
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009 3051

Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric

Binary-Input Memoryless Channels
Erdal Arıkan, Senior Member, IEEE

Abstract—A method is proposed, called channel polarization,
to construct code sequences that achieve the symmetric capacity
��� � of any given binary-input discrete memoryless channel
(B-DMC) � . The symmetric capacity is the highest rate achiev-
able subject to using the input letters of the channel with equal
probability. Channel polarization refers to the fact that it is pos-
sible to synthesize, out of � independent copies of a given B-DMC
� , a second set of � binary-input channels �� ���

�
� � � � � ��

such that, as � becomes large, the fraction of indices � for which
���

���
�

� is near � approaches ��� � and the fraction for which
���

���
�

� is near � approaches � � ��� �. The polarized channels
��

���
�
� are well-conditioned for channel coding: one need only

send data at rate � through those with capacity near � and at rate �
through the remaining. Codes constructed on the basis of this idea
are called polar codes. The paper proves that, given any B-DMC
� with ��� � � � and any target rate � � ��� �, there exists a
sequence of polar codes � ��� � �� such that � has block-length
� � ��, rate � �, and probability of block error under suc-
cessive cancellation decoding bounded as 	���
�� � ���� �
independently of the code rate. This performance is achievable by
encoders and decoders with complexity ��� 	
��� for each.

Index Terms—Capacity-achieving codes, channel capacity,
channel polarization, Plotkin construction, polar codes, Reed–
Muller (RM) codes, successive cancellation decoding.

I. INTRODUCTION AND OVERVIEW

A FASCINATING aspect of Shannon’s proof of the noisy
channel coding theorem is the random-coding method

that he used to show the existence of capacity-achieving code
sequences without exhibiting any specific such sequence [1].
Explicit construction of provably capacity-achieving code
sequences with low encoding and decoding complexities has
since then been an elusive goal. This paper is an attempt to
meet this goal for the class of binary-input discrete memoryless
channels (B-DMCs).

We will give a description of the main ideas and results of the
paper in this section. First, we give some definitions and state
some basic facts that are used throughout the paper.

Manuscript received October 14, 2007; revised August 13, 2008. Current ver-
sion published June 24, 2009. This work was supported in part by The Scien-
tific and Technological Research Council of Turkey (TÜBİTAK) under Project
107E216 and in part by the European Commission FP7 Network of Excellence
NEWCOM++ under Contract 216715. The material in this paper was presented
in part at the IEEE International Symposium on Information Theory (ISIT),
Toronto, ON, Canada, July 2008.

The author is with the Department of Electrical-Electronics Engineering,
Bilkent University, Ankara, 06800, Turkey (e-mail: arikan@ee.bilkent.edu.tr).

Communicated by Y. Steinberg, Associate Editor for Shannon Theory.
Color versions of Figures 4 and 7 in this paper are available online at http://

ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2009.2021379

A. Preliminaries

We write to denote a generic B-DMC with
input alphabet , output alphabet , and transition probabilities

. The input alphabet will always be
, the output alphabet and the transition probabilities may

be arbitrary. We write to denote the channel corresponding
to uses of ; thus, with

.
Given a B-DMC , there are two channel parameters of pri-

mary interest in this paper: the symmetric capacity

and the Bhattacharyya parameter

These parameters are used as measures of rate and reliability,
respectively. is the highest rate at which reliable commu-
nication is possible across using the inputs of with equal
frequency. is an upper bound on the probability of max-
imum-likelihood (ML) decision error when is used only once
to transmit a or .

It is easy to see that takes values in . Throughout,
we will use base- logarithms; hence, will also take
values in . The unit for code rates and channel capacities
will be bits.

Intuitively, one would expect that iff ,
and iff . The following bounds, proved in
the Appendix, make this precise.

Proposition 1: For any B-DMC , we have

(1)

(2)

The symmetric capacity equals the Shannon capacity
when is a symmetric channel, i.e., a channel for which there
exists a permutation of the output alphabet such that i)

and ii) for all . The bi-
nary symmetric channel (BSC) and the binary erasure channel
(BEC) are examples of symmetric channels. A BSC is a B-DMC

with and
. A B-DMC is called a BEC if for each , either

or . In the latter case,

0018-9448/$25.00 © 2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3052 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

Fig. 1. The channel� .

is said to be an erasure symbol. The sum of over all
erasure symbols is called the erasure probability of the BEC.

We denote random variables (RVs) by upper case letters, such
as , and their realizations (sample values) by the corre-
sponding lower case letters, such as . For an RV,
denotes the probability assignment on . For a joint ensemble
of RVs denotes the joint probability assignment.
We use the standard notation to denote the
mutual information and its conditional form, respectively.

We use the notation as shorthand for denoting a row vector
. Given such a vector , we write ,

, to denote the subvector ; if is regarded
as void. Given and , we write to denote
the subvector . We write to denote the subvector
with odd indices odd . We write to de-
note the subvector with even indices even .
For example, for , we have

. The notation is used to denote
the all-zero vector.

Code constructions in this paper will be carried out in vector
spaces over the binary field GF . Unless specified otherwise,
all vectors, matrices, and operations on them will be over
GF . In particular, for vectors over GF we write

to denote their componentwise mod- sum. The
Kronecker product of an -by- matrix and an
-by- matrix is defined as

...
. . .

...

which is an -by- matrix. The Kronecker power is
defined as for all . We will follow the
convention that .

We write to denote the number of elements in a set . We
write to denote the indicator function of a set ; thus,
equals if and otherwise.

We use the standard Landau notation to
denote the asymptotic behavior of functions.

B. Channel Polarization

Channel polarization is an operation by which one manufac-
tures out of independent copies of a given B-DMC a
second set of channels that show a
polarization effect in the sense that, as becomes large, the
symmetric capacity terms tend towards or for all
but a vanishing fraction of indices . This operation consists of
a channel combining phase and a channel splitting phase.

1) Channel Combining: This phase combines copies of a
given B-DMC in a recursive manner to produce a vector

Fig. 2. The channel� and its relation to� and� .

channel , where can be any power of two,
. The recursion begins at the th level

with only one copy of and we set . The first level
of the recursion combines two independent copies of

as shown in Fig. 1 and obtains the channel
with the transition probabilities

(3)

The next level of the recursion is shown in Fig. 2 where two
independent copies of are combined to create the channel

with transition probabilities
.

In Fig. 2, is the permutation operation that maps an input
to . The mapping

from the input of to the input of can be written as
with

Thus, we have the relation be-
tween the transition probabilities of and those of .

The general form of the recursion is shown in Fig. 3 where
two independent copies of are combined to produce the
channel . The input vector to is first transformed
into so that and for

. The operator in the figure is a permutation, known as
the reverse shuffle operation, and acts on its input to produce

, which becomes the
input to the two copies of as shown in the figure.

We observe that the mapping is linear over GF .
It follows by induction that the overall mapping ,
from the input of the synthesized channel to the input of
the underlying raw channels , is also linear and may be
represented by a matrix so that . We call
the generator matrix of size . The transition probabilities of
the two channels and are related by

(4)

for all . We will show in Section VII that
equals for any , where is a

permutation matrix known as bit-reversal and .

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3053

Fig. 3. Recursive construction of� from two copies of� .

Note that the channel combining operation is fully specified by
the matrix . Also note that and have the same set of
rows, but in a different (bit-reversed) order; we will discuss this
topic more fully in Section VII.

2) Channel Splitting: Having synthesized the vector channel
out of , the next step of channel polarization is to

split back into a set of binary-input coordinate channels
, , defined by the transition

probabilities

(5)

where denotes the output of and its input.
To gain an intuitive understanding of the channels ,

consider a genie-aided successive cancellation decoder in which
the th decision element estimates after observing and
the past channel inputs (supplied correctly by the genie
regardless of any decision errors at earlier stages). If is a
priori uniform on , then is the effective channel seen
by the th decision element in this scenario.

3) Channel Polarization:

Theorem 1: For any B-DMC , the channels po-
larize in the sense that, for any fixed , as goes
to infinity through powers of two, the fraction of indices

for which goes to and
the fraction for which goes to .

This theorem is proved in Section IV.
The polarization effect is illustrated in Fig. 4 for the case
is a BEC with erasure probability . The numbers

have been computed using the recursive relations

(6)

with . This recursion is valid only for BECs
and it is proved in Section III. No efficient algorithm is known
for calculation of for a general B-DMC .

Fig. 4 shows that tends to be near for small
and near for large . However, shows an erratic be-
havior for an intermediate range of . For general B-DMCs, de-
termining the subset of indices for which is above a
given threshold is an important computational problem that will
be addressed in Section IX.

4) Rate of Polarization: For proving coding theorems, the
speed with which the polarization effect takes hold as a function
of is important. Our main result in this regard is given in terms
of the parameters

(7)

Theorem 2: For any B-DMC with , and
any fixed , there exists a sequence of sets

, such that
and for all .

This theorem is proved in Section IV-B.
We stated the polarization result in Theorem 2 in terms

rather than because this form is better
suited to the coding results that we will develop. A rate of
polarization result in terms of can be obtained from
Theorem 2 with the help of Proposition 1.

C. Polar Coding

We take advantage of the polarization effect to construct
codes that achieve the symmetric channel capacity by a
method we call polar coding. The basic idea of polar coding is
to create a coding system where one can access each coordinate
channel individually and send data only through those for
which is near .

1) -Coset Codes: We first describe a class of block codes
that contain polar codes—the codes of main interest—as a spe-
cial case. The block lengths for this class are restricted to
powers of two, for some . For a given , each
code in the class is encoded in the same manner, namely

(8)

where is the generator matrix of order , defined above.
For an arbitrary subset of , we may write (8) as

(9)

where denotes the submatrix of formed by the rows
with indices in .

If we now fix and , but leave as a free variable, we
obtain a mapping from source blocks to codeword blocks

. This mapping is a coset code: it is a coset of the linear block

3054 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

Fig. 4. Plot of ��� � versus � � �� � � � � � � � for a BEC with � � ���.

code with generator matrix , with the coset determined
by the fixed vector . We will refer to this class
of codes collectively as -coset codes. Individual -coset
codes will be identified by a parameter vector ,
where is the code dimension and specifies the size of .1 The
ratio is called the code rate. We will refer to as the in-
formation set and to as frozen bits or vector.

For example, the code has the encoder
mapping

(10)

For a source block , the coded block is
.

Polar codes will be specified shortly by giving a particular
rule for the selection of the information set .

2) A Successive Cancellation Decoder: Consider a
-coset code with parameter . Let be

encoded into a codeword , let be sent over the channel
, and let a channel output be received. The decoder’s

task is to generate an estimate of , given knowledge
of and . Since the decoder can avoid errors in the
frozen part by setting , the real decoding task is to
generate an estimate of .

The coding results in this paper will be given with respect
to a specific successive cancellation (SC) decoder, unless
some other decoder is mentioned. Given any

-coset code, we will use an SC decoder that generates its
decision by computing

if
if (11)

1We include the redundant parameter � in the parameter set because often
we consider an ensemble of codes with � fixed and � free.

in the order from to , where ,
are decision functions defined as

if

otherwise
(12)

for all . We will say that a decoder
block error occurred if or equivalently if .

The decision functions defined above resemble ML de-
cision functions but are not exactly so, because they treat the
future frozen bits as RVs, rather than
as known bits. In exchange for this suboptimality, can be
computed efficiently using recursive formulas, as we will show
in Section II. Apart from algorithmic efficiency, the recursive
structure of the decision functions is important because it ren-
ders the performance analysis of the decoder tractable. Fortu-
nately, the loss in performance due to not using true ML decision
functions happens to be negligible: is still achievable.

3) Code Performance: The notation will
denote the probability of block error for an
code, assuming that each data vector is sent with
probability and decoding is done by the above SC decoder.
More precisely

The average of over all choices for will
be denoted by , i.e.,

A key bound on block error probability under SC decoding is
the following.

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3055

Proposition 2: For any B-DMC and any choice of the
parameters

(13)

Hence, for each , there exists a frozen vector such
that

(14)

This is proved in Section V-B. This result suggests choosing
from among all -subsets of so as to minimize

the right-hand side (RHS) of (13). This idea leads to the defini-
tion of polar codes.

4) Polar Codes: Given a B-DMC , a -coset code with
parameter will be called a polar code for
if the information set is chosen as a -element subset of

such that for all
.

Polar codes are channel-specific designs: a polar code for one
channel may not be a polar code for another. The main result of
this paper will be to show that polar coding achieves the sym-
metric capacity of any given B-DMC .

An alternative rule for polar code definition would be to
specify as a -element subset of such that

for all . This alternative
rule would also achieve . However, the rule based on the
Bhattacharyya parameters has the advantage of being connected
with an explicit bound on block error probability.

The polar code definition does not specify how the frozen
vector is to be chosen; it may be chosen at will. This de-
gree of freedom in the choice of simplifies the performance
analysis of polar codes by allowing averaging over an ensemble.
However, it is not for analytical convenience alone that we do
not specify a precise rule for selecting , but also because
it appears that the code performance is relatively insensitive to
that choice. In fact, we prove in Section VI-B that, for symmetric
channels, any choice for is as good as any other.

5) Coding Theorems: Fix a B-DMC and a number .
Let be defined as with selected in
accordance with the polar coding rule for . Thus,
is the probability of block error under SC decoding for polar
coding over with block length and rate , averaged over
all choices for the frozen bits . The main coding result of
this paper is the following.

Theorem 3: For any given B-DMC and fixed ,
block error probability for polar coding under successive can-
cellation decoding satisfies

(15)

This theorem follows as an easy corollary to Theorem 2 and
the bound (13), as we show in Section V-B. For symmetric chan-
nels, we have the following stronger version of Theorem 3.

Theorem 4: For any symmetric B-DMC and any fixed
, consider any sequence of -coset codes

with increasing to infinity,

chosen in accordance with the polar coding rule for , and
fixed arbitrarily. The block error probability under successive
cancellation decoding satisfies

(16)

This is proved in Section VI-B. Note that for symmetric chan-
nels equals the Shannon capacity of .

6) Complexity: An important issue about polar coding is
the complexity of encoding, decoding, and code construction.
The recursive structure of the channel polarization construction
leads to low-complexity encoding and decoding algorithms for
the class of -coset codes, and in particular, for polar codes.

Theorem 5: For the class of -coset codes, the complexity
of encoding and the complexity of successive cancellation
decoding are both as functions of code block
length .

This theorem is proved in Sections VII and VIII. Notice that
the complexity bounds in Theorem 5 are independent of the
code rate and the way the frozen vector is chosen. The bounds
hold even at rates above , but clearly this has no practical
significance.

As for code construction, we have found no low-complexity
algorithms for constructing polar codes. One exception is the
case of a BEC for which we have a polar code construction al-
gorithm with complexity . We discuss the code construc-
tion problem further in Section IX and suggest a low-complexity
statistical algorithm for approximating the exact polar code con-
struction.

D. Relations To Previous Work

This paper is an extension of work begun in [2], where
channel combining and splitting were used to show that im-
provements can be obtained in the sum cutoff rate for some
specific DMCs. However, no recursive method was suggested
there to reach the ultimate limit of such improvements.

As the present work progressed, it became clear that polar
coding had much in common with Reed–Muller (RM) coding
[3], [4]. Indeed, recursive code construction and SC decoding,
which are two essential ingredients of polar coding, appear to
have been introduced into coding theory by RM codes.

According to one construction of RM codes, for any
and , an RM code with block length and

dimension , denoted , is defined as a linear code
whose generator matrix is obtained by deleting

of the rows of so that none of the deleted rows
has a larger Hamming weight (number of ’s in that row) than
any of the remaining rows. For instance

and

This construction brings out the similarities between RM
codes and polar codes. Since and have the same
set of rows (only in a different order) for any , it is
clear that RM codes belong to the class of -coset codes.

3056 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

For example, is the -coset code with parameter
. So, RM coding and polar coding may

be regarded as two alternative rules for selecting the infor-
mation set of a -coset code of a given size .
Unlike polar coding, RM coding selects the information set
in a channel-independent manner; it is not as fine-tuned to
the channel polarization phenomenon as polar coding is. We
will show in Section X that, at least for the class of BECs, the
RM rule for information set selection leads to asymptotically
unreliable codes under SC decoding. So, polar coding goes
beyond RM coding in a nontrivial manner by paying closer
attention to channel polarization.

Another connection to existing work can be established by
noting that polar codes are multilevel codes, which
are a class of codes originating from Plotkin’s method for code
combining [5]. This connection is not surprising in view of the
fact that RM codes are also multilevel codes [6, pp.
114–125]. However, unlike typical multilevel code construc-
tions, where one begins with specific small codes to build larger
ones, in polar coding the multilevel code is obtained by expur-
gating rows of a full-order generator matrix , with respect
to a channel-specific criterion. The special structure of en-
sures that, no matter how expurgation is done, the resulting code
is a multilevel code. In essence, polar coding enjoys
the freedom to pick a multilevel code from an ensemble of such
codes so as to suit the channel at hand, while conventional ap-
proaches to multilevel coding do not have this degree of flexi-
bility.

Finally, we wish to mention a “spectral” interpretation
of polar codes which is similar to Blahut’s treatment of
Bose–Chaudhuri–Hocquenghem (BCH) codes [7, Ch. 9]; this
type of similarity has already been pointed out by Forney
[8, Ch. 11] in connection with RM codes. From the spectral
viewpoint, the encoding operation (8) is regarded as a transform
of a “frequency” domain information vector to a “time”
domain codeword vector . The transform is invertible with

. The decoding operation is regarded as a spec-
tral estimation problem in which one is given a time domain
observation , which is a noisy version of , and asked to
estimate . To aid the estimation task, one is allowed to freeze
a certain number of spectral components of . This spectral
interpretation of polar coding suggests that it may be possible
to treat polar codes and BCH codes in a unified framework.
The spectral interpretation also opens the door to the use of
various signal processing techniques in polar coding; indeed,
in Section VII, we exploit some fast transform techniques in
designing encoders for polar codes.

E. Paper Outline

The rest of the paper is organized as follows. Section II ex-
plores the recursive properties of the channel splitting operation.
In Section III, we focus on how and get trans-
formed through a single step of channel combining and split-
ting. We extend this to an asymptotic analysis in Section IV
and complete the proofs of Theorems 1 and 2. This completes
the part of the paper on channel polarization; the rest of the
paper is mainly about polar coding. Section V develops an upper
bound on the block error probability of polar coding under SC

decoding and proves Theorem 3. Section VI considers polar
coding for symmetric B-DMCs and proves Theorem 4. Sec-
tion VII gives an analysis of the encoder mapping , which
results in efficient encoder implementations. In Section VIII,
we give an implementation of SC decoding with complexity

. In Section IX, we discuss the code construction
complexity and propose an statistical algorithm for
approximate code construction. In Section X, we explain why
RM codes have a poor asymptotic performance under SC de-
coding. In Section XI, we point out some generalizations of
the present work, give some complementary remarks, and state
some open problems.

II. RECURSIVE CHANNEL TRANSFORMATIONS

We have defined a blockwise channel combining and split-
ting operation by (4) and (5) which transformed independent
copies of into . The goal in this section is to
show that this blockwise channel transformation can be broken
recursively into single-step channel transformations.

We say that a pair of binary-input channels and
are obtained by a single-step transformation

of two independent copies of a binary-input channel
and write

iff there exists a one-to-one mapping such that

(17)

(18)

for all .
According to this, we can write for

any given B-DMC because

(19)

(20)

which are in the form of (17) and (18) by taking as the identity
mapping.

It turns out we can write more generally

(21)

This follows as a corollary to the following.

Proposition 3: For any ,

(22)

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3057

Fig. 5. The channel transformation process with � � � channels.

and

(23)

This proposition is proved in the Appendix. The transform
relationship (21) can now be justified by noting that (22) and
(23) are identical in form to (17) and (18), respectively, after the
following substitutions:

Thus, we have shown that the blockwise channel transforma-
tion from to breaks at a local level into
single-step channel transformations of the form (21). The full
set of such transformations form a fabric as shown in Fig. 5 for

. Reading from right to left, the figure starts with four
copies of the transformation and con-
tinues in butterfly patterns, each representing a channel trans-
formation of the form . The
two channels at the right endpoints of the butterflies are always
identical and independent. At the rightmost level there are eight
independent copies of ; at the next level to the left, there are
four independent copies of and each; and so on.
Each step to the left doubles the number of channel types, but
halves the number of independent copies.

III. TRANSFORMATION OF RATE AND RELIABILITY

We now investigate how the rate and reliability parameters,
and , change through a local (single-step)

transformation (21). By understanding the local behavior, we
will be able to reach conclusions about the overall transforma-
tion from to . Proofs of the results in
this section are given in the Appendix.

A. Local Transformation of Rate and Reliability

Proposition 4: Suppose for some set
of binary-input channels. Then

(24)

(25)

with equality iff equals or .

The equality (24) indicates that the single-step channel trans-
form preserves the symmetric capacity. The inequality (25) to-
gether with (24) implies that the symmetric capacity remains
unchanged under a single-step transform,

, iff is either a perfect channel or a completely noisy
one. If is neither perfect nor completely noisy, the single-step
transform moves the symmetric capacity away from the center
in the sense that , thus helping polar-
ization.

Proposition 5: Suppose for some set
of binary-input channels. Then

(26)

(27)

(28)

Equality holds in (27) iff is a BEC. We have
iff equals or , or equivalently, iff equals

or .

This result shows that reliability can only improve under a
single-step channel transform in the sense that

(29)

with equality iff is a BEC.
Since the BEC plays a special role with respect to (w.r.t.)

extremal behavior of reliability, it deserves special attention.

Proposition 6: Consider the channel transformation
. If is a BEC with some erasure

probability , then the channels and are BECs with
erasure probabilities and , respectively. Conversely,
if or is a BEC, then is BEC.

B. Rate and Reliability for

We now return to the context at the end of Section II.

Proposition 7: For any B-DMC
the transformation

is rate-preserving and reliability-improving in the sense that

(30)

(31)

3058 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

with equality in (31) iff is a BEC. Channel splitting moves
the rate and reliability away from the center in the sense that

(32)

(33)

with equality in (32) and (33) iff equals or . The reli-
ability terms further satisfy

(34)

(35)

with equality in (34) iff is a BEC. The cumulative rate and
reliability satisfy

(36)

(37)

with equality in (37) iff is a BEC.

This result follows from Propositions 4 and 5 as a special
case and no separate proof is needed. The cumulative relations
(36) and (37) follow by repeated application of (30) and (31),
respectively. The conditions for equality in Proposition 4 are
stated in terms of rather than ; this is possible because
i) by Proposition 4, iff ; and ii)

is a BEC iff is a BEC, which follows from Proposition 6
by induction.

For the special case that is a BEC with an erasure proba-
bility , it follows from Propositions 4 and 6 that the parameters

can be computed through the recursion

(38)

with . The parameter equals the era-
sure probability of the channel . The recursive relations (6)
follow from (38) by the fact that for

a BEC.

IV. CHANNEL POLARIZATION

We prove the main results on channel polarization in this sec-
tion. The analysis is based on the recursive relationships de-
picted in Fig. 5; however, it will be more convenient to re-sketch
Fig. 5 as a binary tree as shown in Fig. 6. The root node of the
tree is associated with the channel . The root gives birth to
an upper channel and a lower channel , which are as-
sociated with the two nodes at level . The channel in turn
gives birth to channels and , and so on. The channel

Fig. 6. The tree process for the recursive channel construction.

is located at level of the tree at node number counting
from the top.

There is a natural indexing of nodes of the tree in Fig. 6 by
bit sequences. The root node is indexed with the null sequence.
The upper node at level is indexed with and the lower node
with . Given a node at level with index , the upper
node emanating from it has the label and the lower
node . According to this labeling, the channel
is situated at the node with . We

denote the channel located at node alternatively
as .

We define a random tree process, denoted , in
connection with Fig. 6. The process begins at the root of the tree
with . For any , given that
equals or with probability each. Thus,
the path taken by through the channel tree may be thought
of as being driven by a sequence of independent and identically
distributed (i.i.d.) Bernoulli RVs where
equals or with equal probability. Given that has
taken on a sample value , the random channel process
takes the value . In order to keep track of the rate
and reliability parameters of the random sequence of channels

, we define the random processes and
.

For a more precise formulation of the problem, we consider
the probability space where is the space of all binary
sequences is the Borel field (BF)

generated by the cylinder sets
, and is the

probability measure defined on such that
. For each , we define as the BF generated by the

cylinder sets . We
define as the trivial BF consisting of the null set and only.
Clearly, .

The random processes described above can now be formally
defined as follows. For and , define

and
. For , define

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3059

. It is clear that, for any fixed , the RVs
and are measurable with respect to the BF .

A. Proof of Theorem 1

We will prove Theorem 1 by considering the stochastic con-
vergence properties of the random sequences and .

Proposition 8: The sequence of random variables and Borel
fields is a martingale, i.e.,

and is -measurable (39)

(40)

(41)

Furthermore, the sequence converges almost ev-
erywhere (a.e.) to a random variable such that .

Proof: Condition (39) is true by construction and (40) by
the fact that . To prove (41), consider a cylinder set

and use Proposition 7 to write

(42)

Since is the value of on , (41) fol-
lows. This completes the proof that is a martingale.
Since is a uniformly integrable martingale, by general
convergence results about such martingales (see, e.g., [9, The-
orem 9.4.6]), the claim about follows.

It should not be surprising that the limit RV takes values
a.e. in , which is the set of fixed points of under
the transformation , as determined by
the condition for equality in (25). For a rigorous proof of this
statement, we take an indirect approach and bring the process

also into the picture.

Proposition 9: The sequence of random variables and Borel
fields is a supermartingale, i.e.,

and is -measurable (43)

(44)

(45)

Furthermore, the sequence converges a.e. to a
random variable which takes values a.e. in .

Proof: Conditions (43) and (44) are clearly satisfied. To
verify (45), consider a cylinder set and use
Proposition 7 to write

Since is the value of on , (45)
follows. This completes the proof that is a super-
martingale. For the second claim, observe that the supermartin-
gale is uniformly integrable; hence, it converges a.e.
and in to an RV such that (see,
e.g., [9, Theorem 9.4.5]). It follows that

. But, by Proposition 7, with probability ;

hence, . Thus,
, which implies .

This, in turn, means that equals or a.e.

Proposition 10: The limit RV takes values a.e. in the set
: and .

Proof: The fact that equals or a.e., combined with
Proposition 1, implies that a.e. Since ,
the rest of the claim follows.

As a corollary to Proposition 10, we can conclude that, as
tends to infinity, the symmetric capacity terms

cluster around and , except for a vanishing fraction.
This completes the proof of Theorem 1.

It is interesting that the above discussion gives a new interpre-
tation to as the probability that the random process

converges to zero. We may use this to strengthen
the lower bound in (1). (This stronger form is given as a side
result and will not be used in the sequel.)

Proposition 11: For any B-DMC , we have
with equality iff is a BEC.

This result can be interpreted as saying that, among all
B-DMCs , the BEC presents the most favorable rate–reli-
ability tradeoff: it minimizes (maximizes reliability)
among all channels with a given symmetric capacity ;
equivalently, it minimizes required to achieve a given
level of reliability .

Proof of Proposition 11: Consider two channels and
with . Suppose that is a BEC. Then,

has erasure probability and . Consider the
random processes and corresponding to and ,
respectively. By the condition for equality in (34), the process

is stochastically dominated by in the sense that
for all . Thus, the

probability of converging to zero is lower-bounded by the
probability that converges to zero, i.e., .
This implies .

B. Proof of Theorem 2

We will now prove Theorem 2, which strengthens the above
polarization results by specifying a rate of polarization. Con-
sider the probability space . For , by
Proposition 7, we have if and

if . For
and , define

for all

For and , we have

if
if

which implies

3060 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

For and , define

Then, we have

from which, by putting and , we obtain

(46)

Now, we show that (46) occurs with sufficiently high proba-
bility. First, we use the following result, which is proved in the
Appendix.

Lemma 1: For any fixed , there exists a finite
integer such that

Second, we use Chernoff’s bound [10, p. 531] to write

(47)

where is the binary entropy function. Define as
the smallest such that the RHS of (47) is greater than or equal
to ; it is clear that is finite for any

and . Now, with
and , we obtain the desired bound

Finally, we tie the above analysis to the claim of Theorem 2.
Define and

and note that

So, for . On the other hand

where with
. We conclude that for .

This completes the proof of Theorem 2.

Given Theorem 2, it is an easy exercise to show that polar
coding can achieve rates approaching , as we will show in
the next section. It is clear from the above proof that Theorem 2
gives only an ad hoc result on the asymptotic rate of channel po-
larization; this result is sufficient for proving a capacity theorem
for polar coding; however, finding the exact asymptotic rate of
polarization remains an important goal for future research.2

2A recent result in this direction is discussed in Section XI-A.

V. PERFORMANCE OF POLAR CODING

We show in this section that polar coding can achieve the
symmetric capacity of any B-DMC . The main tech-
nical task will be to prove Proposition 2. We will carry out the
analysis over the class of -coset codes before specializing
the discussion to polar codes. Recall that individual -coset
codes are identified by a parameter vector . In
the analysis, we will fix the parameters while keeping

free to take any value over . In other words, the anal-
ysis will be over the ensemble of -coset codes with a
fixed . The decoder in the system will be the SC de-
coder described in Section I-C.2.

A. A Probabilistic Setting for the Analysis

Let be a probability space with the probability
assignment

(48)

for all . On this probability space, we
define an ensemble of random vectors that
represent, respectively, the input to the synthetic channel ,
the input to the product–form channel , the output of
(and also of), and the decisions by the decoder. For each
sample point , the first three vectors take
on the values
and , while the decoder output takes on the
value whose coordinates are defined recursively
as

(49)

for .
A realization for the input random vector

corresponds to sending the data vector together with the
frozen vector . As random vectors, the data part and
the frozen part are uniformly distributed over their respec-
tive ranges and statistically independent. By treating as a
random vector over , we obtain a convenient method for
analyzing code performance averaged over all codes in the en-
semble .

The main event of interest in the following analysis is the
block error event under SC decoding, defined as

(50)

Since the decoder never makes an error on the frozen part of
, i.e., equals with probability one, that part has

been excluded from the definition of the block error event.
The probability of error terms and

that were defined in Section I-C.3 can be
expressed in this probability space as

(51)

where denotes the event
.

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3061

Fig. 7. Rate versus reliability for polar coding and SC decoding at block lengths � � � , and � on a BEC with erasure probability ���.

B. Proof of Proposition 2

We may express the block error event as where

(52)

is the event that the first decision error in SC decoding occurs at
stage . We notice that

where

(53)

Thus, we have

For an upper bound on , note that

(54)

We conclude that

which is equivalent to (13). This completes the proof of Propo-
sition 2. The main coding theorem of the paper now follows
readily.

C. Proof of Theorem 3

By Theorem 2, for any given rate , there exists a
sequence of information sets with size such
that

(55)

In particular, the bound (55) holds if is chosen in accor-
dance with the polar coding rule because by definition this rule
minimizes the sum in (55). Combining this fact about the polar
coding rule with Proposition 2, Theorem 3 follows.

D. A Numerical Example

Although we have established that polar codes achieve the
symmetric capacity, the proofs have been of an asymptotic na-
ture and the exact asymptotic rate of polarization has not been
found. It is of interest to understand how quickly the polariza-
tion effect takes hold and what performance can be expected of
polar codes under SC decoding in the nonasymptotic regime. To
investigate these, we give here a numerical study.

Let be a BEC with erasure probability . Fig. 7 shows
the rate versus reliability tradeoff for using polar codes with
block lengths . This figure is obtained by
using codes whose information sets are of the form

, where is a
variable threshold parameter. There are two sets of three curves
in the plot. The solid lines are plots of

versus . The dashed lines are plots

3062 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

of versus . The parameter
is varied over a subset of to obtain the curves.
The parameter corresponds to the code rate. The sig-

nificance of is also clear: it is an upper bound on ,
the probability of block error for polar coding at rate under
SC decoding. The parameter is intended to serve as a lower
bound to .

This example provides empirical evidence that polar coding
achieves channel capacity as the block length is increased—a
fact already established theoretically. More significantly, the ex-
ample also shows that the rate of polarization is too slow to make
near-capacity polar coding under SC decoding feasible in prac-
tice.

VI. SYMMETRIC CHANNELS

The main goal of this section is to prove Theorem 4, which is
a strengthened version of Theorem 3 for symmetric channels.

A. Symmetry Under Channel Combining and Splitting

Let be a symmetric B-DMC with
and arbitrary. By definition, there exists a permutation on

such that i) and ii) for
all . Let be the identity permutation on . Clearly,
the permutations form an Abelian group under func-
tion composition. For a compact notation, we will write to
denote , for .

Observe that for all
. This can be verified by exhaustive study of possible cases

or by noting that
. Also, observe that

as is a commutative operation on .
For , let

(56)

This associates to each element of a permutation on .

Proposition 12: If a B-DMC is symmetric, then is
also symmetric in the sense that

(57)

for all .

The proof is immediate and omitted.

Proposition 13: If a B-DMC is symmetric, then the chan-
nels and are also symmetric in the sense that

(58)

(59)

for all .
Proof: Let and observe that

.
Now, let , and use the same reasoning to see that

. This proves the first claim. To prove the
second claim, we use the first result

where we used the fact that the sum over can be
replaced with a sum over for any fixed since

.

B. Proof of Theorem 4

We return to the analysis in Section V and consider a code en-
semble under SC decoding, only this time assuming
that is a symmetric channel. We first show that the error
events defined by (53) have a symmetry property.

Proposition 14: For a symmetric B-DMC , the event
has the property that

iff (60)

for each .
Proof: This follows directly from the definition of by

using the symmetry property (59) of the channel .

Now, consider the transmission of a particular source vector
and a frozen vector , jointly forming an input vector

for the channel . This event is denoted below as
instead of the more formal .

Corollary 1: For a symmetric B-DMC , for each
and , the events and are indepen-

dent; hence, .
Proof: For and , we

have

(61)

(62)

Equality follows in (61) from (58) and (60) by taking ,
and in (62) from the fact that for
any fixed . The rest of the proof is immediate.

Now, by (54), we have, for all

(63)

and, since , we obtain

(64)

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3063

This implies that, for every symmetric B-DMC and every
code

(65)

This bound on is independent of the frozen
vector . Theorem 4 is now obtained by combining The-
orem 2 with Proposition 2, as in the proof of Theorem 3.

Note that although we have given a bound on
that is independent of , we stopped short of claiming

that the error event is independent of because our deci-
sion functions break ties always in favor of . If this
bias were removed by randomization, then would become in-
dependent of .

C. Further Symmetries of the Channel

We may use the degrees of freedom in the choice of in
(59) to explore the symmetries inherent in the channel .
For a given , we may select with to obtain

(66)

So, if we were to prepare a lookup table for the transition
probabilities ,
it would suffice to store only the subset of probabilities

.
The size of the lookup table can be reduced further by using

the remaining degrees of freedom in the choice of . Let

. Then, for
any and , we have

(67)

which follows from (66) by taking on the left hand
side.

To explore this symmetry further, let
. The set is the orbit of under

the action group . The orbits over variation of
partition the space into equivalence classes. Let

be a set formed by taking one representative from each equiv-
alence class. The output alphabet of the channel can be
represented effectively by the set .

For example, suppose is a BSC with . Each
orbit has elements and there are orbits. In
particular, the channel has effectively two outputs, and
being symmetric, it has to be a BSC. This is a great simplifi-
cation since has an apparent output alphabet size of .
Likewise, while has an apparent output alphabet size of

, due to symmetry, the size shrinks to .
Further output alphabet size reductions may be possible by

exploiting other properties specific to certain B-DMCs. For ex-
ample, if is a BEC, the channels are known to be
BECs, each with an effective output alphabet size of three.

The symmetry properties of help simplify the com-
putation of the channel parameters.

Proposition 15: For any symmetric B-DMC , the parame-
ters given by (7) can be calculated by the simplified
formula

We omit the proof of this result.
For the important example of a BSC, this formula becomes

This sum for has terms, as compared to
terms in (7).

VII. ENCODING

In this section, we will consider the encoding of polar codes
and prove the part of Theorem 5 about encoding complexity.
We begin by giving explicit algebraic expressions for , the
generator matrix for polar coding, which so far has been de-
fined only in a schematic form by Fig. 3. The algebraic forms of

naturally point at efficient implementations of the encoding
operation . In analyzing the encoding operation

, we exploit its relation to fast transform methods in signal
processing; in particular, we use the bit-indexing idea of [11] to
interpret the various permutation operations that are part of .

A. Formulas for

In the following, assume for some . Let
denote the -dimensional identity matrix for any . We
begin by translating the recursive definition of as given by
Fig. 3 into an algebraic form

with .
Either by verifying algebraically that

or by observing that channel combining op-
eration in Fig. 3 can be redrawn equivalently as in Fig. 8, we
obtain a second recursive formula

(68)

valid for . This form appears more suitable to derive a
recursive relationship. We substitute
back into (68) to obtain

(69)

where (69) is obtained by using the identity
with

. Repeating this, we obtain

(70)

3064 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

Fig. 8. An alternative realization of the recursive construction for� .

where . It
can seen by simple manipulations that

(71)

We can see that is a permutation matrix by the following
induction argument. Assume that is a permutation matrix
for some ; this is true for since . Then,

is a permutation matrix because it is the product of two
permutation matrices, and .

In the following, we will say more about the nature of as
a permutation.

B. Analysis by Bit-Indexing

To analyze the encoding operation further, it will be conve-
nient to index vectors and matrices with bit sequences. Given
a vector with length for some , we de-
note its th element, , alternatively as
where is the binary expansion of the integer
in the sense that . Likewise, the ele-
ment of an -by- matrix is denoted alternatively as

where and are the binary rep-
resentations of and , respectively. Using this conven-
tion, it can be readily verified that the product of
a -by- matrix and a -by- matrix has elements

.
We now consider the encoding operation under bit-indexing.

First, we observe that the elements of in bit-indexed form are
given by for all . Thus,
has elements

(72)

Second, the reverse shuffle operator acts on a row vector
to replace the element in bit-indexed position with

the element in position ; that is, if , then
for all . In other words,

cyclically rotates the bit-indexes of the elements of a left
operand to the right by one place.

Third, the matrix in (70) can be interpreted as the
bit-reversal operator: if , then
for all . This statement can be proved by
induction using the recursive formula (71). We give the idea
of such a proof by an example. Let us assume that is a
bit-reversal operator and show that the same is true for .
Let be any vector over GF . Using bit-indexing, it can
be written as .
Since , let us first consider the action
of on . The reverse shuffle rearranges the elements
of with respect to odd–even parity of their indices, so

equals .

This has two halves, and
, corresponding to odd–even

index classes. Notice that and
for all . This is to be expected since the reverse
shuffle rearranges the indices in increasing order within each
odd–even index class. Next, consider the action of
on . The result is . By assumption, is
a bit-reversal operation, so , which
in turn equals . Likewise, the result
of equals . Hence, the overall
operation is a bit-reversal operation.

Given the bit-reversal interpretation of , it is clear that
is a symmetric matrix, so . Since is a permuta-
tion, it follows from symmetry that .

It is now easy to see that, for any -by- matrix ,
the product has elements

. It follows that if is invariant under bit-re-
versal, i.e., if for every

, then . Since
, this is equivalent to . Thus,

bit-reversal-invariant matrices commute with the bit-reversal
operator.

Proposition 16: For any the generator
matrix is given by and
where is the bit-reversal permutation. is a bit-reversal
invariant matrix with

(73)

Proof: commutes with because it is invariant
under bit-reversal, which is immediate from (72). The statement

was established before; by proving that
commutes with , we have established the other statement:

. The bit-indexed form (73) follows by applying
bit-reversal to (72).

Finally, we give a fact that will be useful in Section X.

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3065

Fig. 9. A circuit for implementing the transformation � . Signals flow from
left to right. Each edge carries a signal � or �. Each node adds (mod-�) the
signals on all incoming edges from the left and sends the result out on all edges
to the right. (Edges carrying the signals � and � are not shown.)

Proposition 17: For any
, the rows of and with index have the

same Hamming weight given by , where

(74)

is the Hamming weight of .
Proof: For fixed , the sum of the terms

(as integers) over all
gives the Hamming weight of the row of with index

. From the preceding formula for ,
this sum is easily seen to be . The proof for
is similar

C. Encoding Complexity

For complexity estimation, our computational model will be
a single-processor machine with a random-access memory. The
complexities expressed will be time complexities. The discus-
sion will be given for an arbitrary -coset code with parame-
ters .

Let denote the worst case encoding complexity over
all codes with a given block length . If we
take the complexity of a scalar mod- addition as one unit and
the complexity of the reverse shuffle operation as units,
we see from Fig. 3 that .
Starting with an initial value (a generous figure), we
obtain by induction that for all

. Thus, the encoding complexity is .
A specific implementation of the encoder using the form

is shown in Fig. 9 for . The input to
the circuit is the bit-reversed version of , i.e., .
The output is given by . In general, the
complexity of this implementation is with
for and for .

An alternative implementation of the encoder would be to
apply in natural index order at the input of the circuit in
Fig. 9. Then, we would obtain at the output.
Encoding could be completed by a post bit-reversal operation:

.

The encoding circuit of Fig. 9 suggests many parallel imple-
mentation alternatives for : for example, with proces-
sors, one may do a “column-by-column” implementation, and
reduce the total latency to . Various other tradeoffs are
possible between latency and hardware complexity.

In an actual implementation of polar codes, it may be prefer-
able to use in place of as the encoder mapping in
order to simplify the implementation. In that case, the SC de-
coder should compensate for this by decoding the elements of
the source vector in bit-reversed index order. We have in-
cluded as part of the encoder in this paper in order to have
an SC decoder that decodes in the natural index order, which
simplified the notation.

VIII. DECODING

In this section, we consider the computational complexity
of the SC decoding algorithm. As in the previous section, our
computational model will be a single processor machine with
a random-access memory and the complexities expressed will
be time complexities. Let denote the worst case com-
plexity of SC decoding over all -coset codes with a given
block length . We will show that .

A. A First Decoding Algorithm

Consider SC decoding for an arbitrary -coset code with
parameter . Recall that the source vector
consists of a random part and a frozen part . This
vector is transmitted across and a channel output
is obtained with probability . The SC decoder
observes and generates an estimate of . We
may visualize the decoder as consisting of decision elements
(DEs), one for each source element ; the DEs are activated in
the order to . If , the element is known; so, the th
DE, when its turn comes, simply sets and sends this
result to all succeeding DEs. If , the th DE waits until it
has received the previous decisions , and upon receiving
them, computes the likelihood ratio (LR)

and generates its decision as

if
otherwise

which is then sent to all succeeding DEs. This is a single-pass
algorithm, with no revision of estimates. The complexity of this
algorithm is determined essentially by the complexity of com-
puting the LRs.

A straightforward calculation using the recursive formulas
(22) and (23) gives

(75)

3066 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

and

(76)

Thus, the calculation of an LR at length is reduced to the
calculation of two LRs at length . This recursion can be
continued down to block length , at which point the LRs have
the form and can be computed
directly.

To estimate the complexity of LR calculations, let
denote the worst case complexity

of computing over and
. From the recursive LR formulas, we have the com-

plexity bound

(77)

where is the worst case complexity of assembling two LRs at
length into an LR at length . Taking as one unit, we
obtain the bound

(78)

The overall decoder complexity can now be bounded as
. This complexity

corresponds to a decoder whose DEs do their LR calculations
privately, without sharing any partial results with each other.
It turns out, if the DEs pool their scratch-pad results, a more
efficient decoder implementation is possible with overall com-
plexity , as we will show next.

B. Refinement of the Decoding Algorithm

We now consider a decoder that computes the full set of LRs,
. The previous decoder could

skip the calculation of for ; but now we
do not allow this. The decisions are made
in exactly the same manner as before; in particular, if ,
the decision is set to the known frozen value , regardless
of .

To see where the computational savings will come from, we
inspect (75) and (76) and note that each LR value in the pair

is assembled from the same pair of LRs

Thus, the calculation of all LRs at length requires exactly
LR calculations at length .3 Let us split the LRs at

length into two classes, namely

(79)

3Actually, some LR calculations at length���may be avoided if, by chance,
some duplications occur, but we will disregard this.

Fig. 10. An implementation of the successive cancellation decoder for polar
coding at block-length � � �.

Let us suppose that we carry out the calculations in each class
independently, without trying to exploit any further savings
that may come from the sharing of LR values between the two
classes. Then, we have two problems of the same type as the
original but at half the size. Each class in (79) generates a set
of LR calculation requests at length , for a total of

requests. For example, if we let , the
requests arising from the first class are

Using this reasoning inductively across the set of all lengths
, we conclude that the total number of LRs that

need to be calculated is .
So far, we have not paid attention to the exact order in which

the LR calculations at various block lengths are carried out. Al-
though this gave us an accurate count of the total number of LR
calculations, for a full description of the algorithm, we need to
specify an order. There are many possibilities for such an order,
but to be specific we will use a depth-first algorithm, which is
easily described by a small example.

We consider a decoder for a code with parameter
chosen as . The

computation for the decoder is laid out in a graph as shown in
Fig. 10. There are nodes in the graph, each
responsible for computing an LR request that arises during the
course of the algorithm. Starting from the left side, the first
column of nodes correspond to LR requests at length (deci-
sion level), the second column of nodes to requests at length ,
the third at length , and the fourth at length (channel level).

Each node in the graph carries two labels. For example, the
third node from the bottom in the third column has the labels

and ; the first label indicates that the LR value to

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3067

be calculated at this node is while the second
label indicates that this node will be the 26th node to be acti-
vated. The numeric labels, 1 through 32, will be used as quick
identifiers in referring to nodes in the graph.

The decoder is visualized as consisting of DEs situated
at the leftmost side of the decoder graph. The node with label

is associated with the th DE, . The po-
sitioning of the DEs in the leftmost column follows the bit-re-
versed index order, as in Fig. 9.

Decoding begins with DE 1 activating node 1 for the calcula-
tion of . Node 1 in turn activates node 2 for .
At this point, program control passes to node 2, and node 1 will
wait until node 2 delivers the requested LR. The process con-
tinues. Node 2 activates node 3, which activates node 4. Node
4 is a node at the channel level; so it computes and
passes it to nodes 3 and 23, its left-side neighbors. In general, a
node will send its computational result to all its left-side neigh-
bors (although this will not be stated explicitly below). Program
control will be passed back to the left neighbor from which it
was received.

Node 3 still needs data from the right side and activates node
5, which delivers . Node 3 assembles from the
messages it has received from nodes 4 and 5 and sends it to node
2. Next, node 2 activates node 6, which activates nodes 7 and 8,
and returns its result to node 2. Node 2 compiles its response

and sends it to node 1. Node 1 activates node 9 which
calculates in the same manner as node 2 calculated

, and returns the result to node 1. Node 1 now assembles
and sends it to DE 1. Since is a frozen node, DE 1

ignores the received LR, declares , and passes control to
DE 2, located next to node 16.

DE 2 activates node 16 for . Node 16 assem-
bles from the already-received LRs and

, and returns its response without activating any node.
DE 2 ignores the returned LR since is frozen, announces

, and passes control to DE 3.
DE 3 activates node 17 for . This triggers LR

requests at nodes 18 and 19, but no further. The bit is
not frozen; so, the decision is made in accordance with

, and control is passed to DE 4. DE 4 activates
node 20 for , which is readily assembled and
returned. The algorithm continues in this manner until finally
DE 8 receives and decides .

There are a number of observations that can be made by
looking at this example that should provide further insight into
the general decoding algorithm. First, notice that the computa-
tion of is carried out in a subtree rooted at node 1, con-
sisting of paths going from left to right, and spanning all nodes
at the channel level. This subtree splits into two disjoint sub-
trees, namely, the subtree rooted at node 2 for the calculation of

and the subtree rooted at node 9 for the calculation of
. Since the two subtrees are disjoint, the corresponding

calculations can be carried out independently (even in parallel
if there are multiple processors). This splitting of computational
subtrees into disjoint subtrees holds for all nodes in the graph
(except those at the channel level), making it possible to imple-
ment the decoder with a high degree of parallelism.

Second, we notice that the decoder graph consists of butter-
flies (-by- complete bipartite graphs) that tie together adjacent
levels of the graph. For example, nodes 9, 19, 10, and 13 form
a butterfly. The computational subtrees rooted at nodes 9 and
19 split into a single pair of computational subtrees, one rooted
at node 10, the other at node 13. Also note that among the four
nodes of a butterfly, the upper-left node is always the first node to
be activated by the above depth-first algorithm and the lower-left
node always the last one. The upper-right and lower-right nodes
are activated by the upper-left node and they may be activated in
any order or even in parallel. The algorithm we specified always
activated the upper-right node first, but this choice was arbitrary.
When the lower-left node is activated, it finds the LRs from its
right neighbors ready for assembly. The upper-left node assem-
bles the LRs it receives from the right side as in formula (75),
the lower-left node as in (76). These formulas show that the but-
terfly patterns impose a constraint on the completion time of LR
calculations: in any given butterfly, the lower-left node needs to
wait for the result of the upper-left node which in turn needs to
wait for the results of the right-side nodes.

Variants of the decoder are possible in which the nodal com-
putations are scheduled differently. In the “left-to-right” im-
plementation given above, nodes waited to be activated. How-
ever, it is possible to have a “right-to-left” implementation in
which each node starts its computation autonomously as soon as
its right-side neighbors finish their calculations; this allows ex-
ploiting parallelism in computations to the maximum possible
extent.

For example, in such a fully parallel implementation for the
case in Fig. 10, all eight nodes at the channel-level start calcu-
lating their respective LRs in the first time slot following the
availability of the channel output vector . In the second time
slot, nodes 3, 6, 10, and 13 do their LR calculations in parallel.
Note that this is the maximum degree of parallelism possible
in the second time slot. Node 23, for example, cannot calculate

in this slot, because
is not yet available; it has to wait until decisions
are announced by the corresponding DEs. In the third time slot,
nodes 2 and 9 do their calculations. In time slot 4, the first deci-
sion is made at node 1 and broadcast to all nodes across the
graph (or at least to those that need it). In slot 5, node 16 calcu-
lates and broadcasts it. In slot 6, nodes 18 and 19 do their cal-
culations. This process continues until time slot 15 when node
32 decides . It can be shown that, in general, this fully parallel
decoder implementation has a latency of time slots for
a code of block-length .

IX. CODE CONSTRUCTION

The input to a polar code construction algorithm is a triple
where is the B-DMC on which the code will be

used, is the code block length, and is the dimensionality
of the code. The output of the algorithm is an information set

of size such that is as small
as possible. We exclude the search for a good frozen vector
from the code construction problem because the problem is al-
ready difficult enough. Recall that, for symmetric channels, the
code performance is not affected by the choice of .

3068 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

In principle, the code construction problem can be solved by
computing all the parameters and
sorting them; unfortunately, we do not have an efficient algo-
rithm for doing this. For symmetric channels, some computa-
tional shortcuts are available, as we showed by Proposition 15,
but these shortcuts have not yielded an efficient algorithm, ei-
ther. One exception to all this is the BEC for which the param-
eters can all be calculated in time thanks to
the recursive formulas (38).

Since exact code construction appears too complex, it makes
sense to look for approximate constructions based on estimates
of the parameters . To that end, it is preferable to
pose the exact code construction problem as a decision problem:
Given a threshold and an index ,
decide whether where

Any algorithm for solving this decision problem can be used
to solve the code construction problem. We can simply run the
algorithm with various settings for until we obtain an infor-
mation set of the desired size .

Approximate code construction algorithms can be proposed
based on statistically reliable and efficient methods for esti-
mating whether for any given pair . The estimation
problem can be approached by noting that, as we have implic-
itly shown in (54), the parameter is the expectation of
the RV

(80)

where is sampled from the joint probability as-
signment . A Monte
Carlo approach can be taken, where samples of
are generated from the given distribution and the empirical
means are calculated. Given a sample
of , the sample values of the RVs (80) can all be
computed in complexity . An SC decoder may be
used for this computation since the sample values of (80) are
just the square roots of the decision statistics that the DEs in an
SC decoder ordinarily compute. (In applying an SC decoder for
this task, the information set should be taken as the null set.)

Statistical algorithms are helped by the polarization phenom-
enon: for any fixed and as grows, it becomes easier to re-
solve whether , because an ever-growing fraction
of the parameters tend to cluster around or .

It is conceivable that, in an operational system, the estimation
of the parameters is made part of an SC decoding
procedure, with continual update of the information set as more
reliable estimates become available.

X. A NOTE ON THE RM RULE

In this part, we return to the claim made in Section I-D that
the RM rule for information set selection leads to asymptotically
unreliable codes under SC decoding.

Recall that, for a given , the RM rule constructs a
-coset code with parameter by prioritizing

each index for inclusion in the information set
w.r.t. the Hamming weight of the th row of . The RM

rule sets the frozen bits to zero. In light of Proposition 17,
the RM rule can be restated in bit-indexed terminology as fol-
lows.

RM Rule: For a given , with
choose as follows: i) Determine the integer such

that

(81)

ii) Put each index with into
. iii) Put sufficiently many additional indices with

into to complete its size to .

We observe that this rule will select the index

for inclusion in . This index turns out to be a particularly poor
choice, at least for the class of BECs, as we show in the re-
maining part of this section.

Let us assume that the code constructed by the RM rule is
used on a BEC with some erasure probability . We
will show that the symmetric capacity converges
to zero for any fixed positive coding rate as the block length is
increased. For this, we recall the relations (6), which, in bit-in-
dexed channel notation of Section IV, can be written as follows.
For any

with initial values and
. These give the bound

(82)

Now, consider a sequence of RM codes with a fixed rate
, increasing to infinity, and . Let

denote the parameter in (81) for the code with block length
in this sequence. Let . A simple asymptotic

analysis shows that the ratio must go to as is
increased. This in turn implies by (82) that must
go to zero.

Suppose that this sequence of RM codes is decoded using an
SC decoder as in Section I-C.2 where the decision metric ig-
nores knowledge of frozen bits and instead uses randomization
over all possible choices. Then, as goes to infinity, the SC de-
coder decision element with index sees a channel whose
capacity goes to zero, while the corresponding element of the
input vector is assigned 1 bit of information by the RM rule.
This means that the RM code sequence is asymptotically unre-
liable under this type of SC decoding.

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3069

We should emphasize that the above result does not say that
RM codes are asymptotically bad under any SC decoder, nor
does it make a claim about the performance of RM codes under
other decoding algorithms. (It is interesting that the possibility
of RM codes being capacity-achieving codes under ML de-
coding seems to have received no attention in the literature.)

XI. CONCLUDING REMARKS

In this section, we go through the paper to discuss some re-
sults further, point out some generalizations, and state some
open problems.

A. Rate of Polarization

A major open problem suggested by this paper is to determine
how fast a channel polarizes as a function of the block-length
parameter . In recent work [12], the following result has been
obtained in this direction.

Proposition 18: Let be a B-DMC. For any fixed rate
and constant , there exists a sequence of sets

such that and

(83)

Conversely, if and , then for any sequence of sets
with , we have

(84)

As a corollary, Theorem 3 is strengthened as follows.

Proposition 19: For polar coding on a B-DMC at any fixed
rate , and any fixed

(85)

This is a vast improvement over the bound proved
in this paper. Note that the bound still does not depend on the
rate as long as . A problem of theoretical interest is
to obtain sharper bounds on that show a more explicit
dependence on .

Another problem of interest related to polarization is robust-
ness against channel parameter variations. A finding in this re-
gard is the following result [13]: If a polar code is designed for a
B-DMC but used on some other B-DMC , then the code
will perform at least as well as it would perform on pro-
vided is a degraded version of in the sense of Shannon
[14]. This result gives reason to expect a graceful degradation
of polar-coding performance due to errors in channel modeling.

B. Generalizations

The polarization scheme considered in this paper can be gen-
eralized as shown in Fig. 11. In this general form, the channel
input alphabet is assumed -ary, , for
some . The construction begins by combining inde-
pendent copies of a DMC to obtain , where

is a fixed parameter of the construction. The general step

Fig. 11. General form of channel combining.

combines independent copies of the channel from the
previous step to obtain . In general, the size of the construc-
tion is after steps. The construction is characterized
by a kernel where is some finite set
included in the mapping for randomization. The reason for in-
troducing randomization will be discussed shortly.

The vectors and in Fig. 11 denote
the input and output vectors of . The input vector is first
transformed into a vector by breaking it into
consecutive subblocks of length , namely, ,
and passing each subblock through the transform . Then,
a permutation sorts the components of w.r.t. mod-
residue classes of their indices. The sorter ensures that, for any

, the th copy of , counting from the top of
the figure, gets as input those components of whose indices
are congruent to mod- . For example,

and
so on. The general formula is for all

.
We regard the randomization parameters as being

chosen at random at the time of code construction, but fixed
throughout the operation of the system; the decoder operates
with full knowledge of them. For the binary case considered in
this paper, we did not employ any randomization. Here, random-
ization has been introduced as part of the general construction
because preliminary studies show that it greatly simplifies the
analysis of generalized polarization schemes. This subject will
be explored further in future work.

Certain additional constraints need to be placed on the kernel
to ensure that a polar code can be defined that is suitable

for SC decoding in the natural order to . To that end, it
is sufficient to restrict to unidirectional functions, namely,
invertible functions of the form

3070 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

Fig. 12. The factor graph representation for the transformation � .

such that , for a given set of coor-
dinate functions . For
a unidirectional , the combined channel can be split to
channels in much the same way as in this paper. The
encoding and SC decoding complexities of such a code are both

.
Polar coding can be generalized further in order to overcome

the restriction of the block length to powers of a given number
by using a sequence of kernels in the

code construction. Kernel combines copies of a given
DMC to create a channel . Kernel combines
copies of to create a channel , etc., for an overall
block-length of . If all kernels are unidirectional,
the combined channel can still be split into channels
whose transition probabilities can be expressed by recursive for-
mulas and encoding and decoding complexities are
maintained.

So far we have considered only combining copies of one
DMC . Another direction for generalization of the method is
to combine copies of two or more distinct DMCs. For example,
the kernel considered in this paper can be used to combine
copies of any two B-DMCs . The investigation of coding
advantages that may result from such variations on the basic
code construction method is an area for further research.

It is easy to propose variants and generalizations of the basic
channel polarization scheme, as we did above; however, it is not
clear if we obtain channel polarization under each such variant.
We conjecture that channel polarization is a common phenom-
enon, which is almost impossible to avoid as long as chan-
nels are combined with a sufficient density and mix of connec-
tions, whether chosen recursively or at random, provided the
coordinate-wise splitting of the synthesized vector channel is
done according to a suitable SC decoding order. The study of
channel polarization in such generality is an interesting theoret-
ical problem.

C. Iterative Decoding of Polar Codes

We have seen that polar coding under SC decoding can
achieve symmetric channel capacity; however, one needs to
use codes with impractically large block lengths. A question
of interest is whether polar coding performance can improve
significantly under more powerful decoding algorithms. The
sparseness of the graph representation of makes Gallager’s
belief propagation (BP) decoding algorithm [15] applicable
to polar codes. A highly relevant work in this connection
is [16] which proposes BP decoding for RM codes using a
factor-graph of , as shown in Fig. 12 for . We carried
out experimental studies to assess the performance of polar
codes under BP decoding, using RM codes under BP decoding
as a benchmark [17]. The results showed significantly better
performance for polar codes. Also, the performance of polar
codes under BP decoding was significantly better than their
performance under SC decoding. However, more work needs
to be done to assess the potential of polar coding for practical
applications.

APPENDIX

A. Proof of Proposition 1

The RHS of (1) equals the channel parameter as de-
fined in Gallager [10, Sec. 5.6] with taken as the uniform input
distribution. (This is the symmetric cutoff rate of the channel.)
It is well known (and shown in the same section of [10]) that

. This proves (1).
To prove (2), for any B-DMC , define

This is the variational distance between the two distributions
and over .

Lemma 2: For any B-DMC .
Proof: Let be an arbitrary B-DMC with output alphabet

and put
. By definition

The th bracketed term under the summation is given by

where and . We now consider
maximizing over . We compute

and recognize that and are, respectively, the
geometric and arithmetic means of the numbers and .
So, and is maximized at , giving the

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3071

inequality . Using this in the expression for ,
we obtain the claim of the lemma

Lemma 3: For any B-DMC .
Proof: Let be an arbitrary B-DMC with output al-

phabet and put

. Let

and . Then, we have
. Clearly, is upper-bounded

by the maximum of over subject to the
constraints that and .
To carry out this maximization, we compute the partial deriva-
tives of with respect to

and observe that is a decreasing, concave function of
for each , within the range . The maximum

occurs at the solution of the set of equations , all
, where is a constant, i.e., at . Using

the constraint and the fact that , we
find . So, the maximum occurs at
and has the value . We have
thus shown that , which is equivalent to

.

From the above two lemmas, the proof of (2) is immediate.

B. Proof of Proposition 3

To prove (22), we write

(86)

By definition (5), the sum over for any fixed equals

because, as ranges over ranges
also over . We now factor this term out of the middle sum

in (86) and use (5) again to obtain (22). For the proof of (23),
we write

By carrying out the inner and outer sums in the same manner as
in the proof of (22), we obtain (23).

C. Proof of Proposition 4

Let us specify the channels as follows:
and . By hypothesis there is

a one-to-one function such that (17) and (18)
are satisfied. For the proof it is helpful to define an ensemble
of RVs so that the pair is
uniformly distributed over

and
. We now have

From these and the fact that is invertible, we get

Since and are independent, equals
. So, by the chain rule, we have

where the second equality is due to the one-to-one relationship
between and . The proof of (24) is completed
by noting that equals
which in turn equals .

To prove (25), we begin by noting that

This shows that . This and (24) give
(25). The above proof shows that equality holds in (25) iff

, which is equivalent to having

for all such that , or equivalently

(87)

3072 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

for all . Since
, (87) can be written as

(88)
Substituting and

into (88) and simplifying, we obtain

which for all four possible values of is equivalent to

Thus, either there exists no such that ,
in which case , or for all we have

, which implies .

D. Proof of Proposition 5

Proof of (26) is straightforward.

To prove (27), we use shorthand notation
and ,

and write

where the inequality follows from the identity

Next, we note that

Likewise, each term obtained by expanding
gives

when summed over . Also,
summed over equals . Combining these, we obtain
the claim (27). Equality holds in (27) iff, for any choice of ,
one of the following is true: or

or . This is satisfied if is a
BEC. Conversely, if we take , we see that for equality in
(27), we must have, for any choice of , either
or ; this is equivalent to saying that is a BEC.

To prove (28), we need the following result which states that
the parameter is a convex function of the channel transi-
tion probabilities.

Lemma 4: Given any collection of B-DMCs
and a probability distribution on , define

as the channel . Then

(89)

Proof: This follows by first rewriting in a different
form and then applying Minkowsky’s inequality [10, p. 524,
inequality (h)]

We now write as the mixture

where

and apply Lemma 4 to obtain the claimed inequality

ARIKAN: A METHOD FOR CONSTRUCTING CAPACITY-ACHIEVING CODES 3073

Since and , we have
, with equality iff equals or . Since
, this also shows that iff

equals or . So, by Proposition 1,
iff equals or .

E. Proof of Proposition 6

From (17), we have the identities

(90)

(91)

Suppose is a BEC, but is not. Then, there exists
such that the left sides of (90) and (91) are both different from
zero. From (91), we infer that neither nor is an erasure
symbol for . But then the RHS of (90) must be zero, which
is a contradiction. Thus, must be a BEC. From (91), we
conclude that is an erasure symbol for iff either
or is an erasure symbol for . This shows that the erasure
probability for is , where is the erasure probability
of .

Conversely, suppose is a BEC but is not. Then,
there exists such that and

. By taking , we see
that the RHSs of (90) and (91) can both be made nonzero,
which contradicts the assumption that is a BEC.

The other claims follow from the identities

The arguments are similar to the ones already given and we omit
the details, other than noting that is an erasure
symbol for iff both and are erasure symbols for .

F. Proof of Lemma 1

The proof follows that of a similar result from Chung
[9, Theorem 4.1.1]. Fix . Let

. By Proposition 10, . Fix
. implies that there exists such that

. Thus, for some . So,
. Therefore, .

Since , by the monotone convergence
property of a measure, .
So, . It follows that, for any

there exists a finite such that, for all
, . This completes the proof.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, 623–656, Jul.–Oct. 1948.

[2] E. Arıkan, “Channel combining and splitting for cutoff rate improve-
ment,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 628–639, Feb. 2006.

[3] D. E. Muller, “Application of Boolean algebra to switching circuit de-
sign and to error correction,” IRE Trans. Electron. Comput., vol. EC-3,
no. 9, pp. 6–12, Sep. 1954.

[4] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE Trans. Inf. Theory, vol. IT-4, no. 3, pp. 39–44, Sep. 1954.

[5] M. Plotkin, “Binary codes with specified minimum distance,” IRE
Trans. Inf. Theory, vol. IT-6, no. 3, pp. 445–450, Sep. 1960.

[6] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper
Saddle River, N.J.: Pearson, 2004.

[7] R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983.

[8] G. D. Forney, Jr., MIT 6.451 Lecture Notes, Spring, 2005, unpublished.
[9] K. L. Chung, A Course in Probability Theory, 2nd ed. New York:

Academic, 1974.
[10] R. G. Gallager, Information Theory and Reliable Communication.

New York: Wiley, 1968.
[11] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcu-

lation of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp.
297–301, 1965.

[12] E. Arıkan and E. Telatar, “On the Rate of Channel Polarization,” Aug.
2008, arXiv:0807.3806v2 [cs.IT].

[13] A. Sahai, P. Glover, and E. Telatar, private communication, Oct. 2008.
[14] C. E. Shannon, “A note on partial ordering for communication chan-

nels,” Inf. Contr., vol. 1, pp. 390–397, 1958.
[15] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.

Theory, vol. IT-8, no. 1, pp. 21–28, Jan. 1962.
[16] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans.

Inf. Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001.
[17] E. Arıkan, “A performance comparison of polar codes and Reed-Muller

codes,” IEEE Commun. Lett., vol. 12, no. 6, pp. 447–449, Jun. 2008.

Erdal Arıkan (S’84–M’79–SM’94) was born in Ankara, Turkey, in 1958. He
received the B.S. degree from the California Institute of Technology, Pasadena,
in 1981 and the S.M. and Ph.D. degrees from the Massachusetts Institute of
Technology, Cambridge, in 1982 and 1985, respectively, all in electrical engi-
neering.

Since 1987 he has been with the Electrical-Electronics Engineering Depart-
ment of Bilkent University, Ankara, Turkey, where he is presently a Professor.

