impact analysis possible on the network as a 

whole. To study the behaviour of a network on the basis of potential energy, equation 4 is separated into three 

distinct segments: 

 The load at the starting point (h1) 

 The load at the arrival point (h2) 

 The linear load loss between the 2 points (ѐH). 

In DWM, the load at the arrival point (h2) is replaced by the load associated with the waste treatment involved. This 

load is called the global allocation index (GAI) and serves as a representation for every waste treatment process of 

the socioeconomic and environmental impacts associated with its use. Globally, the determination of the GAI stems 

from a multi-criteria approach, rating every potential process on multiple criteria. In a general manner, equation 5 

expresses the GAI for a treatment process T as the pondered sum (wi) of the grade of each process (CTi) with 

respect to the chosen criteria (i). These criteria allow the potential environmental, socioeconomic and technical 

impacts of the potential processes to be taken into account.  

GAI
T
= w

i
*C

Ti

i=1

n

å                                                       (5) 

A major aspect in DWM is the comparison of the processes and the means of transport first on a common base and 

then with respect to the desired parameters.  
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The load at the starting point (h1) is shown by the prioritization index (PI), which represents the importance a waste 

generator (industries, municipalities, etc.) has in the system. This starting load influences the distribution of flows 

when the system is saturated and allows prioritizing the generators with the highest load. For example, when some 

waste is dangerous or cannot be kept in the generator, it will be characterized as a priority and redirected towards 

the available treatment processes. 

As aforementioned, the linear load loss (ѐH) corresponds to the impacts associated with transport in the DWM and 

influences significantly the distribution of flows in the system. These impacts are called the index loss associated 

with transport (ѐIT) and are explained in the following section. 

Index loss associated with transport 

Due to the impacts caused by the mean of transport, the distance traveled, the volumes transported and the 

characteristics of the road, a particular attention must be brought to ѐIT. In spite of a favourable GAI for a specific 

treatment process, the influence of ѐIT can result in the generators having a transport radius that is no longer 

relevant to send the waste to certain facilities. In other words, even if it is more suitable to recycle a material rather 

than bury it, the distances required to reach a recycling point might make a landfill more suitable. Taking this into 

consideration, the linear load in equation 3 now corresponds to the index loss ѐIT as shown in equation 6: 

                                             (6) 

The different numerical values and the load loss coefficient, length of the pipe (L),  diameter (D) and flow (Q) from 

Equation 3 were respectively replaced by the index loss coefficient (ɲ), the length of the path (L), the road 

characterization factor (R) and the amount of transport (Q). Variables ɴ and ɷ represent respectively the coefficient 

associated with the parameters R and Q. These variables influence the load loss (index loss) relative to the path and 

ďĂůĂŶĐĞ ƚŚĞ ĞƋƵĂƚŝŽŶ͛Ɛ ƉĂƌĂŵĞƚĞƌƐ ŝŶ ŽƌĚĞƌ ƚŽ ĂĚũƵƐƚ ƚŚĞ ŝŶĨůƵĞŶĐĞ ŽĨ ƚŚĞ ĐŚĂƌĂĐƚĞƌŝǌĂƚŝŽn factor and the flow in 

Equation 6. 

General equation of DWM 

In the general DWM equation (equation 7), which is based on the energy conservation equation, flow distribution is 

influenced by the generators prioritization index (PI), the global allocation index (GAI) attributed to available 

treatment processes and the characteristics of the transport within the network (ѐIT).  

                                    (7) 

Once the parameters of equation 7 have been defined, it is possible to study the behaviour of the chosen system. 

As with Bernoulli͛Ɛ equation, it is also possible to measure the state of equilibrium of the network, to determine the 

optimal model of flow distribution, to identify the weaknesses of the system, to fix the maximum capacity of the 

reserves, to plan the capacity of available and foreseen processes, etc. Knowing the reserves are directly influenced 

by the behaviour of the network and can either be dynamically filled or emptied, the global load of the system is 

represented by the reserve index. 

 

 

Example of applying DWM 
To demonstrate the extent of DWM, the following section presents a study of a waste management scenario. For 

the purpose of this example, the suggested system is fictive although it was created using realistic conditions. The 

simulations were carried out using the hydraulic networks analysis software EPANET2. This tool allows analysing 

the behaviour of networks and relies on the law of conservation of energy (US EPA, 2008).  

Characteristics of the studied system 

The selected scenario deals with managing wooden waste in an area of approximately  

30 000km
2
. The system consists of three main waste generators, which can send the waste towards four waste 

treatment processes or one reserve (temporary storage). Transport is made by trucks with a 20 metric tons (t) 
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capacity per shipment. Generated waste comes from three different sources of wood located on the territory 

(sources 1, 2 and 3 on Figure 1). 

Once introduced into the network, the waste can be sent towards: 

 R. A reserve  (Max. capacity : 10 000t and 200 shipments/month) 

 A. Incineration  (Max. capacity : 70 shipments/month) 

 B. Recycling  (Max. capacity : 45 shipments/month)  

 C. Composting   (Max. capacity : 65 shipments/month) 

 D. Landfill  (Max. capacity : 50 000t and 100 shipments/month) 

The map of the system as well as its global diagram (modelled in EPANET2) is presented in figure 1. This figure also 

illustrates the characteristics of the possible paths and the values of PI and GAI from the generators, reserve and 

available processes. Furthermore, a link between a generator and a treatment process expresses their 

compatibility.  

 

 
Figure 1. Map of the studied network and global diagram modeled in EPANET2 

 

 

The values used for the simulation come from a logical distribution, but were attributed randomly. In this scenario, 

the generators have the same prioritization index (PI); the reserve and the treatment processes have global 

allocation index values (GAI, values between 90 and 100) according to their load within the network. The higher the 

index, the less likely the waste flow moves towards that treatment process. In addition to the volume of generated 

waste, ashes resulting from the incinerator are redirected towards the landfill and induce a supplementary load 

within the network.  In this case, a 10% fixed volume of the incinerated mass is transformed into ashes. 

The numbers in parenthesis on the map represent the congestion factor of the road (R). This congestion factor is 

influenced by traffic density, width and amount of lanes and road type. For the following example, the R values 

were based on the Roadway Congestion Index (RCI) developed by the Federal Highway Administration in Texas 

(Schrank et al., 1996). In a city such as Detroit, where the level of congestion is high, the RCI measured is 1.24, 

while in a city with low congestion level such as Buffalo, the RCI is 0.73 (Schrank et al., 2007). Since R is equivalent 

to the diameter of the pipe and that the pressure loss is inversely proportional to the pipe size, R becomes the 

reverse of the RCI (equation 8). 

                                                (8) 

During simulations, two types of trucks were used: waste coming from generators 1 and 2 are transported by truck 

X and waste coming from generator 3 is transported by truck Y. This second type leads to a higher index loss of 

50%. 

Simulation in EPANET2 

Because of the differences between a waste management system and a hydraulic network, simulation in EPANET2 

requires adjustments. In this network, valves and non-return valves were used to define facilities capacity and to 

avoid flows (transport) circulating in loops. With this approach, transport is considered independently and waste 

RCI
R

1
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distribution can be carried out anywhere within the network. As shown in the global diagram (figure 1), the actors 

(generators, reserve and processes) represent the nodes of the network and are interrelated by the routes which 

separate them. 

In EPANET2, PI and GAI values of the actors are converted into hydraulic loads (in meters). Furthermore, the 

reserve was set to guarantee that a lower level will lead to increased supply, while a higher one favours evacuation. 

The index of the emptied reserve was set so that at equal distances, technologies B and C are prioritized. Also its 

evacuation is ensured in the whole system when it is at full capacity. Thus, the global load of the system will allow 

maintaining an optimal level in the reserve. Due to the software, the shape which is privileged for the reserve in 

this simulation is a cylinder with an interval of index (height, Hr) of 3 and capacity of 10 000t. Therefore, the initial 

volume in the reserve was set at 4000t (200 shipments).  

For this example, the time scale is ten months with time steps of one month. During the simulation, flow units are 

of one shipment per month and correspond to one cubic meter an hour measured in EPANET2. To establish the 

parameters in the ѐIT equation (equation 5), table 2 presents the reference data used. For this example, these 

values were fixed in an empirical way.  

 

Table 2.    Index loss associated with transport (ѐIT) 

 

ѐIT L 

(km) 

R 

(1/RCI) 

Q 

(ship./month) 

Truck 

1.00 100 1.00 100 Type X 

1.50 100 1.00 100 Type Y 

1.20 100 0.75 100 Type X 

1.05 100 1.00 200 Type X 

 

The values in this table lead to obtain parameters ɲ, ɴ and ɷ associated with the index loss (It) equation. 

Considering the index loss values (ɲ) calculated are of 2.2x10
-6

 for trucks of type X and 3.2x10
-6

 for trucks of type Y, 

we get that:  

                                       (8) 

Results 
In order to show the behaviour of DWM under various constraints, each one of the input flows fixed for the three 

waste generators follow a particular tendency. Waste coming from the first generator is random, while the second 

is constant the third follows a seasonal variation. To show the behaviour of the system during the peak periods, the 

volume of waste during the 4th month are higher than usual, while no waste is generated during the 7th month. 

The volume of generated waste and flow distribution are presented in detail in Figure 2. 

Figure 2 shows that the waste coming from each generator is distributed to the treatment processes or to the 

reserve with respect to the GAI. For example, wood waste coming from generator 1 during the first month (90 

tonnes) is directed to processes A (31T), B (12T) and C (16T). Also, as previously stated, incineration produces waste 

(ashes) with a weight of 10% of the total waste sent to combustion. Thus, for the first month, the amount of waste 

sent to process D (reserve) corresponds to 10% of 70T (29T+31T+10T burnt in process A), i.e. 7T.  

0704.0

6338.0
Q

R

L
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Figure 2. Network͛Ɛ flow distribution according to the global diagram (in shipments/month) 

 

Several observations ensue from the simulation: on one hand, the fixed parameters lead to the reserve being 

supplied when its total index is lower than 97 (125 shipments). On the other hand, the more the reserve is filled up, 

the more likely the flow will move towards  processes A and D.  

As for technologies B and C, which have favourable indexes (loads) in the system, their supply is constant 

throughout the simulation because of their reserve, which compensates when there is insufficient waste generated 

(e.g. 6th and 7th month). According to the allocation indexes, which are influenced by transport, it can occur that 

certain flows are more continuous than others. For example, the fraction of waste coming from generator 2 

directed towards process C is relatively constant because of the short distance which separates them and the low 

GAI attributed to the composting facility. 

Although the ashes produced in the incineration (process A) are redirected towards the landfill (process D), the 

high index of the landfill and the presence of a reserve in the system leads to a minimal supply moving towards the 

landfill.  In other words, in an actual situation and according to the parameters initially adopted, the global flow 

distribution would allow a minimization of the impacts. 

Sensitivity analysis  

To analyse the influence of the main parameters of the network, various sensitivity analyses were realised. Through 

these analyses, it was noted that PI had practically no influence on flow distribution when the capacity of the waste 

treatment facilities was sufficient to accept all the generated waste. On the other hand, when the network was at 

its full capacity, high PI allowed prioritizing certain generators with regards to others. 
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To demonstrate the influence of the index interval fixed for the reserve during the simulations, an analysis was 

carried out according to three different heights (HR) and by preserving the same maximum capacity and the same 

initial volume (200 shipments). The chosen intervals are: 

 ͻ  HR-1 = 1 ͻ  HR-2 = 3 ͻ  HR-3 = 5 

It was observed that the lower the index interval (the height in the software), the more stable the influence of the 

reserve was and the more sensitive the network was to the fluctuations. Thus, as shown in figure 3, by reducing the 

index interval of the reserve, the global load of the network is in a better equilibrium. Consequently, it facilitates a 

constant supply to the processes whose index is lower than the average index of the reserve and to minimize the 

supply towards processes whose index is higher. 

 

 
Figure 3. Sensitivity analyzes according to the interval of index of the reserve 

 

With regard to the index loss associated with transport, a sensitivity analysis was carried out in order to analyze the 

effects associated with the type of truck used. For the analysis, transport coming from generator 3 was replaced by: 

 Truck type W :  ȴIT = 0.5  ɲ = 1.1x10
-6

 

 Truck type X :  ȴIT = 1.0  ɲ = 2.2x10
-6

 

 Truck type Y :  ȴIT = 1.5  ɲ = 3.2x10
-6

 

* For L = 100km, R = 1.0 and Q = 100 shipments/month 

The results show that the index losses associated with transport exert a significant influence in the network and 

directly affect flow distribution. When transport has a high ȴIT, flow distribution tends to follow the shortest paths. 

Thus, the most distant treatment processes in the system are rather supplied by the generators, because of its less 

constraining transport. Figure 4 presents the waste produced by generator 1 and directed towards process B. 

Finally, the more the trucks coming from generator 3 have a high ȴIT, the more important the contribution of 

generator 1 is in minimizing the global load of the network. 

 

 
Figure 4. Sensitivity analyzes according to the type of truck 

 

Discussion 
The results obtained in the simulation and sensitivity analyses clearly confirm that DWM is a promising sustainable 

approach to waste management. Besides facilitating the constant supply of the most favourable processes within a 
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system (low GAI), DWM ensures the minimization of the global load of the network. Being based on the law of 

conservation of energy (particularly on Bernoulli͛Ɛ theorem), the approach allows studying the general behaviour of 

a system as well as the influence of each of the actors and means of transporting. Rather than being based on a 

linear waste hierarchy, DWM offers a dynamic decision-making approach based on the systemic analysis of the 

network. Thus, in spite of the fluctuations in the generated waste, the approach facilitates the equilibrium of the 

network and the optimal use of the reserves. The results obtained during simulation also illustrate that the higher 

the global load of the system, the more it is favourable to direct flows towards the processes with high GAI. Even 

though the global studied system takes into account the adequacy between the processes and the waste type, one 

of its weaknesses lies in the lack of consideration of the intrinsic composition of the produced waste during the 

distribution towards the process with the lowest GAI. Thus, one of the possible outlooks for this work would be to 

include some criteria judging of the compatibility of the waste produced with the processes and therefore take into 

account the inputs in the GAI.  

Looking at the global load of the network, the reserves capacity and the processes supply, DWM helps to determine 

if reserves or processes in the system are ineffective and if new ones are necessary, but also to establish their 

optimal capacity. In addition, as DWM is based on a geographical modeling of the systems, it would be possible to 

optimize the positioning of the new facilities in order to reduce the global load even and to maximize the supply of 

favourable waste treatment processes (low GAI). Furthermore, the presented example highlights the fact that the 

economic viability of some treatment units could be questioned. Indeed, Figure 2 shows that the incinerator 

ǁŽƵůĚŶ͛ƚ ďĞ ƵƐĞĚ Ăůů ƚŚĞ ƚŝŵĞ ƚŚƌŽƵŐŚ ƚŚĞ ϭϬ ŵŽŶƚŚƐ͗ ƚŚŝƐ ƋƵĞƐƚŝŽŶƐ ƚŚĞ ƌŽůĞ ŽĨ ŝŶĐŝŶĞƌĂƚŝŽŶ ŝŶ Ă multi-process 

waste treatment scheme, especially in a perspective of reducing the global impacts of waste. It would thus be 

relevant to rethink the role of incineration on a territory scale in such a system so that its supply would be constant 

and, consequently, its economic viability assured. This would therefore justify, through co-incineration, its 

relevance in a waste treatment process.  

To this point, the application of DWM relies on the development of better adapted tools. In spite of the possible 

use of EPANET2, this software requires a certain number of adjustments and is complicated when attempting to 

model the system. Besides the difficulties associated with the software,  a particular attention is required during 

the determination of the parameters. Indeed, the methods chosen to calculate indexes values (PI, GAI) and to 

obtain the variables for the ѐIT equation must absolutely be validated, due to their significant influence on the 

results during simulations. In this process, it would be relevant to establish an index determination method that 

would be based on normalized parameters that are representative of the different environmental and 

socioeconomic spheres.  

 

Conclusion 
In the optics of achieving sustainable development, waste management must incorporate an integrated approach 

which administers flow distribution in a responsible way. The analysis tools must take into account the fluctuations 

and the evolutionary characteristics of the parameters which influence the validity of the prioritization of certain 

processes. Thus, it is essential to consider the characteristics associated with the paths, with the means of transport 

as well as with the types of roads taken. This measure stems from the fact that the general behaviour of a system is 

sensitive to flows, heads (loads), configurations and reserves, and that the constant supply of the favourable 

processes rests on a minimization of the global load and on the equilibrium of the network. 

The results obtained during simulations demonstrate that DWM follows these criteria, while supporting a 

diversified waste management in agreement with the principles of social acceptability, economical profitability and 

environmental compatibility. Moreover, this dynamic new approach can also represent a new step towards 

Industrial Ecology. Due to the analogy with water distribution networks (where flow distribution within the network 

is influenced by the head losses in the pipes), the constraints associated with transport become a crucial factor in 

DWM. Being based on the law of conservation of energy (particularly on Bernoulli͛Ɛ theorem), DWM offers new 

perspectives to correct the lack of flexibility of other approaches. Hence, DWM is part of an innovative, simple, 

flexible and evolutionary approach and supports the objectives of sustainable development.  
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