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Neuromorphic technology is evolving rapidly, but it still faces two critical problems.
Firstly, few compelling applications exist that demonstrate the superiority of neuromor-
phic technology over classical computing, limiting its widespread adoption and commer-
cialisation. Some insightful applications include keyword spotting [BCHE19], real-time
modelling of microcortical circuits [RPR`20] the implementation of nearest-neighbor
searches [FOF`20] and LASSO optimisation via the spiking locally competityive al-
gorithm [DSL`18]. Secondly, the use of neuromorphic technology by neuroscientists
is scarce, with physicists, mathematicians, engineers and computer scientists as the
principal user communities. Discrepancies remain between the variables of interest in
the laboratory to experimental neuroscientists and the parameterisations realisable on
neuromorphic hardware, making the models of the latter too abstract or simplified. For
example, while experimental data is acquired in the form of ion-channel conductances
from patchlamp experiments, local field potentials, effects of parmacological blockers
and neurotransmitter on neurons, and intra-cellular and extra-cellular ion concentra-
tions, the neuromorphic hardware is configured in terms of synapse level connectivity
(point-to-point adjacency matrices), membrane and postsynaptic potential time con-
stants, inter spike intervals and firing probabilities. We contribute to addressing both
issues by implementing stochastic processes arising in neuronal dynamics, developing
applications for neuromorphic hardware of both biological and technological interest.
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On the application level, we harness recent theoretical developments and results
from conventional hardware on the computational power of stochastic neuronal dy-
namics for problem-solving. We do so by replicating and improving on the solution of
constraint satisfaction problems (CSPs) with stochastic networks of spiking neurons.
For this, we have used both the SpiNNaker and the Loihi neuromorphic chips, harness-
ing the advantages of each one. Our results demonstrate the usability of neuromorphic
technology to solve hard problems with industrial application for which conventional
machine learning faces challenges. The performance of our CSP solver is comparable
to that of the state of the art solutions, and is a basic module for implementing solution
strategies of increasing sophistication as well as for gaining insights into how living
beings solve CSP problems in the real world. To bridge the gap with experimental neu-
roscience, we demonstrate the implementation on SpiNNaker of models of the intrinsic
currents generated by voltage-gated ion channels, as well as of realistic postsynaptic
potentials. Both of these arise in the neuronal membrane from complex ion-channel
dynamics which are stochastic by their very nature. Our work paves the way to inte-
grate neuromorphic technology with the worlds of neurophysiology and neurogenetics,
allowing a direct relation with processes of interest in neuropharmacology, such as
protein-drug interaction, as well as in whole-cell recordings of phenomena such as
homeostasis and intrinsic plasticity. Hence these results at the cellular level open the
way for the use of neuromorphics in medical applications and scientific enterprise in
neuroscience.
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Chapter 1

Introduction

1.1 Motivation

Through the years, automated machines have improved manufacturing and other pro-
cesses in all areas of human life. Initially, such devices were programmed to do
repetitive tasks, more like a powerful and sophisticated calculator. However, nowa-
days we count with computer applications that can perform more cognitive-like tasks.
These learn and are able to deal ‘reliably’ with problems they never saw before. Some
of the most innovative and impressive technologies offered by industries like IBM
[Hig12, CAW16], Google [SHM`16, SSS`17], Amazon [Jos20a], Microsoft [Jos20b]
and Intel [GFS`19, CBB`18] are based on machine learning and in particular deep
learning [LBH15, Sch15]. Nevertheless, when compared with biological systems, such
algorithms spend considerable computational resources: energy, matter, time and space
[CPC16]. All of which add to the economic and environmental burden. Furthermore,
artificial intelligence remains distant from natural intelligence (see [Mar18] for a critical
appraisal on deep learning and its relation to natural intelligence). This is not surprising;
neither is it a duty of artificially intelligent systems to perform as biological ones in mul-
timodal and complex knowledge structures or unpredictable real-world environments.
Such abilities are, however, desirable. With the evolution of technology into pervasive
computing, there was a paradigm shift on how humans relate with computers, as well
as what we expect from or dream about them. This is, in the author’s opinion, a more
important motivation for post-von-Neumann architectures than the often cited end of
Moore’s law for miniaturisation [Pep17].

Biologically-inspired hardware architectures bring novel solutions aiming to both
alleviate the computational cost, increase the cognitive aspects of computation, and
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provide one of the means to improve our understanding of living matter at scales inacces-
sible experimentally. Here, we explore a disrupting technology known as neuromorphic
computing [Fur16a, Mea90, LDI`14]. It is inspired by the most complex organ on
earth, the brain. This latter is asynchronous and stochastic. Its computing units are
distributed, decentralised, making it highly sparse in both space and time.These features
are proposed to underlay its remarkable general intelligence and energy efficiency
[DIPR07, HJM13, BS12], some theorists suggest that even the emergence of conscious-
ness defined as intrinsic information with causal power in self-organizing agents. From
these simple axiomatic definition, it is found that the underlying physical substrate
of consciousness should have characteristics of complexity as those of the neocortex
[TBMK16, Fri05]. In parallel, the main technological drivers for the study of the brain
and brain-inspired machines are the development of novel computing paradigms and
intelligent systems [AS15], and the understanding of ourselves with repercussion in the
treatment of diseases and increase on the quality of life. Novel computing like neuromor-
phics, quantum computers and approximate computing paradigms have demonstrated
good potential, but still, fail to demonstrate a wide range of abilities in real-world ap-
plications [WKM`19, NVS16, SPP`17, CRO`19, MV17, OML19, BM19, LGQO18].
One of our interest is to advance neuromorphic technology to a level where it could
be clearly useful, covering a problem general enough to be transferable across disci-
plines. The other is to approximate neuromorphics to the medical and experimental
neuroscience communities.

Structurally, the human brain is built from a high dimensional and very entangled
structure, which has been challenging to unravel with the existing research methods
[RNS`17, BS09]. Besides, its exploration is rightfully subject to ethical strict regula-
tions and limitations on in-vivo and in-vitro studies. The number of neurons in the full
human brain is in the order of 86 billion (note that non-neuronal cells also approximate
85 billion) [ACG`09, HH09]. Regarding connections, each neuron is able to form
thousands of connections with other neurons by means of synapses, that could sum up to
« 1015 in the whole human brain [Mou57]. Despite its dimensionality and a high degree
of randomness, the neural interconnect is neither purely random nor purely regular. It is
instead a complex network. Complex networks present a nontrivial topology, emerging
as a set of models that better describe the high dimensional systems found in nature.
The graph topology of the brain preserves a structured and hierarchical connectivity
[DM04, BS09, RNS`17], where only 19% of the brain neurons belong to the cerebral
cortex, where intelligence and consciousness are thought to emerge [TBMK16] (see
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however [ARTB19] for contributions of visceral processes to consciousness and cogni-
tion). The cortex is the outermost neuronal tissue in the brain, consisting of a folded and
layered structure of 2 to 4 mm thick, where the number of layers depends on the cerebral
region. Each layer has different neuronal composition and structural connectivity. The
cortex is further divided into allocortex and neocortex, the latter –consisting of six
layers– is the most evolved part of the human brain and accounts for « 90% of the
neurons in the full cortex. Besides the layered structure, defined by the horizontal
distribution of somata (the cell body of neurons), there is also a columnar organisation,
emerging from a higher density of vertical connections across the thickness of the
cortex, connecting the neurons of different layers that have similar tuning properties.
Such cells form clusters that behave as microcircuits [Mou57][HW77]. An organisation
that is involved in the neocortex ability to perform cognitive processes like memory,
attention, perceptual awareness, language, thought, and consciousness [Abe91]. In
the first part of this thesis, we harness one crucial aspect of the brain structure, the
existence of a neural connectivity pattern which governs action selection under multiple
choices, the so-called winner-takes-all (WTA) circuit, networks of WTAs allow the
brain to combine acquired knowledge and input evidence from the external world in
order to perform decision making [DM04, FSF`13, JHM16]. Following [JHM16] and
[RSD18], we show how such an organisation combined with stochastic dynamics across
the network, a feature of brain dynamics, endow neuromorphic technology with the
competitive ability for problem-solving. This latter is not only a necessary condition for
intelligent behaviour, but it is also central to it [Rob16, Sar18, SBG`15].

1.1.1 Neuromorphics for Problem-Solving

In the process of developing neuromorphic hardware, It is desirable to explore the
capabilities of the machines on the realms of both general problems in mathematics
and computational science, as well as on the understanding of cognition and animal
behaviour. If the machine succeeds in representing or solving any of the well defined
abstract classes of problems, it means it will apply to real-world problems that can be
formulated under that formalism. The more general the class of problems, the broader
the range of applications will be covered, as well as the better we will understand the
capabilities of the design. More importantly, we will understand the limitations of
it. Understanding the limits of applicability of a computational approach is as crucial
as evolving its capabilities [Har04]. The reason is that some problems are indeed
intractable. In the sense that, it does not matter how much we improve the speed,
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power consumption or size of our computers, there are families of problems which
despite being solvable with infinite resources, will remain intractable [HF04] (at least
until some exotic machine demonstrates an exponential speed-up; quantum and genetic
computers promise advances in this direction, at least in theory, but the practicalities
seem to be out of the scope of our era). Even worse, are the undecidable or unsolvable
problems, where infinite-time availability will not help. Thus, knowing the performance
and complexity of a new computer architecture, in the hierarchy of computable and
incomputable problems, will shed light on realistic directions for optimisation and
improvement, avoiding the use of valuable time on aspects that will not add significant
scientific or technological value.

For the first part of this thesis, I selected constraint satisfaction problems (CSPs)
as a general problem with clear applications and which remains very hard to solve.
It belongs to the NP-complete complexity class, for which the existence (or not) of
efficient algorithms remains a major unsolved question in computational complexity
theory [For09]. Thus, constraint satisfaction problems (CSPs) [DC`03] are a special
family of problems which serve the purpose of understanding the computational power
and limitations of novel technology, having a wide range of applications and keeping
connections with behaviour and cognition in neuroscience [DM04]. CSPs are beautifully
simple to formulate, yet they seem to belong to the class of intractable problems. In
particular to the NP-complete family. These are problems verifiable in polynomial time,
sometimes understood as efficiently [Cob65, Edm65, GJ79], yet finding their solution
requires supra-polynomial time on the size of the problem. The evidence suggests that
the time-complexity may be exponential, e.g., a linear increase on the problem size
results in an exponential growth on the required resources [For09].

Solving a CSP as an optimisation problem consists on travelling across a cost or en-
ergy hypersurface, defined on the high-dimensional space of all possible configurations,
looking for a global energy minimum where the system is relaxed the most, i.e. satisfies
a maximum number of constraints. Independently of the specific strategy used by an
agent to solve the CSP, a fundamental limitation is that the agent will always have finite
computational resources to perform the search. As the problem size increases, these
resources quickly become insufficient for an exhaustive search. When this latter can be
performed, the agent has full resolution information about the cost over the state space.
However, for large problems the agent has to use sparse or scattered samples to per-
form the search, looking for a trade-off between high-resolution local information and
low-resolution global information, The former guides a greedy search for optimal local
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decisions. The latter is usually obtained from a discrete and finite sampling over the
state space whose information content will decrease drastically with both, the curvature
of the cost hypersurface and the dimensionality of the associated combinatorial space
[DC`03, Wal00].

Every solution to a CSP will have zero violations and include all variables defining
the problem. Hence it will be represented by a global minimum of the cost hypersurface.
If the problem has several solutions, the global minimum will be degenerated, existing
one minimum for each solution. It is easy to see then, that the difficulty of finding a
solution for a CSP is not only given by the high dimension of its combinatorial space.
The curvature on such space is also critical. Here, the curvature refers to how folded is
the cost function (a scalar function related to the number of unsatisfied constraints) in
the space of possible evaluations. If the cost function is strictly convex, there will be a
single minimum and methods like gradient descend will easily find it. However, this is
rarely the case.

1.1.2 Neuromorphics for Neuron Modelling

Regarding the use of neuromorphics for brain modelling, given the experimental lim-
itations in studying the different scales of the neural tissue, research must resort to
computation as an alternative and fundamental method for accelerating neuroscience
research, in other words, computers became the most practical option to explore the pa-
rameter space of the human brain. Even having full access to the properties of individual
cells, it is highly probable that several questions should be answered at the ”mesoscale”,
where millions of neurons are interacting by means of billions of synapses, an unfeasible
experimental task that becomes natural for massively parallel neuromorphic comput-
ers. Due to the intrinsic complexity of the human brain, we should regard both the
bottom-up and top-down strategies for its study. The bottom-up approach builds-up the
system from its minimal components; however, nonlinearities become essential when
the number of elements and interactions increase. The nonlinear dynamics cause the
whole system to behave differently than just the sum of its components, if the system
parameters reach some critical values, the emergence of phenomena like chaos and
collective behaviour can happen, causing the bottom-up approach to losing its predictive
ability. In such cases a top-down approach is worth exploring, In the example of the
human brain, at the top, one analyses the cognitive processes and their interactions, and
goes through cerebral regions down to the neurons. For some studies, this approach
is challenging as well; for instance, due to the abstract nature of the top elements, the
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measurements tend to be more qualitative than at the bottom level.

There is a general understanding of the function and behaviour of stereotypical
neurons and the nature of their connections (synapses) [BG91]. Nevertheless, there
is not a full characterisation of all types of neurons, which are largely diverse. Such
diversity obscures the understanding of what is known as the neural code, how neurons
operate from the perspective of information processing [DA`03]. To explore how
neuromorphics could aid at modelling these diverse scales while harnessing data from
experimental neuroscience, we established a collaboration with the Institute of Basic
Medical Sciences of the University of Oslo with the long-term goal of porting one of
the more accurate thalamo-cortical models developed by S. Hill and G. Tononi [HT05].
The recurrent activity between the cortex and and the thalamus are essential for the
maintenance and regulation of sleep and depend on the interaction between several
types of trans-membrane ion currents. Although the role of sleep remains a mystery, it
represents a transition between conscious and unconscious states and a detailed account
of the cellular mechanisms and electroencephalogram signatures that characterise sleep,
wakefulness, as well as, the transition between these is available. Hill and Tononi,
unified the most relevant experimental evidence in a single, multi-scale, anatomically
and physiologically accurate computational model of the thalamocortical system which
replicates the observed wakefulness, non-Rapid Eye Movement (REM) sleep and REM
sleep states, their response to external visual stimuli and the transition between these
states [HT05].

The implementation of this model in SpiNNaker required the implementation of
several new functionalities in the machine. It uses a more complex network model
which harness the advantages of both the point neuron models and the Hodgkin-Huxley
model. In short, it required the implementation of:

• The pacemaker, low-threshold calcium, persistent sodium and depolarisation-
activated potassium intrinsic ion currents [HM92]. This currents represent the
passive contributions to the electrical properties of the neurons and emerge from
the ion-channels distributed across the cellular membrane. This physiological
feature was never implemented in neuromorphic hardware.

• A dynamic threshold which has a resting value, at each spike, it is reset to the
sodium resting potential from where it decays exponentially towards the resting
value [HT05]. The previous threshold in SpiNNaker was just a fixed value
[RBB`18].
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• NMDA voltage-gated conductances, these are voltage-sensitive synaptic conduc-
tances [VCR03].

• Short-term plasticity. This type of plasticity reflects the loss in performance of
the signal transmission in the synapse when spikes are to close in time. It is due
to the reduced availability of neurotransmitters and vesicles [ZR02].

The last chapter of this thesis is devoted to the implementation of generic voltage-
gated ion-channel currents from which the pacemaker, low-threshold calcium, persistent
sodium and depolarisation-activated potassium intrinsic currents underlying the Hill-
Tononi model are a subset. Crucially, these intrinsic currents are responsible for
triggering the wakefulness-sleep transition [HT05]. Our implementation endows the
SpiNNaker machine with a neural dynamics which adapts according to the activity
of the network and the cell. Opening possibilities for intrinsic plasticity and runtime
neural adaptation. However, due to its fixed-point architecture, the implementation
on SpiNNaker present some discrepancies with the floating-point implementations
in conventional CPU hardware. Our work paves the road for the implementation of
intrinsic currents in the next generation of the SpiNNaker machine which is currently
under development.

1.2 Neuromorphic Hardware Platforms

This thesis is based on two state-of-the-art neuromorphic systems based on the SpiN-
Naker and Loihi chips respectively. The spiking neural network architecture (SpiN-
Naker), developed at The University of Manchester, is the largest neuromorphic com-
puter ever build and the only supercomputer with one-million computing nodes (proces-
sor cores). The Intel Loihi Chip is the fastest neuromorphic chip to preserve a massive
number of spiking neurons and some degree of model flexibility.

It has been widely acknowledged that computational neuroscience studies are faced
by the principles of conventional parallel design, namely, memory coherence (through a
global memory), full-synchronicity and determinism (in the sense of sequential compu-
tations) [Fur16a]. Such principles do not correspond with brain functioning, generating
bottlenecks that needed to be overcome. Among others, SpiNNaker emerged to sup-
port real-time and efficient computing, as well as the ability to handle vast numbers
of neurons and synapses. SpiNNaker was designed as a massively parallel super-
computer which disregards the classical paradigms, it allows an efficient multicast
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and asynchronous global communication between distributed local dynamical systems
describing neurons i.e., numerically-solved time-dependent differential equations. Com-
munication happens through small messages, source-routed packets of 40 or 72 bits,
representing action potentials or spikes. Notice the clear difference with conventional
artificial neural networks. Spiking neural networks (SNNs) incorporate time, are recur-
rent and asynchronous, rather than synchronous feed-forward as many deep learning
architectures [LBH15], literally opening a new dimension which brings both, opportu-
nities for cognitive algorithms and challenges for developing them. Chapters 2 and 4
make a step forward in this regard.

Two versions of the SpiNNaker architecture exist. SpiNNaker 1 has been two
decades in conception with half of this time devoted to its construction, while SpiNNaker
2 is in the prototype stage. Physically, the SpiNNaker machine is built from « 106

ARM9 processor cores, topologically arranged in a toroidal mesh. Each core has two
tightly-coupled memories one of 32 Kbytes for instructions (ITCM) and one of 64
Kbytes for data (DTCM), the processors are built with hardware support for fixed-point
arithmetic only, which saves power and silicon area. The cores are grouped in 5.7ˆ104

18-core system-on-chip nodes. Each one with a multicast router and a 128 Mbyte
off-die double data rate synchronous dynamic random access memory (DDR-SDRAM)
shared by the 18 processors. Chips communicate through self-timed channels and
are grouped on a printed circuit board forming 48-node hexagonal arrays, which then
communicate via 3.1 Gbps high-speed serial interfaces, six per board. For further
details on the SpiNNaker hardware see [FLP`13, KLP`08], the software is detailed in
[RBB`18, RBD`18].

SpiNNaker 2 aims to upgrade approximately 100 times the already unique billion
spiking neurons of its first generation, which corresponds to « 1.15% of the number of
neurons in the human brain. This means that SpiNNaker 2 will be able to handle the
same number of neurons as there are in the whole human brain, i.e. « 86 billion leaky
integrate and fire (LIF) neurons. Note that in both machines the number of neurons
drops as biological details are included. Such an upgrade is achieved by substitution of
the ARM 968 processors, manufactured with a 130 nm CMOS technology, with the state-
of-the-art ARM M4F. These latter features a 22nm CMOS (GLOBALFOUNDRIES
22FDX) process [CMP`16]. Furthermore, each chip is projected to contain 144 cores,
128K memory per core (which can be accessed synchronously by other cores) and a 2GB
off-chip memory. Besides scaling, SpiNNaker2 incorporates improvements in energy
efficiency. It maintains the 1W power consumption per chip, each of which integrates
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the equivalent to a 48-node board from the first generation. Furthermore, through
dynamic voltage and frequency scaling (DVFS) and adaptive Body biasing (ABB), the
chip can switch between three (frequency-at-voltage) modes of power consumption
according to workload [HSE`12] achieving an optimal power management [HYV`17].

With the above feature set, SpiNNaker is presented as a unique resource, with
the striking features of performing real-time, asynchronous and event-driven high-
dimensional simulations.

In turn, Loihi is a neuromorphic chip recently released by Intel corporation which
differs from conventional computing architectures in similar design principles as the
ones above for SpiNNaker. Because it brings a considerable speed-up for our CSP
solver and has been known publicly for less time, a more detailed review of its software
and hardware architecture is done in chapter 3.

1.3 Thesis Hypotheses

• Constraint satisfaction problems can be solved efficiently on neuromorphic hard-
ware.

• Neuromorphic hardware can deliver competitive problem-solving with low energy
expenditure and biologically relevant processing times.

• It is possible to validate CSP SNNs online (on-chip) without probing the neural
activity of the entire network.

• Realistic postsynaptic currents are linearisable, allowing for their efficient imple-
mentation on neuromorphic hardware.

• Intrinsic currents are implementable in SpiNNaker

1.4 Thesis Contributions

1.4.1 Key Contributions

• Development of an application programming interface (API) for the solution
of CSPs in the massively parallel SpiNNaker machine. The API constitutes an
stochastic general-problem incomplete solver which requires a few seconds to
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solve Sudoku and map colouring problems and converges to the problem solution
for CSPs of moderate difficulty.

• Development of software and theoretical frameworks for the solution and on-
chip validation of CSPs in Intel’s Loihi neuromorphic chip and systems. The
multicompartment spiking neural network which solves the problem also measure
it’s own cost function and notifies the host CPU when a solution to the problem
is found. Only at this point, the solution is read from the network state. This
methodology avoids constantly reading the network and transferring the data to
host for post-processing, both of which cause an overhead of several minutes
and seconds on SpiNNaker and Loihi respectively. On-chip validation implies
satisfaction is known online. In our SpiNNaker solver, the solution and whether
one was found are only known after gathering and processing the recorded
network activity. The solver in Loihi achieves a speedup of two to three orders of
magnitude improvement for Sudoku and map colouring problems (problems are
solved in milliseconds).

• Development of a theoretical framework for the implementation in SpiNNaker
of more biologically plausible alpha- and beta-shaped postsynaptic currents.
SpiNNaker only supported Dirac delta and exponential kernels. These shapes
control how synaptic input is integrated by a neuron into its membrane potential,
directly affecting its spiking behaviour. The hard constraint is that required
memory (buffer size and number of buffers) should not increase with the input
spikes history. Thus, all previous activity has to be encoded on the last value in
the memory local to the neuron.

• SpiNNaker implementation of voltage-gated ion-channel currents, also known
as intrinsic currents. These follow the Hodgkin-Huxley formalism in which
the neuron conductance is formulated in terms of the ensemble response of
thousands of ion-channels across the neuronal membrane. The integration of data
from electrophysiological recordings e.g., from voltage-clamp experiments on
biological neurons, as well as their effect on the neuron dynamics, e.g., spike
adaptation, is achieved. The intrinsic currents response to voltage changes remains
within 10 % of the CPU double floating-point version, this error is expected due to
the use of fixed-point arithmetic. Spike adaptation has qualitative correspondence
with an equivalent implementation on the state-of-the-art neural simulator Nest.
There are however quantitative differences on the exact spike times, all within a
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few milliseconds, yet the same number of spikes is observed.

1.4.2 Secondary Contributions

• Demonstration of the applicability in diverse neuromorphic hardware of the
framework presented in [JHM16] for solving CSPs with SNNs.

• Improvements in CSP solving times from those of SNN simulations [HJM13] and
in CSP problem size over other neuromorphic implementations [BIP16, KM18].

• By achieving online solution to CSP problems in milliseconds our solver is in the
timescale of conscious events of biological relevance, it can thus be considered
as a realtime solver.

• An on-chip validation architecture which is applicable beyond CSP solvers to
SNN architectures where certain subpopulations need to be controlled.

• The CSP solver was recently proposed as one of the benchmarks [Dav19] for
progress in neuromorphic hardware.

• Energy-delay product competitiveness with the quantum annealers in solving
CSPs.

• Increased the biological realism of simulations in the SpiNNaker Machine.

• Helped in bridging the gap between SNN simulations in neuromorphic hardware
and experimental data acquired from biological neurons.

• Paved the way for the implementation of Hodgkin-Huxley neuron models in
SpiNNaker 2.

1.5 Thesis Structure

The thesis is divided into two parts.

Part I. Problem-Solving from Network-level Stochastic Dynamics

This part deals with the endeavour of endowing neuromorphic hardware with the ability
for problem-solving in the CSP class. I demonstrate the design, implementation and
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solution of diverse CSPs on two-state-of-the-art architectures. We find promising results
for thrusting neuromorphic technology into main-trend computing.

Chapter 2 SpiNNaker Solver for Constraint Satisfaction Problems This results
chapter introduces CSPs, SNNs, the mapping of CSPs into SNNs, as well as their imple-
mentation into the SpiNNaker machine. The CSP solver achieves good performance and
convergence to a solution. This chapter has been published with minor modifications in
the journal Frontiers in Neuroscience [FGF17].

Chapter 3 The Intel Loihi Neuromorphic Chip This is a literature chapter were
the Loihi hardware and software architectures are reviewed, highlighting the features of
interest for the Loihi CSP solver presented in the subsequent chapter.

Chapter 4 Loihi Solver for Constraint Satisfaction Problems with On-Chip val-
idation This results chapter demonstrates the design and implementation of an API for
the solution of CSPs on Loihi. It features both offline (on-host) and online (on-chip)
validation of satisfiability. The API I develop here enables the easy creation of diverse
CSP applications.

Part II. Neuronal Excitability from Cellular-level Stochastic Dynam-
ics

On this part, we improve the biological realism of neural models in SpiNNaker. Adding
to their local complexity while keeping the scalability achieved through asynchronous
event-driven computing. This section presents the possibility of parameterising SNNs
with cellular data obtained from in-vitro and in-vivo measurements. Both postsynaptic
and intrinsic currents emerge from stochastic dynamics at the molecular scale, our
models however only capture the relevant average dynamics.

Chapter 5 Neuromorphic Implementation of Postsynaptic Currents This results
chapter tackles the problem of the linearisation of the alpha and dual-exponential func-
tions with stochastic spike arrival. The chapter demonstrates results for postsynaptic
currents which drove their implementation on the SpiNNaker software tool-chain. The
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derivations, however, enable the implementation of these functions to extend the eligi-
bility traces used for plasticity and neuromodulation.

Chapter 6 Intrinsic Currents Generated by Voltage-gated Ion Channels This re-
sults chapter demonstrates the preliminary implementation of voltage-gated ion channel
currents of biological interest, as well as their effect on the evolution of the neuronal
membrane potential and firing pattern. Despite the limitations in accuracy by using
fixed-point arithmetic, these results are adequate for simulations in which qualitative
accuracy is desired. Further work is needed if high quantitative precision is required.
This can, in principle, be achieved with SpiNNaker 2.

Chapter 7 Conclusions and Future Work This chapter closures the thesis present-
ing overall conclusions and directions for future work.
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Chapter 2

SpiNNaker Solver for Constraint
Satisfaction Problems

1

Constraint satisfaction problems (CSPs) are at the core of numerous scientific and
technological applications. However, CSPs belong to the NP-complete complexity
class, for which the existence (or not) of efficient algorithms remains a major unsolved
question in computational complexity theory. In the face of this fundamental difficulty,
heuristics and approximation methods are used to approach instances of NP (e.g. de-
cision and hard optimisation problems). The human brain efficiently handles CSPs
both in perception and behaviour using spiking neural networks (SNNs), and recent
studies have demonstrated that the noise embedded within an SNN can be used as a
computational resource to solve CSPs [JHM16]. Here, we provide a software frame-
work for the implementation of such noisy neural solvers on the SpiNNaker massively
parallel neuromorphic hardware, further demonstrating their potential to implement a
stochastic search that solves instances of P and NP problems expressed as CSPs. This
facilitates the exploration of new optimisation strategies and the understanding of the
computational abilities of SNNs. We demonstrate the basic principles of the framework
by solving difficult instances of the Sudoku puzzle and of the map colour problem and
explore its application to spin glasses. The solver works as a stochastic dynamical
system, which is attracted by the configuration that solves the CSP. The noise drives
the exploration of the space of configurations, looking for the satisfiability of all the

1This chapter has been published with minor modifications as a research article by the journal
Frontiers in Neuroscience, Neuromorphic Engineering [FGF17] under the terms of the Creative Commons
Attribution License (CC BY). The author of this thesis and his supervisor retain the copyright.
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constraints; if applied discontinuously, it can also force the system to leap to a new
random configuration effectively causing a restart.

2.1 Constraint Satisfaction Problems

Most practical problems and natural phenomena can be abstracted as systems composed
of smaller elements interacting with each other, an element being able to assume one
of many states and the global configuration of states governed by the nature of the
interactions. In practice, each interaction imposes a restriction on the behaviour of the
units (a constraint). Such a description allows the interpretation of the phenomena as a
constraint satisfaction problem (CSP), which is defined by the tuple xX ,D,Cy. Here,
X “ tx1, ...,xNu is a set of N variables defined over the respective set of non-empty
domains D“ tD1, ...,DNu, each xi represents an element of the system which can take
|Di| possible states. The constraints C “ tC1, ...,Cmu are xSi,Riy tuples defined over m

subsets S “ tS1, ...,Sm : Si Ď Xu, and k relations R “ tR1, ...,Rku [RN16]. In general,
each Ri is a tuple defined over the Cartesian product of the variable domains, if however,
all relations Ri are defined as 2-tuples, the CSP is called binary. With this definition,
and without taking into account symmetry considerations, one has on the order of DN

possible evaluations for the values of the set X . (Here D is the average size of the
domains). In the case of a Sudoku puzzle, for example, X represents the grid cells, the
set D consists of the nine possible digits for each cell, and C defines the game rules. In
this case one has 981 possible configurations which after puzzle equivalency reduction
define « 6.67ˆ1021 possible puzzles [FJ05a].

A solution to the CSP (if it exists) is a valuation of X that is consistent (satisfies
all the constraints Ci in C) and complete (includes all variables xi in X). To find
such a solution, one implements a search algorithm that explores the state space of
all these configurations [DC`03]. The strategy of searching the whole state space,
known as the brute-force algorithm, quickly becomes unfeasible as N increases (e.g.
requiring more computing time than the age of the universe [Nor09]), demanding
the development of cleverer algorithms [DC`03]. The efficiency of such computing
algorithms is conventionally determined with the definition of its asymptotic time
complexity T pnq, expressed as a function of the input size of the problem n9N for a
particular encoding language [GJ79]. Notice that for a given problem two different
instances of the same size n could reveal different performance, so T refers to the
worst-case complexity. According to Cobham’s thesis [Cob65, Edm65], an algorithm is
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conventionally considered efficient if it admits worst-case polynomial-time solutions on
a deterministic Turing machine (DTM). Such algorithms build up the P complexity class,
corresponding to T pnq P Opnκq, where κ is determined by the nature of the problem. A
broader class, the NP complexity, contains all decision problems for which a proposed
solution can be verified in polynomial time [Coo71].

The problem of determining the existence of efficient algorithms for solving every
NP problem, known as the P versus NP problem, remains unsolved since its establish-
ment by [Coo71]. When a problem does demand algorithms outside P, it is said to be
intractable, and it is a widely held view that this is the case for a large subset of NP.
Thus, instances of NP are recognised as very hard problems [For09], the hardest of
which is referred to as NP-Complete, which are NP problems to which any other NP
problem can be reduced in polynomial time, hence completeness [Kar72]. 2 If P‰ NP,
NP-complete problems are tractable only by an ideal non-deterministic version of the
Turing machine (NDTM) [Coo71, Kar72, GJ79]. We can think of Turing machines
as abstract devices endowed with a set of rules to act on a string of symbols, such
actions depending on both, the machine’s internal state(s) and the input symbol(s).
While at each computation node a DTM has a specific action to perform (thus defining
a computation path) an NDTM can follow a whole family of actions (thus defining a
computation tree) [HMU06]. At each computation step, either the NDTM takes action
biased towards configurations that lead to accepting states or it branches executing
all of the allowed actions [Mar11]. In any case, an NDTM is guaranteed to find a
solution if it exists. Although the biased action description is unrealistic, the replicative
interpretation is only limited by the available space and time resources (increasing
resources are needed as the NDTM advances through the computation tree). Despite
the apparent impracticability of manufacturing an NDTM, very recently, and based on
the replicative properties of the deoxyribonucleic acid (DNA) molecule, [CKA`17]
reported the first physical design of the embodiment of an NDTM. The practicability
of NDTM remains, however, uncertain in the near future. Therefore, with a high pos-
sibility of P ‰ NP and no NDTMs available, NP problems stay as a hard task to be
tackled. Importantly, the determination of the existence (or not) of solutions for a CSP
constitutes an NP-complete problem. Therefore,

1. there are no known efficient algorithms that work for general CSPs, despite the
fact that there are polynomial-time subcases and

2A set of yet harder problems form the NP-Hard class of which P, NP and NP-Complete problems are
subsets, though NP-Hard problems are not necessarily NP.
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2. any other NP problem can be expressed as a CSP in polynomial time.

2.2 Neuronal Approaches to Constraint Satisfaction

NP-Complete problems find applications in a wide range of fields, from spin-glass
systems, resources allocation and combinatorial mathematics, to Atari games and
public-key cryptography [GJ79, For09, Bar82, ADGV15]. Thus, in the absence of
known efficient algorithms for solving general NP problems, and the need for at least
an approximate solution, the standard strategy is to find either an adequate heuristic or
an approximation algorithm for the particular instances of the given problem. Such non-
neural strategies have been successful for developing practical applications [DC`03].
Here, we instead take inspiration from the underlying neuronal network architecture
which biological organisms use to efficiently cope with CSPs, in this case even the
limitations found are enlightening, i.e. it could be more convenient for an animal to
prioritise a nearly-optimal but quick solution, especially if the system is unsolvable.
In [HT85], Hopfield, J. J. and Tank, D. W. firstly proposed stochastic analogue neural
networks to solve decision and optimisation problems. They had realised the CSP
nature of their previously implemented content addressable memory [Hop82], and
of the optimisation of perceptual inference by [HS83], both of which used networks
of binary neurons. 3. More recently, an alternative approach based on deterministic
multistable neural oscillators and synaptic plasticity was proposed [MMI13]. All the
neural models above are liable to get stuck in local minima. This problem was tackled by
[MMI15b] by enhancing the model of [MMI13] with the use of gamma-band rhythmic
oscillations of incommensurable frequencies (not rational multiples of each other),
which further allowed their network dynamics to stabilise when all constraints are
satisfied. The latter gave rise to an event-driven, mixed analogue/digital prototype chip
of incommensurable oscillators which, bespoken to the distributed nature of CSPs,
promises to yield state-of-the-art performance [MMI15a].

In the middle of the 90s, more biologically plausible versions of neural networks, the
SNNs, were demonstrated to present equal or superior computational capabilities than
those of analogue neurons [Maa95, Maa96, Maa97]. Despite promising advantages,

3The main difference between Hopfield nets and SNNs for solving CSPs is the asymmetry in the
ON and OFF state of the neurons, Hopfield’s approach uses analogue neurons which keep the CSP
network state well defined, in contrast, stochastic spiking neurons have an inherent asymmetry between
their random spiking probability and their deterministic reset after a spike. This feature gives SNNs the
possibility of bypassing energy barriers in the stochastic search because the CSP state can be temporarily
undefined [JHM16]
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their implementation demands a high computational expense in conventional hard-
ware. Regarding CSPs, [MB00] achieved an SNN solution of an eight cities travelling
salesman problem (TSP). More than a decade later, [HJM13] demonstrated that the
stationary distribution of a stochastic SNN visits the solution of a hard Sudoku puzzle
on average 2% of the time once it acquires a performance where 90% of the constraints
are satisfied, and finally [JHM16], formalised the application of SNNs to general CSPs,
postulating a methodology which allows the shaping of the energy landscape, using
a modularity principle, controlling the network dynamics and causing it to visit the
solution to the problem with high probability.

2.3 Neuromorphic Approaches to Constraint Satisfac-
tion

The models above suggest that the noisy, distributed and asynchronous nature of
the brain’s processes could be behind its computational properties, contrasting with
the conventional trends in commercial computer architectures. The brain itself is
constantly facing conflicting situations where it should decide actions that best satisfy
a number of constraints [Chu08, Tom15]. Hence, we can take advantage of the brain-
inspired computers (neuromorphics) to design new strategies for solving CSPs and
gain understanding about which of such strategies are biologically plausible. Given
the NP-complete nature of CSPs, it seems natural to consider the research on SNN-
solvers to be at an early stage, with the need for an even deeper exploration of their
dynamics. It is the aim of this chapter to provide a tool for the exploration of the
behaviour of high-dimensional networks running in biological real-time, facilitating
the further evolution of SNN-solvers for CSPs, allowing, for example, the study of the
non-Boltzmann and non-Markovian dynamics of the network [CB90, CFT`15]. For
this, we use the Spiking Neural Network Architecture (SpiNNaker), a neuromorphic
computer which presents a nice balance between the very large number of neurons
it is able to simulate, its energy efficiency and the biological real-time feature of the
simulations. Neuromorphic computers are electronic devices emulating the working
mechanisms of the brain in the search for alternative models of computation. They
aim to overcome the limitations offered by conventional computational architectures
especially (but not only) with regard to brain simulations [Mea90, LDI`14, Fur16a,
Fur16b]. Similarly to the prototype chip of incommensurable oscillators of [MMI15a],
neuromorphics provide a distributed architecture that resembles that of CSPs. They
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also share the local nature of the constraint graph in which generally a constraint
relate only a few variables. SpiNNaker is a real-time asynchronous, multicast, and
event-driven machine [FLP`13, FGTP14], features that favour the implementation of
stochastic computations. Furthermore, it is designed to compute with spiking neurons,
overcoming the computational cost that historically limited implementations of SNNs
compared to artificial neural networks. Through the following sections, we are going to
show how SpiNNaker is able to implement a stochastic search that solves constraint
satisfaction problems. Besides running in biological time, our approach improves
previous stochastic SNN implementations with the ability to converge into a stable
(long-lasting) solution.

2.4 From Constraint Satisfaction Problems to Spiking
Neural Networks

In order to implement the stochastic search, we first need to map our CSP into an SNN.
Formally, a spiking neural network can be defined as a set of spiking neurons N , each
one with a threshold function θi, and with connections between two arbitrary neurons
Ni and N j established by the set of synapses S Ď N XN . For each element Si, j P S
there is a weight parameter wi, j and a response function Ri, j : R`Ñ R [Maa97]. In our
implementation each neuron Ni corresponds to a leaky integrate and fire (LIF) neuron
[Ste67]. In this model the dynamics of the membrane potential vi are given by:

τm
dvi

dt
“´viptq`RIptq. (2.1)

Here, τm is the membrane time constant, R is the membrane resistance and I an
external input current. Each time v reaches a threshold value θ a spike is elicited;
such events are fully characterized by the firing times tt f | vpt f q “ θand dv

dt |t“t f ą 0u.
Immediately after a spike the potential is reset to a value vr, such that limtÑt f` vptq “ vr.
In our network, synapses are uniquely characterized by wi j and the inter-neural effective
separation that a spike travels, from the presynaptic axon hillock to the synapse, is
introduced through an axonic time delay ∆i j. In biological neurons, each spike event
generates an electrochemical response on the postsynaptic neurons characterised by
Ri, j. We use the same function for every pair pi, jq, this is defined by the exponential
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postsynaptic current:

Jptq “
q
τ

e´
t´t0

τ Θpt´ t0q, (2.2)

where q is the total electric charge transferred through the synapse, τ is the charac-
teristic decaying time of the exponential function, t0 “ t f `∆i j is the arrival time of
the spike and Θ represents the Heaviside step function. The choice of Ri, j potentially
affects the network dynamics, the use of the exponential function in the equation 2.2
constitutes one of the differences of our solver and the previous studies on solving
CSP through SSNs which used a simple square function. In chapter 4, we will also
use exponential PSPs for the solver with off-chip validation but will resource to square
PSPs in the neural architecture for on-chip validation as these are part of the underlying
theoretical proofs of convergence to a stationary distribution by [Jon14] and such PSPs
are available in Loihi.

In an SNN each neuron is part of a large population. Thus, besides the background
current Iptq, the principal neurons here receive input from the other neurons, as well as
a stochastic stimulation from noisy neurons implementing a Poisson process. These
latter emulate the brain’s background activity. In this case, the temporal evolution of
the membrane potential (equation 2.1) generalises to:

τm
d
dt

vi “´viptq`R

»

–Iptq`
ÿ

j

wi, j
ÿ

f

Jpt´ t f
j q`

ÿ

k

ΩiJpt´Tkq

fi

fl (2.3)

where the index f accounts for the spike times of principal neuron j, Ωi is the
weight of the connection between the i neuron and its presynaptic Poisson spikes source
which send random spikes which occur at time Tk, and Jp.q is the response function of
equation 2.2. An SNN has the advantage that its microstate ψt “ tn1,n2...,n|N |u at any
time t can be defined by the binary firing state ni P t0,1u of each neuron Ni, instead
of their continuous membrane potential vi P R. Then, the set of firing times tt f

i u for
every neuron Ni, or equivalently the set of states tψtu, corresponds to the trajectory
(dynamics) of the network on the state space. The simulations in this work happen in
discrete time (time step = 1ms), so in practice, ψt defines a discrete stochastic process
(e.g. a random walk). If the next network state ψti`1 depends on ψti but is conditionally
independent of any ψt j with j ă i, the set tψtu also corresponds to a Markov chain.
In [HJM13], Habenschuss S. et. al. demonstrated that this is the case when using
rectangular PSPs and a generalised definition of the network state, the validity of the
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Figure 2.1: Competing WTAs encoding a non-equal constraint between two variables
with 5 possible values each.

Markov property for general SNNs could still depend on the dynamical regime and be
affected by the presence of a non-zero probability current for the stationary distribution
[CB90]. Each possible configuration of the system, a microstate ψi, happens with
certain probability pi and, in general, it is possible to characterise the macroscopic state
of the network with the Shannon entropy (in units of bits) [Sha48]:

S “´
ÿ

i

pi log2ppiq (2.4)

and the accumulated network activity:

Aptq “
1
|N |

|N |
ÿ

j

ÿ

f

δpt´ t f
j q (2.5)

To compute pi and hence equation 2.4 we binned the spikes from each simulation
with time windows of 200 ms, notice in figures (2.2, 2.4, 2.5) how the activity of the
networks in this chapter produces hundreds of spikes per ms, so windows of the order
of 102 ms result in a sample size in the order of 103 spikes which is the same order of
magnitude as the number of principal domain populations, making it representative of
the network activity. In this type of high-dimensional dynamical system, sometimes the
particular behaviour of a single unit is not as relevant as the collective behaviour of the
network, described for example by equations 2.4 and 2.5.

SNNs can encode CSP variables and constraints as shown in figure 2.1, on it the
variables Xl and Xm can take one of five possible values, each value is represented
by a neuron and the five neurons inside each variable are competing through lateral
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inhibition. An All-Different constraint C j “ pXl,Xm,xl ‰ Xmq can then be encoded
as one-to-one inhibition between neurons in different variables encoding the same
values. A complete CSP can now be encoded as an SNN with the pseudo-code of
algorithm 2.1. This follows three basic steps: a) create SNNs for each domain Di of
each variable, every neuron is then excited by its associated noise source, providing the
necessary energy to begin the exploration of the states tψu. b) create lateral-inhibition
circuits between all domains that belong to the same variable. c) create lateral-inhibition
circuits between equivalent domains of all variables appearing in a non-equal constraint
and lateral-excitation circuits for domains in a all-equal constraint. With these steps,
the resulting network will be a dynamical system representation of the original CSP.
Different strategies can now be implemented to enforce the random process over states
ψt to find the configuration ψs that satisfies all the constraints. The easiest and proposed
way of implementing such strategies is through the functional dependence of the noise
intensity with time. The size of each domain population n acts as a hyperparameter
which should be large enough to average out the stochastic spike activity. Otherwise,
the system will not be stable and will not represent quasi-equilibrium states. Also, n

should be the minimum value that satisfies this criterion to save in neurons count and
hence use less energy. As will be shown, the size of the domain populations allows the
SpiNNaker solver to converge into a stable solution. This is, however, not a requirement
in chapter 4 arguably because of the nature of the noise injection, which there consist in
randomizing v rather than in stochastic spike trains.

The ensemble of populations assigned to every CSP variable xi works as a winner-
take-all circuit through inhibitory synapses between domain populations, which tends
to allow a single population to be active. However, the last restriction should not
be over-imposed, because it could generate saturation i.e., the inhibition from the
initial winners is excessively strong to allow the network to swap valuations, and our
network will be trapped in a local minimum. Instead, the network should constantly
explore configurations in an unstable fashion converging to equilibrium only when
satisfiability is found. The random connections between populations, together with
the noisy excitatory populations and the network topology, provide the necessary
stochasticity that allows the system to search for satisfiable states. However, this same
behaviour traps some of the energy inside the network. For some problems, a dissipation
population could be created to balance the input and output of energy or to control the
entropy level during the stochastic search. In general, there may be situations in which
the input noise acquired through stimulation can stay permanently in the SNN. Thus,
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the inclusion of more excitatory stimuli will saturate the dynamics in very high firing
rates, which potentially reaches the limit of the SpiNNaker communication fabric. In
these cases, inhibitory noise is essential too and allows us to include arbitrarily many
stimulation pulses. We will see in the next section that this simple approach provides an
effective strategy for finding solutions to the studied CSPs through stochastic searches.

Listing 2.1: Translation of a CSP into an SNN.
# d e f i n e t h e CSP = <X , D, C> t h r o u g h a s e t o f l i s t s .

X= l i s t ( v a r i a b l e s )
D= l i s t ( domains )
S= l i s t ( s u b s e t s o f (X) )
R= l i s t ( r e l a t i o n s o v e r ( s i in S ) )
C= l i s t ( c o n s t r a i n t s = t u p l e ( s i , r i ) )

#a ) c r e a t e an SNN f o r each v a r i a b l e w i t h sub´p o p u l a t i o n s f o r each
domain .
n = s i z e o f e n s e m b l e , chose t h e minimum which s t i l l r e s u l t s in c o n v e r g e n c e .
f o r v a r i a b l e x i in X:

f o r domain d i in D:
p o p u l a t i o n [ x i ] [ d i ] = c r e a t e an SNN wi th n n e u r o n s
n o i s e e x c [ x i ] [ d i ] = c r e a t e a s e t of n o i s e
s t i m u l a t i o n p o p u l a t i o n s .
a p p l y s t i m u l i ( n o i s e [ x i ] [ d i ] , p o p u l a t i o n [ x i ] [ d i ] )
n o i s e i n h [ x i ] [ d i ] = c r e a t e a s e t of n o i s e
d i s s i p a t i o n p o p u l a t i o n s .
a p p l y d i s s i p a t i o n ( n o i s e i n h [ x i ] [ d i ] , p o p u l a t i o n [ x i ] [ d i ] )

#b ) use i n h i b i t o r y s y n a p s e s t o a c t i v a t e , on average , a s i n g l e domain per
v a r i a b l e

f o r domain d i in D:
f o r domain d j in D

i n h i b i t o r y ( p o p u l a t i o n [ x i ] [ d i ] , p o p u l a t i o n [ x i ] [ d j ] )
# c ) map each c o n s t r a i n t t o an i n h i b i t o r y or e x c i t a t o r y s y n a p s e .

f o r c o n s t r a i n t c i in C :
r e a d s u b s e t s i and r e l a t i o n r i from c i
f o r v a r i a b l e s x i and x j in s i :

f o r domain d i in D:
i f c o n s t r a i n t r e l a t i o n r i <0:

i n h i b i t i o n ( p o p u l a t i o n [ x i ] [ d i ] , p o p u l a t i o n [ x j ] [ d i ] )
e l i f c o n s t r a i n t r e l a t i o n r i >0:

e x c i t a t i o n ( p o p u l a t i o n [ x i ] [ d i ] , p o p u l a t i o n [ x j ] [ d i ] )

2.5 The Spiking Neural Network Architecture (SpiN-
Naker)

With large CSPs the equivalent SNN becomes computationally too expensive for con-
ventional computers, so one of the important contributions of our work is the implemen-
tation of the SNN-solver on a computer architecture specially designed for computations
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with spiking neurons. Conventional supercomputers physically embody a deterministic
universal Turing machine and are designed to do computations transferring a high
quantity of data in deterministic, synchronous, repeatable and reliable ways. Although
under specif circumstances neuromorphic computers can be described by a DTM. They
are devices inspired by the working principles of the brain, which is rather asynchronous
and unreliable and thus has additional features. Although conventional machines have
achieved impressive performance in automatic computing tasks –in part due to the great
progress in miniaturisation– when facing the complex inference and cognitive tasks
solved naturally by living organisms, biology outperforms them by several orders of
magnitude, especially with regard to energy efficiency. We believe that such features
can provide advantages in the solution of unsolved problems such as the ones in NP.

Neuromorphic computing was first introduced by Carver Mead in the 1980s, orig-
inally intended for analogue very-large-scale integration systems. Almost 30 years
after Mead’s work and after a decade of parallel efforts, there are but a few very
powerful, massively parallel neuromorphic computers: TrueNorth [MAAI`14], Neu-
rogrid [BGM`14], BrainScaleS [SBG`10], Loihi systems [DSL`18] and SpiNNaker
[PPG`13]. The latter is endowed with the ability to model high-dimensional spiking
neural networks, low energy requirements, and a multicast communication protocol.
It is based on a globally asynchronous and locally synchronous (GALS) multi-core
System-on-Chip, being event-driven and able to run in biological time. SpiNNaker is
built using a million ARM 968 processor cores. Each chip on the machine includes
18 processor cores connected by a network on chip (NoC) communication system
[FGTP14, FLP`13, PPG`13, Fur12, GKK`13, GF11]. This fundamentally different
architecture paradigm, besides bespoke design for neurobiology simulations, makes the
SpiNNaker system interesting for exploring new implementations of stochastic searches.
Here we explore the computing power of the machine for these more general computing
problems, exploiting the neuromorphic’s ability to overcome the conventional difficul-
ties of dealing with computationally expensive spiking neurons when implemented on
conventional clusters and GPUs. In summary: i) for SpiNNaker spiking neurons are
the fundamental modelling units and ii) it is a machine intrinsically able to implement
stochastic computations on hardware. We will show in the next section how these two
features bring new opportunities to solve hard constraint satisfaction problems.
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2.6 Solving CSPs on SpiNNaker

In order to demonstrate the implementation of the SNN solver, SpyNNCSP, we present
solutions to some instances of NP problems. Among the NP-complete problems, we
have chosen to showcase instances of graph colouring, Latin squares and Ising spin
glasses. Our aim is to offer a tool for the development of stochastic search algorithms
in large SNNs. We are interested in CSPs to gain an understanding about the dynamics
of SNNs under constraints, how they choose a particular state and their computational
abilities. Ultimately, SNNs embedded in neuromorphic hardware are intended for the
development of new technologies such as robotics and neuroprosthetics, constantly
interacting with both the external devices and the environment. In such applications
the network needs to adapt itself to time-varying constraints taking one or multiple
decisions accordingly, making the advancement in stochastic searches with SNNs a
fundamental requirement for neuromorphics.

2.6.1 Graph Colouring

Considering a graph G defined by the ordered pair tV,Eu, with V a set of vertices and
E the set of edges connecting them, the graph colouring problem consists of finding
assignments of k colours to the elements of the graph (either V , E or both) such that
certain conditions are satisfied [Dai80]. In vertex colouring, for example, the colours
are assigned to the elements of V in such a way that no adjacent nodes (those connected
by an edge) have the same colour. A particularly useful application of this problem is
the process of register allocation in compiler optimisation which is isomorphic to graph
colouring [Cha82]. Regarding time complexity, the general graph colouring problem
is NP-complete for k ą 2. In the case of planar graphs, 3-colouring is NP-complete
and, thanks to the four colour theorem proved by Kenneth Appel and Wolfgang Haken,
4-colouring is in P [AH89].

A division of a plane into several regions can be represented by a planar graph,
familiar versions of which are the geographic maps. In figure 2.2A we show the
SNN-solver result of a satisfying 4-colouring of the map of the world where colours
are assigned to countries such that no bordering countries have the same colour. We
have followed the list of countries and borders from the United Nations available in
Mathematica Wolfram [WR17]. The corresponding connectivity graph of the world
map in figure 2.2A is shown in figure 2.2B. The insets in figure 2.2A, show the results of
our solver for 3-colouring of the maps of the territories of Australia (bottom-right) and
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Figure 2.2: (A) Solution to the map colouring problem of the world with 4 colours
and of Australia and Canada with 3 colours (insets). (B) Shows the graph of bordering
countries from (A). The plots of the entropy H (top), mean firing spike rate ν (middle)
and states count Ω (bottom) v.s. simulation time are shown in (C) and (D) for the world
and Australia maps, evidencing the convergence of the network to satisfying stationary
distributions. In the entropy curve red codes for changes of state between successive
time bins, green for no change and blue for the network satisfying the CSP. In the states
count line, black dots mean exploration of new states; the dots are yellow if the network
returns to states visited before.
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Figure 2.3: Population activity for four randomly chosen CSP variables from figure 2.2
(A), each line represents a colour domain.
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of Canada (top-left). Figure 2.2C and 2.2D show the time dependence of the entropy
(top), firing rate (middle) and the number of visited states (bottom) for the map of the
world and of Australia respectively. The colour code we use in these, and the following
figures is as follows: red means that the state in the current time bin is different from the
one just visited, green represents the network staying in the same state and blue means
that all constraints are satisfied. The dashed vertical lines mark the times at which noise
stimulating (blue) or depressing (red) populations began to be active. The normalised
spiking activity of the four colour populations for four randomly selected countries of
the world map is shown in figure 2.3 evidencing the competing behaviour along the
stochastic search. Interestingly, although the network has converged to satisfaction
during the last 20s (blue region in 2.2C), the bottom right plot in 2.3 reveals that due to
the last stimulation the network has swapped states preserving satisfaction, evidencing
the stability of the convergence. Furthermore, it is noticeable in 2.2D that new states
are visited after convergence to satisfiability, this is due to the fact that, when multiple
solutions exist, all satisfying configurations have the same probability of happening.
Although we choose planar graphs here, the SNN can implement any general graph,
hence more complicated P and NP examples could be explored.

2.6.2 Latin Squares

A Latin square is defined as an array of nˆ n cells in which n groups of n different
symbols are distributed in such a way that each digit appears only once in each row
or column. The NP-completeness of completing a partially filled Latin square was
demonstrated by [Col84], and among the useful applications of such a problem, one
can list authentication, error-detection and error-correction in coding theory. Here we
choose the Sudoku puzzle as an instance of a Latin square, in this case, n “ 9 and
in addition to the column and row constraints of Latin squares, Sudoku requires the
uniqueness of the digits in each 3ˆ3 sub-grid.

We show in figure (2.4) the solution to an easy puzzle [ERT12], to a hard Sudoku
[HJM13] and to the AI Escargot puzzle which has been claimed to be the world hardest
Sudoku. The temporal dependence of the network entropy H, firing rate ν and states
count Ω is shown in figures 2.4A-C respectively for the easy (2.4G), hard (2.4H) and
AI escargot (2.4I) puzzles. In figure 2.4E we show a schematic representation of the
dimensionality of the network for the easy puzzle (G), each sphere represents a single
neuron, and synaptic connections have been omitted for clarity, the layer for digit 5
is represented also showing the inhibitory effect of a single cell in position (1,3) over
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Figure 2.4: Spiking neural network solution to Sudoku puzzles. (A-C) show the
temporal dependence of the network entropy H, firing rate ν and states count Ω for
the easy (G), hard (H) and AI escargot (I) puzzles. The colour code is the same as
that of figure 2.2. In (G-I) red is used for clues and blue for digits found by the solver.
Figures (D) and (F) illustrate the activity for a randomly selected cell from (A) and
from (C) respectively, evidencing competition between the digits, the lines correspond
to a smoothing spline fit. (E) schematic representation of the network architecture for
the puzzle in (A).
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its row, column, subgrid and other digits in the cell. In this case, the total number of
neurons is « 37k and they form « 86M synapses.

One improvement of our implementation with respect to previous work on SNNs
[HJM13], is the convergence to a stable solution, the use of sub-populations instead of
single neurons to represent the domains of the CSP variables was required to provide
such stability to the network. The use of the more realistic exponential postsynaptic
potentials instead of the rectangular ones used in the proofs of [HJM13] is also reflecting
a good performance of the search as shown in the bottom plots in figures 2.4A, 2.4B and
2.4C, where the solution is found after visiting only 3, 12 and 26 different states and
requiring 0.8s, 2.8s and 6.6s respectively, relating well also with the puzzle hardness. It
is important to highlight that the measurement of the difficulty level of a Sudoku puzzle
is still ambiguous and our solver could need more complex strategies for different
puzzles, for example in the transient chaos-based rating of [ERT12] the “platinum
blonde” Sudoku is rated as one of the hardest to solve, and although we have been
able to find a solution for it, it is not stable, which means one should control the noisy
network dynamics in order to survive the long escape rate of the model presented by
[ERT12]. We show in figures 2.4D and 2.4F the competing activity of individual digit
populations of some randomly chosen cell in both the easy and the AI escargot puzzles,
the dynamic behaviour resembles that of figure 2 in [ERT12] when comparing their
dynamic solver for this same easy puzzle and the platinum blonde. Further analysis
would bring insights into the chaotic dynamics of SNNs when facing constraints.

2.6.3 Ising Spin Systems

For each atom that constitutes a solid, it is possible to define a net spin magnetic
moment~µ which results from the intrinsic spin of the subatomic particles and the orbital
motion of electrons around their atomic nucleus. Such magnetic moments interact in
complex ways giving rise to a range of microscopic and macroscopic phenomena. A
simple description of such interactions is given by the Ising model, where each~µ in
a crystal is represented by a spin ~S taking values from t`1,´1u on a regular discrete
grid of points ti, j,ku. Furthermore, the interaction of the spins t~Siu is considered only
between nearest neighbours and represented by a constant Ji, j which determines if the
two neighbouring spins will tend to align parallel Ji, j ą 0 or anti-parallel Ji, j ă 0 with
each other. Given a particular configuration of spin orientations ω, the energy of the
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Figure 2.5: Spiking neural network simulation of Ising spin systems. (A) and (B) show
two 2-dimensional spin glass quenched states obtained with interaction probabilities
pAF “ 0.5 and pAF “ 0.1. The results for the 3-dimensional lattices for CSPs of 1000
spins with a ferromagnetic and an antiferromagnetic coupling constant are shown in (E)
and (D) respectively. In (C) are plotted the temporal dependence of the network entropy,
firing rate ν and states count Ω during the stochastic search for the system in (D). (F)
illustrates the origin of frustrated interactions in spin glasses. (G) depicts the result of
the 1-dimensional chain. The parameters for the SNNs used are shown in table 1.
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system is then given by the Hamiltonian operator:

Ĥ “´
ÿ

i, j

Ji, j~Si~S j´h
ÿ

i

Si (2.6)

where h is an external magnetic field which tends to align the spins in a preferential
orientation [Bar82]. In this form each Ji, j defines a constraint Ci, j between the values
D“ t`1,´1u taken by the variables ~Si and ~S j. It is easy to see that the more constraints
are satisfied, the lower becomes the value of H in equation 2.6. This simple model allows
the study of phase transitions between disordered configurations at high temperature
and ordered ones at low temperature. For ferromagnetic Ji, j ą 0 and antiferromagnetic
Ji, j ă 0 interactions the configurations are similar to those in figures 2.5D and 2.5E for
3D lattices, which correspond to the stable states of our SNN solver when the Ising
models for Ji, j ą 0 and Ji, j ă 0 are mapped to an SNN using algorithm 2.1 and a 3D grid
of 1000 spins. Figure 2.5G shows the result for a 1D antiferromagnetic spin chain. It is
interesting to note that the statistical mechanics of spin systems have been extensively
used to understand the firing dynamics of SNNs, presenting a striking correspondence
between their behaviour even in complex regimes. Our framework allows the inverse
problem of mapping the SNN dynamics to spin interactions. This equivalence between
dynamical systems and algorithms allows emulation between equivalent dynamical
systems. However, the network parameters should be adequately chosen to keep the
computation valid.

If instead of fixing Ji, j to some value U for all spin pairs tpi, jqu one allows it to
take random values from tU,´Uu with probabilities pAF and pFM, it will be found
that certain interactions would be frustrated (unsatisfiable constraints). Figure 2.5F
illustrates the frustration with three antiferromagnetic interacting spins in a way that
any choice of orientation for the third spin will conflict with one or the other. This
extension of the Ising model when the grid of interactions is a random mixture of AF
and FM interactions was described by [EA75]. The model is the representation of
the spin-glass systems found in nature, these are crystals with low concentrations of
magnetic impurities which, due to the frustrated interactions, are quenched into a frozen
random configuration when the temperature is lowered (at room or high temperatures
the magnetic moments of a material are constantly and randomly precessing around
their average orientation). The statistical analysis of those systems was fundamental
for the evolution of artificial neural networks and machine learning. Furthermore, the
optimisation problem of finding the minimum energy configuration of a spin glass has
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been shown to be NP-complete by [Bar82]. The quenching of the grid happens when
it gets trapped in a local minimum of the state space of all possible configurations. In
figures 2.5A and 2.5B we show a quenched state found by our SNN with pAF “ 0.5 and
pAF “ 0.1 respectively. A spin glass in nature will often be trapped in local minima and
will need specific temperature variations to approach a lower energy state; our SNNs
replicate this behaviour and allow for the study of thermal processes, controlling the time
variation and intensity of the excitatory and inhibitory stimulations. If the underlying
stochastic process of such stimulations is a good representative of heat in solids, they
will correspond to increase and decrease of temperature respectively, allowing, for
example, the implementation of simulated annealing optimisation. Figure 2.5C shows
the time evolution of the entropy, firing rate and states count for the antiferromagnetic
3D lattice of figure 2.5D, similar plots but converging to unsatisfying states are found
for the spin glasses in figures 2.5A and 2.5B. In the case of the ferromagnetic lattice in
2.5E with very low noise, the network immediately converges to a solution, if the noise
is high, however, it is necessary to stimulate the network several times to have a perfect
ordering. This is because more noise implies more energy to violate constraints, even in
nature, magnetic ordering is lost at high temperatures.

2.7 Discussion

The examples of the last section show the basic features of the stochastic search and
the use of the entropy, firing rate and the number of states to track the behaviour of
the network. In order to evaluate the performance of the search, we have performed
a series of runs for each simulation until the network has been successful 100 times.
The histograms of the corresponding convergence times for each example are shown in
figure 2.6, also displaying the mean µ, standard deviation σ, skewness γ1, success ratio
ξ (defined as the number of times the simulation converged to satisfaction over the total
number of runs) and the best convergence time tmin of each underlying experiment. The
dimensions of the SNNs and simulation parameters for the three CSPs shown here are
summarised respectively in tables 2.1 and 2.2.

The hard Sudoku puzzle of figure 2.4 was previously solved using spiking [HJM13]
and rate-based [MMI15b] neural networks with mean solving times of 29s and 153s

respectively. The solver presented here reduces the mean solving time for this puzzle to
6.36s implying a considerable improvement in performance for Sudoku neural solvers.
The same network parameters were used to solve the three Sudoku puzzles in order to
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Figure 2.6: Histograms of the convergence time to a solution for the Sudoku, map
colouring and spin system problems of figures 2.2, 2.4 and 2.5. For each histogram
data from 100 simulations were used. The mean µ, standard deviation σ, skewness γ1,
success ratio ξ and the best convergence time tmin are indicated for each problem. The
success ratio is defined as the number of times the simulation converged to satisfaction
over the total number of simulations.



2.7. DISCUSSION 55

show the relationship between the stochastic search and the puzzle difficulty. Clearly,
the average time for convergence increases with difficulty, but more significant is the
strong decrease of the success ratio. Thus, to avoid overfitting, a trade-off between
exploratory and greedy behaviour needs to be found for the problem at hand. The state
of the art Sudoku solvers (see for example [Don12, Nor09]) are able to solve puzzles
in tens to hundreds of microseconds. Such solvers use backtracking together with
deductive methods specific for Sudoku. Consequently, they are not general-purpose as
the one presented here. It is precisely the specificity what provides their speed-up.

The solution to the map of the territories of Canada, as defined in figure 2.2,
was presented by D-Wave systems to demonstrate the applicability of their quantum
computer. To find the solution, they executed a quantum machine instruction which
can return 10000 samples/s from which « 25% solved the problem [Hea13]. This
means an effective time to solution of 0.4ms. The power consumption of the machine
is 25kW , and it operates at a temperature of 0.015K. For this same map, our solver
uses three SpiNNaker chips each one consuming at most 1W of power, and it finds
the solution with a mean of 0.87 s. Additionally, classical techniques like simulated
annealing [CHDW87], genetic algorithms [GLH93] and tabu search [DH99] as well
as the more elaborated state-of-the-art algorithms [GWTH10, CS`02, LH10, HPZ08,
BZ08, GH06, CS`02, FLS01, DH99, GLH93, CHDW87, TC11], solve colouring map
problems in time scales ranging from tens of seconds to tens of thousands of seconds
and conventionally have a success ratio below 1 for the allocated time. As seen in 2.6,
this is the same order of magnitude for the time that our SNNs needed to solve the
colouring map problems of figure 2.2.

It is then verified that the solutions found by the SNNs in SpiNNaker are on the
order of magnitude of interest for biological systems, these require solutions in hundreds
of ms, which is the natural timescale of consciousness [TBMK16]. This is also the
timescale of performance of classical general-purpose solvers [GAD`13]. In contrast,
Problem-specific solvers can find solutions in a few µs through heuristics specific to
the problem, for example, mimicking how humans solve Sudoku. If the problem is
not solvable by the presumed strategies the solver will not perform well. To leverage
neuromorphics to main-trend computing it is then desirable to find solutions in the order
of µs, for this one could resource to accelerated hardware, e.g. BrainScales [SBG`10]
which runs 10000 times faster than real-time (biological real-time resolution is ms).
However, these systems are still limited by the number of neurons and synapses they can
handle. Better performance is also expected from the second generation of SpiNNaker,
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which is currently under development (see section 1.2). We turn instead in the next
chapter to use Loihi, a state-of-the-art neuromorphic chip developed by Intel which
keeps the scalability of SpiNNaker while approaching the speed of BrainScales, with it
we improve the performance and efficiency of our solver to some hundreds of µs. It is
also important to highlight that the NP feature of an algorithm refers to its increasing
complexity with the size of the problem and that the problems presented here correspond
to instances of expressly modest sizes. Nevertheless, the number of variables for most
problems in robotics and perception have an order of magnitude comparable to that of
these CSPs.

The main advantage of stochastic search algorithms is that they are general-purpose,
able to find satisfactory solutions without needing much detail about the specific problem
at hand. Moreover, the exploration of solutions to constraint satisfaction situations never
seen before is the typical way in which organisms explore the environment and acquire
knowledge about it. To build the solvers of the previous section, we have used only the
number of variables, domain size and constraints list, nevertheless the network showed
good performance. Thus if a system of SNNs is able to collect this kind of information
from its environment, it will easily take beneficial decisions.

Future work involves the extension of the framework to solve optimisation problems
where the constraints are defined by inequalities (e.g. to solve the travelling salesman
problem or to find the minimum energy configuration of a spin glass), or other more
general non-linear constraints. A concern with such class of problems is that the
network needs to be able to recognise the best option among all the configurations
that satisfy the constraints, identify a nonzero energy minimum or explicitly model the
cost function. In such cases, more advanced techniques or non-stochastic strategies
can be necessary to achieve convergence. In this regard, techniques from nonlinear
programming could guide the improvement of SNN solvers in decision making under
more complex constraints. In chapter 4, a step forward in this direction is taken, the
cost function is explicitly evaluated by the SNN, which is also able to recognize its
minimum, thus eliminating the need for convergence.

2.8 Conclusions

In summary, we have presented a neuromorphic implementation of spiking neural
networks stimulated with Poisson spike sources which solve constraint satisfaction prob-
lems. The network dynamics implements a stochastic search over the problem’s space
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of states which, with an adequate choice of parameters, is able to converge to a stable
configuration (or set of configurations) that satisfy all the constraints. Satisfactory per-
formance was found, and further research is needed for CSPs defined by more complex
constraints. Furthermore, we presented a software framework to explore new strategies
for stochastic searches with SNNs. The code of the framework and examples presented
here is made available at https://github.com/GAFonsecaGuerra/SpiNNakerCSPs.

Table 2.1: Network sizes of the SNN solvers of the CMP, Sudoku and Spin Systems

Network Parameters
CSP number of neurons number of synapses populations (number of variables) sub-populations (domain size)

World CMP 212400 14422300 193 4
Australia CMP 450 22920 7 3
Sudoku Easy 36675 86154125 81 9
Sudoku Hard 36675 86154125 81 9
AI Escargot 36675 86153250 81 9

AF Ring 1050 975500 10 2
Spin 2D Lattices 10050 2160000 100 2

Spin AF 3D Lattices 100050 31050000 1000 2
Spin FM 3D Lattices 100050 31050000 1000 2

Table 2.2: Simulation parameters for the SNN solvers of the CMP, Sudoku and Spin
Systems

Simulation Parameters
CSP Noise Populations stimulation (depression) Internal Inhibition Weights Constraints Strength Weights External current

World CMP 10 [-0.08, 0.0] [-0.08, 0.0] 0.3
Australia CMP 1(1) [-1.2, -1.5] [ 1.2, 1.4] 0.2
Canada CMP 1(1) [-1.2, -1.5] [ 1.2, 1.4] 0.17
Sudoku Easy 1(0) [-0.08, 0.0] [-0.08, 0.0] 0.3
Sudoku Hard 1(0) [-0.08, 0.0] [-0.08, 0.0] 0.3
AI Escargot 1(0) [-0.03, -0.02] [-0.03, -0.02] 0.3

AF Ring 1(0) [-0.2, 0.0] [-0.2, -0.0] 0.0
Spin 2D Lattices 1(1) [-0.2, 0.0] [-0.2, -0.0] 0.0

Spin AF 3D Lattice 1(0) [-0.2, 0.0] [-0.2, -0.0] 0.0
Spin FM 3D Lattice 1(0) [-0.2, 0.0] [-0.2, -0.0] 0.0

https://github.com/GAFonsecaGuerra/SpiNNakerCSPs


Chapter 3

The Intel Loihi Neuromorphic Chip

3.1 Introduction

In this chapter, we review the hardware and software architectures of Intel’s neuromor-
phic research chip Loihi (pronounced low-ee-hee), which will be used in chapter 4 to
improve on the results of the previous chapter. Intel named the chip after a volcano
in Hawaii emerging from the sea, highlighting its role as an emerging and promis-
ing technology for cognitive computing. We have mentioned how the neuromorphic
paradigm did not reach widespread commercialization despite its early formulation
more than 30 years ago [Mea90]. This has been similar for SNNs, for which the primary
limitations have been their costly implementations in conventional hardware based on
the von-Neumann architecture, as well as the lack of principled algorithms which solve
real-world problems. Despite this autumn, SNNs include biological features relevant
for cognition and absent from the main trends in machine learning and AI, e.g. deep
neural networks (DNNs).

AI still differs considerably from natural or general intelligence, its algorithms
are power-hungry and demonstrate robust but slow learning, making it clear that an
affordable domestic-sized real-time cognitive computer, unlike IBM’s Watson, is not
achievable with ANNs implemented in accelerator architectures for matrix computing,
unless dependent on the cloud. SNNs, on the other hand, harness sparsity in both
space and time with computational advantages not fully uncovered yet. Thus, to
overcome the historical limitations of SNNs and neuromorphic hardware, Loihi has
been developed for research, aiming to shed light on the real computational power
of event-driven time-dependent neural networks, focusing primarily on mathematical
rigour, principled models and rapid architecture iteration [DSL`18]. The road-map

58
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is set to understand and benchmark the capabilities of neuromorphics for commercial
applications, improve current architectures and paradigms, as well as develop and test
principled SNN algorithms [Dav19]. Loihi was announced in September 2017 and
launched on the 2018 Neuro Inspired Computational Elements (NICE) workshop in
Oregon US. Intel’s neuromorphic endeavour is pushing the boundaries of the field and
assessing its value for applications under the best available manufacturing constraints.
Equally to previous neuro-inspired devices, the foreseen computational advantages are
efficiency and speed, including the possibilities of real-time and accelerated computing.
In the next chapter, we demonstrate gains in performance and energy efficiency for our
CSP solver by using Loihi’s novel feature set.

Software development in a prototype chip process should consider the unforeseen
implementation of alternative solutions, as well as the uncertainty in the functionality
of the work-flow. Nevertheless, we will show in the next chapter, how the flexibility
offered by the chip’s design, together with the feasibility of future iterations, makes
the development in Loihi encouraging. We hope that the intense research will lead to
better features as has been done with PCs and smartphones, accelerating the field to
the next level of smart and adaptive computing, one that satisfies the goals of cognitive
computational neuroscience, i.e. cognitive models that perform tasks [KD18]. The last
section of this chapter will show the progress that Loihi has enabled in this direction.

3.2 Hardware Architecture

3.2.1 The Loihi Chip

Loihi is a digital manycore neuromorphic processor which in its current iteration con-
tains 128 neurocores per chip, adding up to 131072 single-compartment spiking neurons,
and allowing to store up to 130 million synapses through its various compression for-
mats. The chip works with supply voltages in the range of 0.50 V to 1.25 V. It contains
2.07 billion transistors on its die size of 60 mm2 and is fabricated in Intels FinFET
14nm CMOS process technology [DSL`18]. Besides the neurocores, the chip includes
three embedded x86 Lakemont (LMT) CPUs. The integration of synchronous and
asynchronous designs on the same SoC is alleviated by specifying the architecture
through the Communicating Sequential Processes Language, which is then translated
into Verilog RTL [LJL`18].
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Loihi’s architecture is fully asynchronous with the message-passing channels imple-
mented as bundled-data (single-trail) asynchronous pipelines [LJL`18]. In bundled-data
style, the handshaking is bundled with the data signals. However, in contrast with SpiN-
Naker’s 3-of-6 return-to-zero, here the protocol is 2-phase (non-return-to-zero) in which
the request and acknowledgement tokens are encoded as signal transitions, this protocol
generally leads to faster circuits than those encoding the handshaking as Boolean levels
(return-to-zero) [SF02]. The physical NoC is formed by an 8ˆ16 mesh of neurocores
grouped in 4-core close-contained tiles with one router per tile and no need for a global
clock. The actual number of tiles per chip is somehow arbitrary and can easily be
changed to build bigger or smaller chips. Counting both neurocores and LMTs the chip
totals 33 MB of SRAM memory (16 MB of synaptic memory).

The chip is programmable in terms of network topology, and neural dynamics
inside the constraints of its neuron model. The architecture has been optimised to
exploit sparsity, using a pointer and value encoding with routing tables similar to
SpiNNaker [FLP`13] and in contrast to crossbar architectures used in other chips,
which may waste resources when non-dense adjacency matrices define the network.
Loihi maintains functional determinism and introduces a new set of features when
compared to previous neuromorphic designs: population-based hierarchical connectivity,
dendritic compartments (multicompartment neurons), programmable learning rules
through an on-chip learning engine and variable synaptic formats with 1 to 9 bits
precision weights [DSL`18, LWC`18a]. In operation, each core receives input spikes
from other cores, iterates sequentially over its neuron compartments, integrating input
and updating their state variables according to the neuron model, finally, it generates
output spikes to be routed by the NoC. Spikes are sent to the set of neurons in the mesh
to which a postsynaptic connection exists. When the process is completed, a barrier
synchronisation acknowledges advancement to the next timestep in which the process
is repeated. The chip advances through time discretely, but the core load determines the
length of the timesteps, each processing unit advances as fast as it can to complete its
scheduled tasks, the timestep is finished when all units have done so.

Regarding synaptic density, when using 1-bit synapse format Loihi supports 2.1
million unique synapses per mm2, surpassing TrueNorth by a factor of 3, which was
regarded as the densest SNN chip. The effective synaptic density can be further
improved by exploiting Loihis hierarchical connectivity. Notice, however, that using
binary synapses and hierarchical connections impose certain constraints on the type of
SNNs to be implemented. Concerning neuron density, Loihi’s augmented feature set and
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flexibility yield 2,184 neurons per mm2 which is about half of TrueNorth’s maximum
neuron density. This is partly due to the richer feature set compared to TrueNorth, such
as neural homeostasis, presynaptic and postsynaptic activity variables in support of
on-chip synaptic plasticity Given the current status of neuromorphic hardware, a level
of programmability and power efficiency which enables mobile and robot devices are
its more essential features. Thus, the differences above betweem TrueNorth and Loihi,
all under one order of magnitude, are marginal and we expect them to be improved in
future iterations of both chips.

3.2.2 Neuron Model

The neurocores host a flexible number of compartments built over a current based
(CUBA) leaky integrate and fire (LIF) spiking neuron model. Compartments can be
grouped to form multicompartment neurons with an arbitrary binary-tree structure or act
independently as single compartment LIF neurons. Each compartment is governed by
two internal state variables u and v corresponding to their synaptic response current and
membrane voltage, respectively. A compartment i can also have an intrinsic bias current
bi which models its intrinsic excitability and drives vi. When vi reaches the voltage
threshold θi from below, the compartment emits a spike message and vi is reset to its
resting potential where it remains for certain refractory period. In practice, the spiking
state constitutes a third state variable siptq “ rviptq ą θis. When s“ 1, the compartment
sends its spike to the set of destination neurons. Each postsynaptic neuron j then
integrates the incoming spikes associating a synaptic weight wi j to an event arriving
from neuron i. Biologically, wi j represents the charge transferred at the synaptic cleft
by the incoming action potential. Such input charge elicits a postsynaptic response in j

which is characterised by an exponential filter of the form:

αuptq “
1
τu

e
´t
τu Θptq (3.1)

where Θptq is the Heaviside step function.

Hence, a spike train s jptq “
ř

k δpt´ tk
j q arriving at compartment i causes a sequence

of filtered and weighted input currents on top of the compartment’s intrinsic bias
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[TLD17]:

uiptq “
ÿ

j‰i

wi, jpαu ˚ s jqptq`bi, (3.2)

9ui “´
1

τui

uiptq`
ÿ

j‰i

wi, js jptq`bi. (3.3)

The current ui is then integrated by the neuron into its compartment voltage through:

9vi “´
1

τvi

viptq`uiptq´θisiptq, (3.4)

where the dot denotes time derivative, and τv controls the cell membrane leakage.
Notice that the last term in equation 3.4 accounts for the voltage reset when the compart-
ment fires. This happens whenever viptq ą θi which correspond to the i neuron spike
train siptq, thus the term θisiptq is non-zero only when neuron i spikes.

Given the digital nature of the chip, the continuous dynamics defined by equations
3.3 and 3.4 is approximated by difference equations with a common timestep ∆t. As
noticed in the previous section, this fixed-length timestep is algorithmic rather than
physical. Because the chip is fully asynchronous, a synchronisation barrier is used
throughout the entire system to coordinate the simulation. After every core finishes
updating the computations for a given timestep, it hand-shakes a barrier synchronisation
message with its neighbours, when all cores have gone through this process, an advance
timestep message propagates so that the simulation advances. Hence, the physical time
associated with ∆t potentially varies from cycle to cycle in a timescale of microseconds.
Such variability will not affect the SNN algorithms because all updates have to be
finished as a prerequisite for the barrier synchronisation.

The discrete version of equations 3.3 and 3.4 is:

∆ui

∆t
“´

1
τui

uiptq`bi`
ÿ

j‰i

wi, js jptq, (3.5)

∆vi

∆t
“´

1
τvi

viptq`uiptq´θisiptq. (3.6)
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From which we obtain the updating equations:

uiptq “ uipt´1q ¨ p1´
∆t
τui

q`∆tbi`
ÿ

j‰i

wi, js jptq∆t, (3.7)

viptq “ vipt´1q ¨ p1´
∆t
τvi

q`uiptq∆t´θisiptq∆t, (3.8)

In units of ∆t:

uiptq “ uipt´1q ¨ p1´δuiq`
ÿ

j

wi j ¨ s jptq`bi (3.9)

vptq “ vpt´1q ¨ p1´δviq`uiptq (3.10)

In equations 3.9 and 3.10 δui,vi “ 1{τui,vi .

3.2.3 Multicompartment Join Operations

The ability to build multicompartment neurons is an essential feature for our self-
validating CSP solver demonstrated in the next chapter. Without these, we would still
have achieved improvement in speed and energy due to the hardware features of Loihi,
but would not have a self-validating network which avoids probing u, v and s.

To build multicompartments, each neurocore uses an auxiliary memory stack. While
the runtime software is advancing the computations corresponding to one timestep, any
state variable from a compartment can be pushed into the stack and be used by the
next logical compartment. This protocol is possible due to the sequential updating of
compartments in the same neurocore. When allocating resources, the order in which
the compiler maps the compartments in the hardware will reflect the direction of the
flow of information in the multicompartment neuron. This usually corresponds to the
order in which the compartments are created using the high-level API that programs
the chip. Loihi enables a set of multicompartment operations which use the stack to
propagate state variables across several compartments, practically building binary trees
of compartments (multicompartmental neurons). Formally speaking, the functionality of
these multicompartment trees reflects only partially the operation of biological neurons;
however, they bring extra computational abilities to the space of SNN-based algorithms.
Multicompartment operations tell a compartment whether and which information to
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Table 3.1: Neurocore resource constraints for Loihi [DSL`18].

Magnitude Maximum
Neurons per core 1024
Synaptic Fan-in state 128 KB
Core-to-core Fan-out edges 4096
Distribution lists
associated by axon ID 4096

gather from and send to the stack for sharing throughout the neuron.

3.2.4 LFSR Random Number Generator

Loihi includes an in-hardware 8-bit linear-feedback shift register (LFSR) pseudo-
random number generator to enable efficient stochastic computations, as well as the
inclusion of noise in biologically relevant simulations. The LFSR unit returns an 8-bit
uniformly distributed random number between 0 and 255. The number is then centred
by substracting 27 and can also be shifted and scaled respectively by the software
specified parameters noiseMantOffset and noiseExp:

η“ pLFSRpq´27
`noiseMantAtCompartment ˚26

q˚2noiseExpAtCompartment´7 (3.11)

These uniformly distributed random numbers allow randomisation of either the
compartment voltage, compartment current or the refractory delay. The LFSR seed can
be modified to define the statistical average behaviour of the simulations. Given the fact
that the chip dynamics is deterministic, several simulations run with the same seed for
the LFSR will yield the same results, this is advantageous when designing and testing
algorithms based on stochastic SNNs.

3.2.5 Core Design

Cognitive tasks in nature are performed with reliability through high spatial redundancy,
which is partly due to internal and environmental noisy and unpredictable conditions.
The neurocore design for Loihi tackles the intrinsic unpredictability with determinism,
even under stochastic computations by implementing a barrier synchronisation which
forces a common sense of discrete time across the SNN and keeps the dynamics well
defined. Moreover, by using multiplexing and linear pipelining it shrinks circuit area,
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Figure 3.1: Internal structure of a neurocore in Loihi.

converting spatial redundancy in temporal unfolding. Thus, compensating for the
disadvantages of transistors when compared to the molecular machinery developed by
nature, which despite highly granular and parallel, executes a slow dynamics compared
to integrated circuits operating at hundreds of GHz.

The neurocore distributes a variable number of compartments across ten archi-
tectural memories arranged in tree-like structures, figure 3.1. These memories form
input synapse, dendrite and axon output blocks, as well as a learning engine on top
communicating with the synapse and dendrite segments. Four operating modes can be
defined: input spike handling, neuron compartment updates, output spike generation,
and synaptic updates. The compartments in a core share the fan in and fan out connec-
tions as well as redundant parameters. These, in turn, are used to update the parameters
unique to every compartment at every algorithmic timestep. This approach considerably
improves efficiency. Some memory blocks can be used for more than one functionality
allowing for the number of neurons per core to be variable and flexibly support distinct
features without wasting resources.

Memory blocks operate largely independently of each other allowing for a diversity
of frequencies with each mode executing as fast as it can, in sequential or parallel
processing and with minimal synchronisation. Wherever events can be expanded
into smaller events, e.g. synaptic and learning pathways, the hardware implements
fine-grained parallelism.

The total SRAM memory in the neurocore adds up 2Mb (including error-correcting
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code), which supports a maximum of 1024 neurons per core (2,184 neurons per mm2).
One particularity of the chip is its support for read-modify-write memory access (shown
as loops around memories in figure 3.1), instead of just read-write access. This is an
essential feature which enables the above design.

In operation, each incoming spike encodes the index of its sending axon which
points to a pool of synaptic entries (memory limited up to 128Kb) encoding a tuple of
the form (weight, delay, fanout neuron, tag) [LJL`18]. A ring buffer accumulates the
weight for the future updates of each compartment and the compartment consumes the
accumulated weight for the current timestep. Produced spikes follow to the end of the
pipeline to a list of destination cores and axons. Such routing tables are also constraint
by memory size, table 3.1.

3.2.5.1 Configurable Delays

Configuration of both synaptic, refractory and axon delays is possible. Axonal delay
is shared and refers to the delay of spikes fired in a core before they get distributed to
postsynaptic neurons. This is analogous to the time it takes for a spike to travel from
the axon hillock to the axon terminals.

The refractory delay refers to a period during which the neuron would not update its
compartment voltage. When using box PSPs, the refractory delay may coincide with
the box duration to abstract the duration of the effect of a spike in the network and onto
itself.

Discrete (not shared) synaptic delay. After the axonal delay, spikes are distributed
through the NoC, on arrival to the destination compartment the spikes can be further
delayed by a set of dendritic accumulators. Similar to what will take a spike to transverse
a biological dendrite to reach the soma. The accumulators temporally buffer the spikes
until these get integrated by the compartment response current by consuming the
accumulated synaptic weights wi j. Increasing the number of accumulators result in
fewer neurons per core, so we try to avoid such modification. In fact, as one of the
accumulators is associated with the current timestep, the maximum delay is seven
timesteps. This delay type, however, also specifies the duration of the box PSP, which
is used for the CSP Loihi solver. Sometimes though, the equilibrium state of the
network encodes the problem solution sparsely in time, requiring averaging over long
time windows for decoding. This is not a problem if offline validation based on
post-processing is used, as in the previous chapter. It will be seen, however, that for
online CSP validation the PSP length imposes a constraint on the detection of solutions
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encoded sparsely in time. To avoid using more dendritic accumulators which would
increase the number of cores needed for a given network, we present an additional
neural layer which can buffer the network state during the windows of sparsity where
the network state is under-determined.

3.2.5.2 Activity Phases

Through its dynamics, a compartment transitions between several phases. The user
can hard-code these phases at either the beginning of the simulation or during runtime
through the x86 CPUs. This latter can also read the phase of a compartment and send it
to the host for post-processing. This is particularly useful, as we will see in the next
chapter when the network state has to be reconstructed with some delay due to the time
it takes for information to propagate across the hardware stack. The possible phases for
a compartment are:

• the compartment dynamics does not get updated.

• the compartment is inactive after reaching a lower limit of the compartment
voltage, returns to active after new excitatory input.

• regular updating of dynamics

• fired last timestep.

• the neuron is in the refractory period

• inhibited only for the duration of the refractory delay.

3.2.6 Asynchronous Communication

Because Loihi implements a mesh-level barrier synchronisation by handshaking tokens
between cores, there is no mesh-wide idle time, as soon as all cores finish their operation,
the mesh advances to the next algorithmic timestep. The NoC virtually supports
multicasting by iterating over the routing tables of each core and physically using
two independent unicast networks (to prevent deadlock) targeting destination cores
iteratively and sending one spike per core.

In contrast with SpiNNaker’s toroidal mesh, Loihi chips connect in four planar
directions through off-chip interfaces, extending the on-chip multicast to the chip-to-
chip communication allowing synapses between neurons in any two parts of the machine.
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As it is typical for k-ary n-cube interconnects, events are distributed across chips
hierarchically according to a dimension-order algorithm. Chip-to-chip communication
also follows barrier synchronisation to advance in time.

Besides spike messages for SNN computations, and barrier messages for event-
driven synchronisation, the NoC transmits write, read request and read response mes-
sages for both core management and communication between the embedded LMT
CPUs. Off-chip communication scales up to 16 384 chips in each of which up to
4096 cores can be addressed. Because any of the packetized messages may be sourced
externally by the host or on-chip by the LMTs, it is possible to define communication
channels which interface with various latencies with an SNN running on the machine.
We use such a protocol to identify solution times to the CSP networks and make Loihi
report the respective solutions to the superhost.

3.3 Loihi-Based Systems

Loihi is the base chip for several hardware systems, listed in table 3.2.

3.3.1 Kapoho Bay

Kapoho Bay is the USB stick form factor of Loihi systems. Besides the USB con-
nectivity to host, this modular system comes with GPIO pins, I2C and a DVS AER
Interface, allowing connectivity to external devices such as DVS cameras. Our Loihi
CSP solver explained in detail on the next chapter fits particularly well Kapoho Bay.
Despite counting with only two chips, this device sums up to 256 cores with 262,144
compartments and 256 million synapses. Making it suitable for embedded decision-
making in robotics and autonomous vehicles. In particular, our on-chip validation
solver is made of 3-multicompartment neurons, one-hot-enforcement neurons and a
summation neuron, the two latter needing a core each due to their different compartment
prototype configurations. Thus, Kapoho Bay gives support for up to 86698 of our
3-multi-compartment neurons (260096 compartments) which can be distributed across
CSP variables and their domains. When used with external devices, these can input
cues to the CSP solver, which then sends a decision to, for example, an actuator for
action execution. This process would endow a robot with active inference capabilities
[FFR`16].

Our solver, however, scales to any of the other systems shown in table 3.2, as long
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as the constraint mapping does not exceed the maximum hardware synaptic density.

3.3.2 Nahuku Board

Nahuku is the machine we used for development during this thesis. It consists of a
32 chip circuit board augmented by an Intel Arria 10 SoC Development Kit. The
board allows the implementation of up to 4 million compartments with up to 4 billion
synapses.

The Intel Arria includes a hard processor system with integrated ARM Cortex-
A9 MPCore processor and an FPGA (Arria 10 SoC, 10AS066N3F40E2SG, 1517-
pin FBGA). We communicate with the Arria board via ethernet through an external
superhost server which hosts our code and the NxSDK 3.4. Both the ARM and FPGA
portions of the Intel Arria 10 SoC allow increased flexibility for the interaction of Loihi
with peripheral devices.

Users connect via Intel Xeon-based servers which use SLURM to handle job
scheduling and act as superhost. Xeon CPUs offer high core count and allow increased
RAM and cache compared to CPUs for regular workstations. SLURM is a management
and job scheduling system which scales from small to large Linux computing clusters.
It allocates jobs assigning hardware resources to users, manages the starting, execution
and monitoring of several jobs in parallel and arbiters a queue of jobs to be executed as
hardware becomes available [YJG03].

3.3.3 Pohoiki Springs

24 Nahuku boards build Pohoiki Springs. This system is under development and is
designed to support over 100 million compartments and around 100 billion synapses
distributed across 768 chips. This sums up to a representability of more than 30 million
CSP variables (3-multi-compartment neurons). These values are, of course, limited by
the constraints density of the CSP. Aligned with the design choices for this massive
system, the Loihi CSP solver can also be used seamlessly to execute several equivalent
CSP networks in parallel, initialising them with different parameterisations to speed-up
the stochastic search. It is also possible to concurrently run several CSPs for a single
experimental design (being these interacting or not).
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Table 3.2: Hardware systems based on the Loihi Chip

System Kapoho Bay Wolf Mountain Nahuku Pohoiki Beach Pohoiki Springs

Type USB Form Factor Board Board
Multiboard
Rack

Multiboard
Rack

Max Number
of Neurons 262144 524288 4194304 8388608 100663296

Max Number
of Synapses 26ˆ107 52ˆ107 4,16ˆ109 8,32ˆ109 9,984ˆ1010

Number
of Chips 2 4 32 64 768

Figure 3.2: Hardware systems based on the Loihi Chip

3.4 Software Stack

Programming Loihi is done through a software development kit (SDK) named NxSDK,
figure 3.2. A hierarchical software facilitates the user to tradeoff between execution
speed, model complexity and programmability across the heterogeneous hardware stack.
Under NxSDK a neuromorphic algorithm is composed of neural processes, sequential
neural interfacing processes (SNIPs) and communication channels [LWC`18a].

Neural processes refer to the actual SNN, the definition of its topology,
dynamics and learning rules, these run on the neurocores. At the object-
oriented level, SNNs are determined through networks, neurons, terminals
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and connections.

SNIPs refer to non-neural user-defined code to be executed by either the
embedded LMTs or the external CPUs (FPGAs, host, superhost) SNIPs
interact with the SNN at runtime actively (changing parameters or connec-
tivity) or passively (reading network activity).

Communication channels allow information transfer across the different
layers of hardware through packetized messages. In general, SNIPs com-
municate with the SNN via spikes.

The NxSDK additionally enables the probing of state variables, as well as a set of
execution probes to measure energy and execution time assisting the benchmarking of
the algorithms.

The software architecture is composed of several layers (figure 3.2). The highest
level API NxNet runs on a super-host layer and allows the description of the SNN in
terms of neural populations and their properties similar to PyNN [Dav08], the language
we used to build our SpiNNaker solver. The users are expected to develop modules based
on NxNet primarily. The high-level network specification is compiled by NxCompiler,
which translates the NxNet description to the register level [LWC`18b]. NxCore is a
low-level API which allows the network specification in terms of registers and low-level
functions. NxCore is generally intended for internal development rather than front-end
use. However, to develop our CSP Solver we needed to make use of both NxNet, SNIPs
and NxCore. The NxDriver orchestrates the runtime software NxRuntime from the
host, as well as the LMT SNIPs. In the case of Nahuku, the NxDriver runs on the ARM
processors of the Intel Arria 10 SoC, which communicates to the superhost via Ethernet.

3.5 SNN Mapping

The allocation of the SNN into the Loihi systems, carried out by the compiler, maps
neurons to logical cores according to the hardware constraints. Notice that table 3.1
correspond to the maximum values; however, the network specification may impose
further restrictions. If for example, 16 dendritic accumulators are used instead of 8 the
maximum number of neurons per core will decrease from 1024 to 512. The compiler
defines synaptic fan-in states by (weight, delay, tag) tuples and maps them into synaptic
memory. Fan-out edges are represented by core-to-core links to each of which an axon
ID is assigned to identify a unique destination core. The axon ID is then used by the
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hardware as a pointer into a list of tuples of the form (j, weight, delay, tag) stored in the
synaptic memory of the destination core.

3.6 Applications Development

Intel’s commitment to neuromorphics has already benefited the field of neuromor-
phics with a few compelling demonstrations of the relative advantage of neuromorphic
hardware on some problems over equivalent implementations in standard CPUs and
GPUs.

Squares linear regression models with an L1 penalty on the regression coefficients,
also known as Least Absolute Selection and Shrinkage Operator (LASSO) optimisation,
has been solved in Loihi using the Spiking Locally Competitive Algorithm (SLCA)
[LWC`18a]. The implementation demonstrates a 103 improvement in energy-delay
product compared to state-of-the-art solvers implemented on conventional CPUs (
1.67-GHz Atom CPU) running state-of-the-art algorithms (LARS and FISTA) while
producing solutions within 1% of the optimal solution. This problem consists in
optimising the l1 distance between an input vector, and a set of feature vectors, such
that the linear combination of feature vectors maximally represents the input vector.
The SNN encodes the coefficients to be optimised through the bias current of a set
of neurons. The SLCA appeals for applications where speed is more important than
precision. The solution, in particular, harnesses the one-to-many characteristic of spike
communication compared to the all-to-all nature of matrix-based algorithms such as
FISTA, as well as the spike ordering by the explicit inclusion of time in SNNs.

Applied Brain Research’s Nengo Deep Learning toolkit was used to implement
a two-layer neural network spotter for speech recognition in Loihi [BCHE19]. Its
performance and energy cost per inference was benchmarked against a CPU (23.2 ˆ), a
GPU (109.1 ˆ), an Nvidias Jetson TX1 (20.5 ˆ), and the Movidius Neural Compute
Stick (5.3 ˆ). This latter corresponds to a deep learning accelerator also developed by
Intel. Still, Loihi demonstrated advantages in energy efficiency while maintaining the
same level of recognition performance as the other platforms, a trend that improves
with increasingly large networks.

Unidimensional simultaneous localisation and mapping (SLAM), in which a robot
should figure out its pose and create a map of its surrounding environment, was demon-
strated using Loihi [TSM19]. Multicompartmental and plastic SNNs were used to
interpret dynamic sensory information, both visual and olfactory, and perform inference
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on SLAM while the robot was spinning. Remarkably Loihi achieved comparable per-
formance to a standard approach (the GMapping algorithm) while using only 1% of
power against an Intel i7-4850HQ CPU.

Pre-silicon FPGA emulation of the chip demonstrated [DSL`18]:

• 10-neuron single-layer classifier with STDP-based supervised learning trained
with local-intensity-change-based temporally spike-coded image samples. Loihi
achieves 96% accuracy on the MNIST dataset.

• solved the problem of finding the shortest path on a weighted graph encoding
nodes and links as neurons and plastic synapses.

• non-markovian one-dimensional decision making with reinforcement learning.

Loihi has already demonstrated low-power real-time object reecognition [May18], as
well as an adaptive robotic arm controlling system [Eli18]. Finally, the next chapter
will show how our own Loihi CSP Solver has achieved speed-up and improvements in
energy efficiency with respect to our SpiNNaker implementation [FGF17].



Chapter 4

Loihi Solver for Constraint
Satisfaction Problems with On-Chip
validation

This chapter demonstrates a self-verifying multicompartment neuronal architecture for
the efficient solution of constraint satisfaction problems (CSPs) on Intel’s Loihi chip.
In chapter 2, we already demonstrated the neuromorphic implementation of a scalable
SNN-based solver for CSPs whose performance is on the same order of magnitude
as that of the complete classical solvers for generic CSPs. To the author’s knowledge
that was the first neuromorphic implementation of problems of this size, previous and
following implementations have been limited to small CSPs, like the 4ˆ 4 Sudoku
puzzles [BIP16, Kug18]. Thus, the sPyNNCSP API demonstrates the applicability
of the theoretical framework for stochastic computations with SNNs proposed by
[JHM16, HJM13] who implemented their networks in conventional CPUs.

With the proof-of-concept, the next step is to optimize the solver to determine if
it can be competitive enough to contribute to the widespread use of neuromorphic
hardware. We can only achieve competitiveness if we demonstrate evident improve-
ments in energy efficiency or execution time. There is enough room for optimising
our sPyNNCSP in both hardware and software. In the hardware side, SpiNNaker’s
flexibility and ease to programming come at the expense of generous computational
resources providing, for example, the ability to probe all state variables across the
machine or simulate arbitrary dynamical systems (subject to fixed-point precision
and memory restrictions). By harnessing off-the-shelf ARM processors, designed for
general-purpose computing with fixed-point arithmetic, SpiNNaker’s NoC architecture
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includes some overhead local to the processors. Thus, although optimising sPyNNCSP
is doable, in the interest of time, we shift to the most advanced neuromorphic chip
available, Intel’s Loihi. In doing so, we target performance comparable to, or better
than, that of state-of-the-art solvers. It is important to highlight, in this chapter, we are
not interested in comparison between neuromorphic platforms but rather on what these
have to offer against conventional CPUs. A thorough benchmarking of SpiNNaker and
Loihi chips would require performing the best feasible optimisation for each system,
which is out of the scope of this thesis. As seen in chapter 3, Intel fabricated Loihi in
its 14 nm technology (compare with ARM 968’s feature size of 130 nm) with a fully
asynchronous non-Von-Neumann architecture implementing digital spiking neurons.
For our solver, its features give an estimated 15 times less power consumption, as well
as 2-4 orders of magnitude improvements in execution time, depending on workload.
While keeping a massive number of neurons per chip, contrary to accelerated analogue
hardware, like BrainScales or DYNAPSE [SBG`10, MQSI18], for which synapse and
neuron counts are very low. In this regime, we aimed to produce a solver that could
eventually compete at an industrial level. In this chapter, we find that it is possible
to speed-up our neuromorphic CSP solver up to four orders of magnitude. The order
of magnitude of the number of timesteps we need to find solutions in this chapter
ranges between 102 and 103, while each timestep in Loihi takes at most few tens of
µs. This means that our solver in this chapter finds a solution to modest size problems
in 10´4´10´3s (hundreds of µs to a few ms). State of the art classical solvers, with
sophisticated solving strategies, solve problems of the size of those in this chapter in
10´2´10´1s (see figures 2-4 and table 11 in [GAD`13] generated with an Intel Core2
Quad CPU 3.00 GHz with 8 GB of RAM and a 64-bit operating system). Given the fact
that even further optimisations are possible in Loihi, we firmly believe the solver could
compete with conventional hardware and other novel post-von-Neumann architectures.

The most significant contribution of this thesis is presented in this chapter, consisting
on the design and implementation of an on-chip validation neural architecture which
endows the spiking neural network with the ability to measure its cost function in an
online fashion, i.e., on-chip. Hence, the network can detect and report when it finds a
solution to the encoded CSP. Counting with the solution time acknowledged at runtime,
we implemented a set of SNIPs (see sequential neural interface processes in section
3.4), for extracting the solution as soon as the host gets notified. Our self-verifying
architecture means that there is no need to probe the network at each time step, neither
extract such information from the chip nor perform postprocessing. All we probe is
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the firing of a single neuron, the reporter, whose spiking triggers a SNIP for solution
readout to be run during the same timestep the reporter spikes. One of the Lakemont
(LMT) embedded CPUs notifies the host the solving time. The host, in turn, requests
the neurocores to provide their state variables corresponding to the network state which
satisfied all the constraints. Finally, the host decodes the solution by applying a simple
conditional over the state variables and decides whether the network continues exploring
to find new solutions or stops the simulation altogether. Further versions of the solver
can also include modifications to the CSP structure after solution retrieval. This turns the
solver into a solver for dynamic CSPs. All in all, our results not only represent energy
savings and speed up, but also the foundation for the implementation of sophisticated
CSP solving strategies orchestrated by the embedded LMTs or other SNN motifs. The
user-friendly API enables the use of the solver as a module in the creation of complex
control systems. The solver presented here will be part of the next release of the NxSDK
and is part of the endeavour to benchmarking Loihi’s competitiveness for mainstream
computing.

4.1 Network Energy Function

The target functionality for our Loihi CSP Solver (CSPNxNet) does not depend on
convergence as it was the case in chapter 2. The reason is we will be able to spot
solutions online, i.e. at runtime. Not requiring convergence means the network dynamics
can stay highly noisy so that high-quality samples can be drawn from the state space of
the CSP as the network evolves in time. A solution per se is not better than other for
solvable problems because both should satisfy all constraints, nevertheless, external
constraints, preferences or costs not included in the problem definition can make one
solution more adequate than other (recall that checking a solution is trivial compared to
finding it for NP problems). It is also conceivable to have applications, like configuring
non-player characters in video games [CBBA14], in which several satisfying valuations,
or even those with only a certain level of satisfiability, are desirable. This latter is
essential for unsolvable problems. In a spin glass, for example, the existence of
geometrical frustration means the energy function cannot reach 0. In this chapter,
however, we only explore complete solutions to solvable problems.

Instead of measuring the network entropy as in chapter 2, we begin here by defining
an energy function E which tracks the progress of the constraint satisfaction stochastic
spiking neural network (CSSSNN or CSN) towards satisfying configurations. The
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square adjacency matrix W P t1,0uN ˆN , entirely defines the topology of the principal
population from the CSN, W encodes the existence of synapses between any pair of
neurons from the N neurons composing the network encoding the CSP. The dynamic
state of the network is defined, similarly to [HJM13], by a vector S whose component
Siptq P t0,1u evaluates to 1 if the neuron i has spiked at any instant in a time window
rt´τw, ts, where τw is the window length, i.e. if Dt f P rt´τw, ts | sipt f q “ 1. Recall siptq

refers to the spiking state variable of neuron i. The S representation becomes natural in
Loihi where it is possible to define box PSPs, whereby the synaptic weight wi j is added
to ui when a spike arrives at the i-th neuron and this same value is subtracted after the
box duration has passed. We chose this encoding since the siptq ÞÑ Siptq mapping is
essential to the results of [HJM13] and [JHM16] on the exponential convergence of
stochastic SNNs to a stationary distribution and its application to CSPs. Formally,

Siptq “ pρ ˚ siqptq “
τw
ÿ

k“0

ρpkqsipt´ kq (4.1)

where the kernel ρptq “ Hpt ´ t f q ´Hpt ´ pt f ` τwqq “ 1@t P rt f , t f ` τws and the ˚
symbol signifies (discrete) convolution.

If a pair of mutually inhibiting neurons are active during the same time interval
rt´ τw, ts, they will conflict, resembling the negative exchange interaction in the spin
systems of chapter 2. Thus, one can define the energy of the network by:

E “ ST
ptq ¨W ¨Sptq “

ÿ

i

pSi ¨
ÿ

j

Wi j ¨S jq. (4.2)

Where T denotes transposition. Notice that because W and S are discrete, E is quantised.
It would also be possible to use other state variable like v to define E, in which case it
would become a real-valued function. This also happens if the weight matrix W was
to be used with time-dependent weights, instead of the adjacency matrix W. However,
such high-resolution definitions are of low or no practical use here, where we are
interested in spikes and how these mediate the interaction between neurons representing
a CSP variable. Furthermore, we use fixed weights for CSPNxNet, so these only have
the effect of scaling the energy gaps arising from equation 4.2.

Given the fact that inter-connected winner-takes-all (WTA) circuits compose our
networks, we can decompose the total energy of the network in local and global
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contributions:

Eptq “ Ewta`ECSP “ ST
ptq ¨Wwta ¨Sptq`ST

ptq ¨WCSP ¨Sptq (4.3)

Where the matrix Wwta encodes only the WTA connectivity and WCSP encodes the
CSP constraints. This separation is important as we assign, in general, different values
for Wwta and WCSP. As we have defined W and S to be binary, ECSPptq returns the
number of conflicts between variables existing in the network at time t. Similarly, Ewta

counts all the conflicts within WTAs. Hence, ECSPptq captures the solving state while
Ewtaptq “ 0 means that all variables have a defined value (or some inactive, see 4.3.6),
while Ewtaptq ą 0 is caused by undefined variables. Notice that for dynamic CSPs, in
which constraints are created and destroyed, W also depends on time. Notice that such
a change in topology would keep E well defined.

A subtle fact from equation 4.2 is the fact that

E “
ÿ

i

εi, (4.4)

where εi “ pSi ¨
ř

j Wi j ¨S jq counts the number of conflicts that a neuron has with
its presynaptic neurons. It is important to highlight that a conflict from the pS j,Siq

pair only contributes to εi on those times were both Si “ 1 and S j “ 1. We will see
later how multicompartment neurons can compute the microscopic components εi,
allowing an auxiliary neuron to integrate them as E. All in all, we have defined three
energy scales for a CSN network, the global or macroscopic energy E, the local or
mesoscopic energy Ewta, and the neural or microscopic energy εi, see figure 4.1. Because
multicompartments measure the microscopic contributions and auxiliary neurons can
be used to integrate them, our approach brings to light the ability to control, modify and
model energy interactions in dynamical systems representable by SNNs.

Interestingly, the fact that ECSP “ E ´Ewta, allows its interpretation as the free
energy of the network. In this way, minimising the number of conflicts implies min-
imising the CSN’s free energy. Let us denote by ψsol a valuation that solves the CSP
(assuming a solvable problem), this can thus be found through:

ψsol “ argmin
DiPtD1,...DNu

ECSPpψiq :“ tDi | Di P D^@ψ j PΨ : ECSPpψiq ď ECSPpψ jqu

(4.5)
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Figure 4.1: Macroscopic, mesoscopic and microscopic energy scales for a CSN network.
Three WTA circuits made respectively from red, green and blue neurons are shown. E
accounts for the energy of the whole network, Ewta is the internal energy from all WTA
circuits and εi is the energy “stored” in a single neuron.

Where we have used the notation of chapter 2, with Ψ the space of all valuations over
the variables defining the CSP, ψi denotes a given valuation, and D“ tD1,D2, ...,DNu

is the set of domains over which the Xi P tX1,X2, ...,XNu variables can take values
on. The set of constraints C “ tC1,C2, ...,CMu can be interpreted as prior knowledge
[DM04, Jon14]. Hence, equation 4.5 builds up an internal model compatible with such
topologically stored knowledge. This interpretation also corresponds to one of the
most accepted models of structure and function of circuits of the neocortex as derived
from experimental data [DM04]. In problems like Sudoku, the internal model adapts
to include the new evidence given by the puzzle cues. With dynamic CSPs, such an
interpretation renders the solver extendable to Bayesian frameworks such as active

inference [FFR`16]. 1.

.

1Active inference is generally formulated as free energy minimization (see the free energy principle
[Fri10]), such minimization establishes an upper bound on surprise which allows for an estimation of the
posterior distribution over hidden states of the world. This chapter solves CSPs as an optimization over a
proxy energy function, the extension of our solver then is done by formulating an energy function which
is compatible with active inference and the constraints of our neural substrate [FSF`13]
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Table 4.1: CSPNxNet Properties for the single compartment and multicompartment
segments of the API.

Single Compartment Multicompartment
PUBLIC PRIVATE PUBLIC PRIVATE

box length bias noise at multicompartment multicompartments per summation
enable noise? logical core ID w ij exp num summation neurons

neuron parameters neurons per core w ij mant 1 to 2 weight
threshold voltage noise amplitud w ij tot 3 to 2 weight

current decay bias 2
voltage decay bias 3

saturation voltage black list num compartments
negative constraints weight channel size
positive constraints weight logical core ID

self excitation weight threshold voltage 2
WTA excitation weight threshold voltage 3
WTA inhibition weight

4.2 CSP Solver with Off-Chip Validation

Figure 4.2: WTA connectivity variants.

Let us first implement a CSP solver whose functionality is equivalent to that of
sPyNNCSP. This means we probe the spiking state of every neuron to get spn ¨∆tq with
∆t ě 1 and compute Epn ¨∆tq “ ST pn ¨∆tq ¨W ¨Spn ¨∆tq on host (post-processing) to
recover the progress of the stochastic search, finding out if the CSP was solved (E “ 0).
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4.2.1 API Design

We entirely based the off-chip-validation solver on Loihi’s highest level API, NxNet.
Similar to sPyNNCSP, the frontend of CspNxNet allows the user to define the problem
through the tuple xX ,D,Cy and control the stochastic search through the network and
neuron parameters. From this minimal information, CspNxNet will encode the problem
into a stochastic SNN representation where the dynamics of the network will implement
a stochastic search over the combinatorial space of the problem.

The solver itself corresponds to an instantiation of the CspNet class, which is the
core of the API we call CSPNxNet. Its design is shown in figure 4.3 with the class
properties listed in table 4.1. To ease visualisation, we have grouped the methods in
figure 4.3 according to their role, set as the headers in a purple background. Private
and public methods have been colour-coded yellow and blue, respectively. In this way,
the cells with blue background correspond to the frontend which the app developers
or direct users will mostly employ, while the yellow cells present the internal methods
for the API development. These latter build the CSN, any internal process for its
functionality and generate the automated parameterisations. From the front-end, the
shortest use to solve a CSP will be:

# C re a t e s o l v e r i n s t a n c e
n e t = CspNet ( number o f v a r i a b l e s , domains s i z e , c o n s t r a i n t s , r u n t i m e )
# S e t u p p ro be s f o r ne twork a c t i v i t y
s p i k e s , v o l t a g e , c u r r e n t = n e t . s e t u p n e t w o r k p r o b e s ( p r o b e s p i k e s =True ,

p r o b e v o l t a g e =True ,
p r o b e c u r r e n t =True )

# Run s i m u l a t i o n
n e t . run ( )

# Get s o l u t i o n
n e t . o f f l i n e g e t s o l u t i o n

Table 4.2: Constructor attributes for the single compartment CSPNxNet API.

CSP TOPOLOGY NEURON SYNAPSE SIMULATION
number of variables self excitation params of principal neurons w wta exc runtime
states per variable directed graph box duration w wta inh do setup
neurons per state wta type bias to fire w constraints inh

inh constraints spike to fire w self exc
exc constraints randomized seeds w exp
clamped values randomize v init

enable noise
randomize v interval

seed
vMinExp

v th 1 mant
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Figure 4.3: CSPNxNet API design.

# P l o t a c t i v i t y
f i g u r e ( )
s p i k e s . p l o t ( )
v o l t a g e . p l o t ( )
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c u r r e n t . p l o t ( )

If needed, the user can define further attributes from the constructor. We list the
available options in table 4.2. These define the CSP instance, the network topology,
neuron parameters, synaptic connections, and the simulation itself. Following figure 4.3,
when the user creates a CspNet object, the API executes the setup network function,
and this will then walk the backend creating the necessary dependencies according to
the constructor attributes as follows:

Create prototypes. Neurons and synapses in NxNet are defined through
compartment prototypes. This way of programming helps the compiler
to allocate the hardware resources from Loihi efficiently, seizing any re-
dundancy in the network specification. The compartment prototypes will
encode all properties of the CUBA LiF neuron (equations 3.10 and 3.9)
and thus define the intrinsic dynamics of the network, e.g. average firing
rate and noise level. Connection prototypes encode the synaptic interaction
between neurons; these include weights, delays and specification of the
postsynaptic potentials types and parameters.

Compute adjacency matrix. In this API we encode all connectivity of the
principal network in a single 2-dimensional Numpy array W of size N ˆN ,
where N is the total number of neurons in the principal SNN. W encodes
both the CSP adjacency matrix as well as the WTA connectivity.

Define prototype maps. The neurons in the network correspond to an
N-array of NxNet objects, the neural prototypes should be assigned to
each object in the array depending on whether the neuron is a cue, a cue
complement, a principal neuron or an auxiliary neuron of a WTA circuit.

Build the network. the setup network function then uses the network
specification to create the single compartment neurons and the synaptic
connections between them so that the SNN corresponds to a CSN.

As part of the network specification, we want to drive the network dynamics as a
stochastic process in which every neuron fires randomly with some average firing rate
unless inhibited by the winner neurons. In sPyNNCSP, we used on-chip in-software
spike sources obeying a Poisson process (2), these acted as auxiliary neurons, which
where presynaptic to every principal neuron. Although spike injection is available in
Loihi, we do not use it to drive the network dynamics. It is equivalent to the Spike-

SourceArray method in PyNN which requires the spike times to be defined beforehand



84 CHAPTER 4. LOIHI CSP SOLVER

on the host and transferred to the chip, creating unnecessary overhead. Instead, each
neuron is driven by a bias current bi and we include stochasticity by using Loihi’s ran-
domisation of state variables (section 3.2.4). The chip allows the efficient randomisation
of either the compartment voltage, compartment current or refractory period by adding
a pseudo-random number η (equation 3.11) to any of these. This slight modification
of not using Poisson spike sources halves the number of neurons required to drive the
network dynamics in CspNxNet compared to SPyNNCSP. The noise level is modified
through the definition of noiseExp and noiseMant in equation 3.11.

If the voltage is randomised, the neural dynamics for the off-chip validation version
of the solver is given by:

uiptq “
ÿ

j‰i

w j,i

˜

e´t{τu

τu
Θptq ˚ s j

¸

ptq`bi, (4.6)

9viptq “ ´
1
τv

viptq`uiptq´θisiptq`ηiptq, (4.7)

siptq “ viptq ą θi (4.8)

viptqrsiptqs “ 0 (4.9)

Notice we used the exponential PSP as it is the one used for sPyNNCSP and there is
no need here for box PSP. We will see later this is not the case for the on-chip validation
design.

Besides the noise amplitude

|η| “ 255 ˚2p´7`noiseExpAtCompartmentq, (4.10)

other straightforward ways to control the neural dynamics are through the θi{bi quotient,
which regulates the average firing rate of each neuron, and the θi{wi j quotient, which
controls the amplitude of the inhibition with respect to the threshold value. In turn,
the intra-WTA and inter-WTA weights, wwta and wcons, define the strength of the
interaction between neurons in the same and different WTAs respectively. In developing
CSPNxNet, we have kept constant weights making difference only according to their
modality, i.e. excitatory and inhibitory inter-WTA, excitatory and inhibitory intra-WTA,
and self excitation which are in general different, we denote such weights by wwta inh,
wwta exc, wcons inh, wcons exc and wsel f respectively.

To represent variables, we offer support for two different WTA motifs shown
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in figure 4.2. The first, (“lateral”), is based on an all-to-all lateral inhibition, as in
sPyNNCSP, and the second (“aux”) uses an auxiliary neuron to mediate competition. In
the latter, every principal neuron in the WTA excites the auxiliary neuron, which in turn
inhibits every principal neuron. Thus the first neuron to fire will exert indirect inhibition
on the other. The aux type can be more economic in space resources, this is because its
number of synapses grows linearly with the domain size as 2D, or 3D if self-excitation
is enabled, whilst the lateral motif grows quadratic as pDchose2q “ pD2´Dq{2, or
pD2`Dq{2 if self-excitation is enabled (see table 4.3) 2. The lateral motif, however,
saves one neuron per variable and is trivial to program, so it can be useful in scenarios
where neurons are scarce, constraints density is low, and domain size is small (see figure
4.4). Consider a variable assuming 50 possible values. It would require 1225 synapses
and 50 neurons for the lateral motif and 100 synapses and 51 neurons for the aux motif.
So in this case aux is preferable. However, if we are dealing with 50 binary variables,
these require (disregarding constraints) 100 neurons and 100 synapses for the lateral

motif, and 150 neurons with 200 synapses for the aux motif. So, in this case, the lateral

version is a better choice.

Figure 4.4: Dependence of the number of synapses on number of variables for WTA
motifs for various domain sizes. For bianary variables (left), the “lateral” motif is better,
but for large domain sizes “aux” is largely superior (right).

The API design could easily accept several neurons per domain per variable as it
was the case for sPyNNCSP. However, in the spirit of using minimal resources, targeting
best performance and efficiency, we kept a single neuron to represent each domain in

2This analysis regards the spatial resources of interest in neuromorphic hardware, i.e., neuron count
and synapse density. Regarding time complexity, the fine-grained parallelism in Loihi attenuates the
difference between aux and lateral motifs, nevertheless, as neurons are updated sequentially inside a
neurocore, the increase in neurons count implies a slight increase in time, but this increase is sublinear
on the network size, in contrast to the respective exponential growth of the state space that has to be
searched.
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Motif Aux Lateral
Network WTA CSN WTA CSN

self-excitation no yes no yes no yes no yes
Synapses 2D 3D 2DV `2DC 3DV `2DC D2´D

2
D2`D

2 pD2´D
2 qV `2DC pD2`D

2 qV `2DC
Neurons D`1 pD`1qV D DV

Table 4.3: Space complexity for WTA and CSN networks as a function of domain size
(D), number of variables (V ) and number of constraints (C). It is assumed all variables
have the same domain size and the CSP is linear.

every WTA unless stability was affected, which has not been the case, recall in Loihi
we randomise the state variables instead of applying stochastic spikes as input. So, all
our experiments were performed with one neuron per domain in the WTA encoding a
CSP variable. Recall SpyNNCSP required « 25 neurons per domain, so this choice
represents a further 25-fold saving in neurons count.

Figure 4.5: 5-neuron WTA run with the NxNetCSP API. The yellow current and voltage
traces correspond to the winner neuron with domain index 1.

We show in figure 4.5 the spiking activity, compartment voltage and compartment
current for a 5-neuron WTA running in Loihi, i.e. CspNet(variables=1, domine size

=5). We have set the parameters so that some competition is evident, notice that four
neurons are active until a winner is chosen after the 40th timestep.

To implement the CSN, we use synaptic connections between WTAs. In the case
of a non-equal constraint Xl ‰ Xm (figure 2.1) for example, the respective neurons
encoding the same domains in the WTAl and WTAm compete through mutual inhibition,
in the same fashion as chapter 2. To illustrate such construction, let us consider a simple
spin chain defined by 10 sequential binary variables with first-neighbours interacting
with non-equal constraints. This can be created and solved by executing:

n e t = CspNet ( v a r i a b l e s =10 , domine s i z e =2 , c o n s t r a i n t s = [ ( i , i +1) f o r i in range ( 0 , 9 ) ] )
s p i k e s , v o l t a g e , c u r r e n t = n e t . s e t u p n e t w o r k p r o b e s ( )
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Figure 4.6: Chain of 10 spins with anti-ferromagnetic interaction. The red vertical line
indicates the E “ 0, which occurs at the timestep 37. In the spikes plot, red and blue
represent up and down states respectively. The transition between exploration and stable
dynamics is evident at t=37.

n e t . run ( )

c o s t = n e t . o f f l i n e c o m p u t e c o s t f u n c t i o n ( )

f i g u r e ( )
s p i k e s . p l o t ( )
c u r r e n t . p l o t ( )
n e t . p l o t C o s t ( c o s t )

From which we obtain figure 4.6. In the spikes diagram, it is easy to observe an
initial period of competition lasting the first 35 timesteps, after which the network
converges to a state satisfying all constraints, the winner neurons remain active, keeping
the losers inactive. The Energy plot corresponds to the off-chip computation of equation
4.2, where the green dots reflect zero E “ 0, which corresponds to the solution of the
CSP, blue dots are those states that are well defined but violate some constraints while
red dots correspond to states where some variables are undefined, either because are
multi-valued or because remain inactive.

The dynamics of the network is controllable by a set of free parameters, namely
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the arguments to the compartment prototypes and the weights for the synapses. To
alleviate the process of parameter tuning, we implemented the set of methods labelled
with the sweeping role in figure 4.3. Each of these calls the create database private
method which runs several trials of the network, setting for each time a different value
of the swept parameter, in a range defined by the user. The results of each run: probed
data, postprocessing and metadata, are optionally recorded into an HDF5 file. This
method also creates a text file, if it does not exist yet, where the timestamp for calls
to the corresponding sweeping method will be collected followed by a summary of
parameter combinations that generated solutions, as well as their time to solution. It
is allowed to nest the sweeping methods so that a single call can potentially sweep all
parameters. For now, this results in a sequential assignment of the parameters, a kind
of brute force protocol. In the following version of the API, the sweeping will adapt
according to the results of the last run. It will optimise for two essential features of the
CSN, namely, the WTA behaviour for each variable and a trade-off between exploration
and exploitation. Notice that such parameter fitting constitutes in itself an optimisation
problem, however in a much lower dimension than the original CSP. It is worth noting
that the number of free parameters does not depend on the network size, resulting in
a time complexity Op1q for parameter tuning. Ultimately, these methods are just the
building blocks for sophisticated CSP solving strategies to be run alongside the online
solver and from the embedded LMT processors. Using SNIPs, these will coordinate
the search so that fluctuations in εi are enough to scape local minima while keeping a
bounded network dynamics (moderate spike traffic).

4.2.2 Solution to CSPs with CSPNxNet and Off-chip Validation

We now use the API to solve the world map colouring (WMC) problem with four
colours, as well as the Sudoku puzzle. We show the results for both problems in
figures 4.7 and 4.8 respectively. We can see that in both cases, the network finds a
solution and stabilises in the solving configurations for Sudoku and degenerate solutions
for WMC. When cues are included in the problem formulation, as is the case of the
Sudoku puzzles, the connectivity is created to keep arc consistency similar to a filtering
algorithm [Rég04], so the API keeps only synapses consistent with the constraints. It
is possible to clamp variables with strong bias current on the desired domain while
having no bias on the others. However, in problems were excitatory constraints exist
such method could lead to change in the variable value and hence, arc consistency is
preferred.
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Figure 4.7: The solution to a 9ˆ9 sudoku puzzle using the CSPNxNet API. a) Solved
CSP network. Nodes, colours and edges represent WTAs, winner domains and con-
straints respectively. b) evolution of the cost function, E “ 0 when all constraints are
satisfied. Undefined states are those with some inactive or multivalued variables. c)
Evolution of compartment currents from all compartments in the network. The mean
activity for winning and losing compartments is also shown. Competition continues
until a solution is found at timestep 643. d) Spiking activity of the 729 neurons. The
dashed red vertical line across plots indicates the timestep at which a solution was
found.
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Figure 4.8: Solution to the 4-coloring of the map of the world (193 states recognised by
the United Nations). a) Current traces for network compartments showing the mean
activity for winning and losing neurons. b) Spike trains of the network compartments,
every four rows correspond to the domains of a variable, colors code for domains in
a variable. c) Network energy showing the evolution of the stochastic search until
satisfaction is achieved. d) Network graph, nodes represent WTAs, colors code the
valuations and edges corresponds to constraints between variables.
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Recall that Loihi has a variable duration for its real timestep, and this is the reason
for presenting timesteps on the x-axis of figures 4.7. Probing the network activity results
in considerable overhead. On average, the time per timestep for the problems above will
take between 10-30 µs when no probes are used. However when probes are activated,
the average time per timestep grows by one order of magnitude, i.e., approx300µs The
4-colouring of the world map solved at timestep 382, which means a solving time of
only « 114,6ms. This same problem required 123 s when using the sPyNNCSP API.
For Sudoku, the solving time was 643 timesteps resulting in « 192.9ms, this problem
took an average of 1.31 s in sPyNNCSP.

Regarding the number of neurons, we have pointed out how we save 50 % by not
using poison spike sources. Furthermore, the networks are stable and even converge to
a stable solution while using only one neuron per domain, instead of the 25 for Sudoku
and 50 for the WMC in chapter 2. Thus, in CSPNxNet, we require 50 to 100-fold
fewer neurons, which amounts for two orders of magnitude improvement for the WMC
problem. Fewer neurons imply a dramatic reduction in the number of synapses, which
are 3614 and 17496 for WMC and Sudoku, respectively, to be compared with table 2.1.
Thus, the model becomes portable and usable in edge devices.

Probing a high dimensional Sptq is slow and resource-intensive. Furthermore, the
off-chip validator may miss a solution when ∆t ą 1. Hence, In the following section,
we demonstrate our method for performing the on-chip measurement of E, as well as
the detection of E “ 0.

4.3 CSP Solver with On-chip Validation

One of the important challenges when developing applications for neuromorphics is the
need to satisfy the locality constraint by which the network state is not accessible to
its components [LWC`18a]. Locality here is a consequence of the distributed memory
and processing which remain close to each other across the machine, greatly reducing
both power consumption and execution times [Fur16a]. A further challenge for SNNs
in Loihi arises from the bottleneck caused by recording each state variable of every
neuron and their subsequent transfer to the host server for postprocessing. Loihi is
instead intended to make SNN-based computations and take decisions with spatially and
temporally sparse interaction with the external devices and actuators. Its communication
with the external world would be ideally limited to sense and integrate input data and
then retrieve the output of its computation or inference. These facts imply that the
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network or neuron architectures should be self-validating and autonomously make
decisions of when to communicate with the external ecosystem, i.e., robot components,
humans, nature or other computing devices.

In what follows, we present our strategy to endow spiking neurons with the ability
to report their state of conflict with the rest of the network to an integration neuron.
This latter acts as a trigger for decision making as specified either by arbitrary neural
interfacing processes executed on-chip by the x86 cores or by other SNNs existing
across the neurocores.

4.3.1 Self-Verifying Network

To eliminate the need for expensive probing of each neuron, as well as postprocessing,
the network should evaluate at runtime and in-parallel its energy function E as defined
by equation 4.2. Whenever E “ 0, the network should notify that a satisfying state
was found at time tz so that we can read the solution by extracting either sptzq, vptzq or
uptzq. In this scenario, the goal is that no information leaves the chip or is recorded by it
unless a solution exists encoded in the instantaneous network state. Thus, eliminating
the overhead incurred by storing and transferring data between the components of the
heterogeneous computing stack, or by recording unnecessarily large amounts of data.
We achieve such functionality by leveraging the the multicompartment features of the
chip (section 4.3.2). For the following, let us recall that W denotes the binary adjacency
matrix while W corresponds to the weight matrix, also, siptq denotes the spiking state
variable of neuron i, whilst Si is the i-th component of the network vector state resulting
from extending si through τw timesteps, which is a way of considering the lasting effect
of the spike on the network.

Let us begin with the definition of E from equation 4.2, were we interpreted the
interactions in an SNN in analogy with the energy stored in a system of interacting
particles:

E “
ÿ

i

pSi ¨
ÿ

j

Wi j ¨S jq (4.11)

Realise that the term
ř

j Wi j ¨ S j P r´Npre,0s on the right hand side of equation
4.11, where Npre is the number of presynaptic neurons to i, can be retrieved from the
compartment current upt`1q in equation 3.3, which for a box PSP of lenght τw can be
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written as

uptq “
ÿ

j

τw
ÿ

k“0

wi j ¨ρpkq ¨ s jpt´ kq (4.12)

“
ÿ

j

wi jpρ ˚ siqptq

“
ÿ

j

wi jS jptq. (4.13)

Moreover, we can obtain the adjacency matrix W by binarizing the weight matrix
W over non-zero weights:

ÿ

j

Wi j ¨S j “
ÿ

j

rwi j ‰ 0sS j

“
ÿ

j

rwi jS j ‰ 0s, (4.14)

where the expression inside square brackets outputs a truth value. In the particular case
of equal and constant weights of magnitude |w| across the network, one can write

ÿ

j

rwi jS j ‰ 0s “
1
|w|

ÿ

j

wi jS j. (4.15)

So equation 4.14 can be expressed as

ÿ

j

Wi jS j “
uiptq
|w|

:“ ūiptq P r´Npre,0s. (4.16)

which evaluates different of zero when any neuron j which is presynaptic to i fires. We
can then rewrite 4.11 as

Eptq “ ST
ptq ¨ ūpt`1q (4.17)

“
ÿ

i

Siptq ¨ ūipt`1q. (4.18)

Following equation 4.4,

εipt´1q “ Sipt´1q ¨ ūiptq. (4.19)

(4.20)
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Figure 4.9: Ideal architecture to compute E from local information. Spikes s jpt´1q
from all presynaptic neurons are integrated by neuron i (blue box) through the constraints
matrix W (green) into ui. In turn, vi absorbs ui, is randomised by ηi and driven by
bi, eventually causing a spike. When this happens, the local energy contributions
S jpt´1q ¨uiptq are transferred to a Σ neuron which integrates them into E.

This means that the intrinsic dynamics of each neuron already computes the components
of their local contribution εi to E, which can be regarded as the neuron’s intrinsic energy
(figure 4.1) when the network is in a particular configuration ψn “ ψpn∆tq. If each
neuron can internally compute the local cost εiptq, we can set up the summation by a
neuron Σ (summation neuron) which is postsynaptic to all principal neurons. To this
point, the basic architecture is shown in figure 4.9,

We still need to compute εi, however, the Sipt´1q ¨uiptq element-wise multiplication
is not directly supported by Loihi and we need to make Sipt´1q available to the neuron
i at time t.

4.3.2 Multicompartment Computation and Integration of εi

To obtain εiptq one needs to have uiptq and Sipt´1q internally available to the neuron
which would need to output their dot product. We achieve this by using Loihi’s ability
to group compartments as multicompartment neurons, allowing the propagation of ui

from the dendrite to the soma to the axon.
In order to build multicompartments, each neurocore has a memory stack of depth

2. Any state variable from a compartment can then be pushed into the stack and be used
by the next compartment while the runtime software is advancing the computations for
one timestep. Every compartment can execute a small set of operations between its
internal state and the information saved on the stack, (see multicompartment operations
in section 3.2.3). Given the fact that the ui and Si of interest belong to different
time references, we make Sipt´ 1q available to the neuron by creating an autapse (a
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synapse from the neuron onto itself [VDLG72]) with 100% transmission probability.
This makes Sipt´1q available at time t in the dendritic node where uiptq resides, see
figure 4.10. Autapses are very common in biological neural networks, both in-vivo
and in-vitro [TBS97, PM99, BS91]. There is, however, no full understanding of their
role for the brain’s information processing. These are shown to mediate anticipated
synchronisation [PRM19], promote specific neural oscillations [HK04] or even the kind
of synchronisation underlying conditions such as epilepsy [FWW`18]. Here, we show
a further possible role of autapses for SNN architectures, which beyond any biological
plausibility, is useful as a computational resource in SNNs design. Note that besides
enabling operations on state variables, the multicompartment structure is necessary to
avoid interference between the underlying CSP solver dynamics and the computation of
E.

The multicompartment model (figure 4.10 top) begins with using a soma compart-
ment (B for Base compartment, purple block), which performs the normal role of
the neuron in the SNN from the off-chip CSP solver. It receives external synapses
corresponding to the adjacency matrix (green box), and interacts with other Bs in
the network through its axon arbour. In parallel, the soma also pushes uptq into the
stack. On top of the soma, the neuron has two compartments, which, because B emits
spikes and receives the external synaptic input, might be more accurately referred to
as axonic compartments, M (for Middle compartment, yellow box) and T (for Top

compartment dark green). The neuron forms an axo-axonic autapse from B onto M to
propagate Sipt´1q as explained above. Although we do not drive our implementation
by biological realism, it is important to highlight that such autaptic connectivity is
not at all biologically implausible. Autapses exist in a diversity of forms, axoden-
dritic, dendo-dendritic and axo-axonic as observed in both cortex, hippocampus and
cerebellum [TBS97, BS91, Bek02, PM98, PM99]. The M -B connection functionally
replicates the firing state of the soma in M , which pushes its spiking variable into
the stack. T goes onto pulling both uiptq and Sipt´ 1q from the stack and computes
ε̂iptq “ Siptq^uipt`1q. Where the AND operator (^) emulates a dot product. Note that
ε̂i P r´1,0s while εi P r´Npre,0s. Hence, we use ε̂i as a proxy for εi which satisfies:

ε̂i “ 0 ðñ εi “ 0

&

ε̂i ‰ 0 ðñ εi ‰ 0 (4.21)
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While we have lost information with ε̂i about how many neurons conflict with neuron i,
we have preserved information about if conflicts exist at all or not. Hence, the coarse
resolution in relation 4.21 is sufficient condition for the on-chip validation framework
to remain valid.

Initially, we implemented the 4-compartment neuron model shown in (figure 4.10
bottom) because only vi could be pushed into the multicompartment stack. In that case,
we needed an additional dendrite compartment pDq on the bottom (blue box), which
receives the synaptic input from other neurons, integrates them into ui and passes this
value through the stack to B . This latter integrates ui into vi, also incorporating the bias
current and noise. Some extra difficulties come with this approach. As described in the
previous chapter, the same LFSR is used to randomise the voltage of all compartments in
a neurocore, this, in turn, implies a single specification of noise amplitude per neurocore.
Hence, when pushing vi into the stack to be absorbed by T , the neuron is not only
propagating ui but also ηi. Throughout development, the ability to push ui became
available and with it the fusion of the functionality of the two first compartments. Except
for the unintended propagation of ηi, the behaviour of D`B , in the 4-compartment
model, is equivalent to the behaviour described above for the B of the 3-compartment
model with the additional benefit of saving one compartment per neuron.

4.3.3 3-Multicompartment Model

In this section we formalise the model used to create the neuron pB,M ,T q. An
important difference with the off-chip validation solver is the requirement to use the
box synaptic kernel ρ. By design, the box PSP requires δu “ 0, with the compartment
current given by

uiptq “
ÿ

j

w ji

τw
ÿ

k“0

ρpkqs jpt´ kq (4.22)

This also implies that the on-chip validation solver needs to use the randomization of
the compartment voltage. Randomising either ui or the refractory delay would interfere
with the definition of the box PSP. Then,

viptq “ vipt´1qp1´
δv,i

δmax
q`uiptq`bi`ηi. (4.23)

Here, δmax ÞÑ 8 is the maximum decay allowed by the chip.
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Figure 4.10: Multicomaprtment architecture, flow of state variables and their transfor-
mation across the 3-compartment (top) and 4-compartment (bottom) neuron models.
Both models are functionally equivalent so the smallest is preferred.

Soma Compartment. Every Bi correspond to an integrate and fire neuron (IF)
driven by its bias current bu,B

i , and receiving inhibitory input from other B j with a
weight wi j and a box PSP. Bi fires whenever its voltage surpasses the threshold θB

i . This
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compartment can be summarised trhough:

bB
i ‰ 0 ÞÑ f .p. (4.24)

θ
B
i ‰ 0 ÞÑ f .p.

w ji ď 0 ÞÑ f .p.

δ
B
u “ δ

B
v “ 0

SB
i ptq “ rv

B
i ą θ

B
i s

uB
i ptq “

ÿ

j

w ji

«

τw
ÿ

k“0

ρpkqs jpt´ kq

ff

vB
i ptq “ uB

i ptq`η
B
i ptq.

Where f .p. labels the free parameters, which in this case are bB
i , θB

i and w ji. Regarding
multicompartment operations, B pushes uB

i into the stack which will be absorbed by T .
It also sends SB

i ptq to M through an excitatory autapse with weight waut .

Axon Compartment M . M receives SB
i ptq at time t ` 1 and integrates it into

uM
i ptq with a box PSP. This compartment acts as a relay station which pushes SB

i pt´1q
into the stack for later use by T . Thus, M should respond to every spike from B with
a spike burst which lasts τw, rather than a single spike or box pulse, otherwise the
neuron will not detect violations happening in a timestep resolution. We satisfy such
a condition by setting δM

i to its maximum value δmax ÞÑ 8. In this way, uM
i ptq will

stay up during τw, but vM
i ptq will decay back to zero after every spike at which point

it integrates uM
i ptq again, resulting in an interspike interval of one timestep during the

interval rt f , t f ` τws. Our multi-compartment neuron model also includes an autapse
from T to M characterised by a very small weight wread . We use this autapse for
delayed readout of the network state as explained later. M ’s behaviour is summarised
by:
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bM
i “ 0 (4.25)

θ
M
i ă waut

wread ăă waut

δ
M
u “ 0 (4.26)

δ
M
v “ δmax

SM
i ptq “ SB

i pt´1q “ rvM
i ą θ

M
i s

uM
i ptq “ waut

τw
ÿ

k“0

ρpkqsB
i pt´ kq`wread

2
ÿ

k“0

ρpkqsT
i pt´ kq

vM
i ptq “ uM

i ptq`η
M
i ptq.

Axon Compartment T . Because the compartmnts B , M , and T are updated
sequentially, T is now able to read Sipt ´ 1q and uiptq from the stack and compute
vT

i “ SM
i ptq ^ uB

i ptq “ ε̂iptq. In this ideal model, ST
i signals satisfaction when no

violations exist:

ST
i “

$

’

’

’

’

&

’

’

’

’

%

0, pSM
i “ 1q^puB

i ă 0qq Ñ violations exist
1 pSM

i “ 0q^puB
i ă 0qq Ñ loser inhibited by competitors

1 pSM
i “ 1q^puB

i “ 0qq Ñ winner with no violation
1 pSM

i “ 0q^puB
i “ 0qq Ñ loser with no violation

(4.27)

Hence, T should spike by default. For this, one could set θT
i “ 0. However, the real

equations on the chip are,

ST
i ptq “ rv

T
i ą θ

T
i s, (4.28)

vM
i ptq “ SM

i ptq^pb
T
i `uB

i ptqq`η
T
i ptq. (4.29)

Notice ηT
i ptq is always contributing independently of the spike and current variables

from the stack. Hence, if θT
i “ 0 noise will interfere with the neuron firing producing

both false negatives and false positives. Then, we need to use bT
i ą |η| ą 0. Then,
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equation 4.29 results in:

vT
i ptq “

$

’

’

’

’

&

’

’

’

’

%

bT
i `uB

i `ηT
i ă θT

i , pSM
i “ 1q^puB

i ă 0qq
ηT

i ă θT
i , pSM

i “ 0q^puB
i ă 0qq

bT
i `ηT

i ą θT
i , pSM

i “ 1q^puB
i “ 0qq

ηT
i ă θT

i , pSM
i “ 0q^puB

i “ 0qq

(4.30)

The red equations in 4.30 show that there is no signalling of satisfaction from ST
i

when SM
i “ 0. This is because in equation 4.29 the spikes from M not only gate uB

i ptq

but also bT
i . Gating makes reference to the fact that the spikes state is binary and is

multiplying the rest of the terms in the equation, if ST
i “ 0, the current and bias are

not integrated into M ’s voltage (Equation 4.29). We solve this problem by (see figure
4.11):

1. setting a non-zero bias current on the Σ neuron, label 4 in figure 4.11. Thus, Σ

will fire by default.

2. create an inhibitory connection from M to Σ which is antisymmetric to that from
T to Σ, red arrow in figure 4.11. Thus, each neuron will effectively inhibit Σ

unless it has no conflicts, because in such a situation the neuron will send opposite
signals of equal magnitude to Σ.

With such an strategy, the firing of Σ given the influence from the i-th neuron will
obey:

si ÞÑΣ “

$

’

&

’

%

1, psM
i “ sT

i “ 0q^puB
i “ 0_uB

i ă 0q
1 psM

i “ sT
i “ 1q^puB

i “ 0q
0 psM

i “ sT
i “ 1q^puB

i ă 0q

(4.31)

For the red equation in 4.31, corresponding to the red conditions in equation 4.30, the
satisfied condition is signaled by bΣ ą θΣ for either uB

i “ 0 or uB
i ă 0, because there

is no input to Σ. In the second equation, the antisymmetric inhibition and excitation
signals from neuron i compensate, having no net effect on uΣ, labels 3 and 5 in figure
4.11. In the third equation, Σ is inhibited by Bi with no signal from T , so it remains
inhibited during the respective timestep acknowledging that a violation exists. This
protocol solves the problem posed by equation 4.30.
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Figure 4.11: Protocol for signaling of satisfiability from a principal neuron onto the
Σ neuron. An extra inhibitory synapse is created from the base compartment to the Σ

neuron, which now has a non-zero bias current, see the text for description.
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All in all, the dynamics of T can be summarised by:

bT
i ą |η| ą 0 (4.32)

bT
i ą θ

T
i

δ
u,T
“ δmax

δ
v,T
“ δmax

ST
i ptq “ rv

T
i ą θ

T
i s

uT
i ptq “ 0

vM
i ptq “ SM

i ptq^pb
T
i `uB

i ptqq`η
T
i ptq (4.33)

Both current and voltage decays are set to their maximum for this compartment so that
it computes εipn∆tq for every timestep n. Note also that τw and |η| constitute further
free parameters which are shared by all compartments in the same neurocore.

4.3.4 Compensating for Noise

The model above satisfies the conditions for evaluating ε̂i at every timestep. Nev-
ertheless, because noise is defined by neurocore, it will be equally applied to every
compartment. Thus, one needs to guarantee that noise will not cause interference on
the auxiliary compartments by either producing spikes or cancelling them when they
should occur.

Compartment B

• wi j ą |η|{2, so that when uB
i gets passed from B into T , it causes inhibition for

all uB
i ă 0.

• Optionally, if noise should not cause spikes, θB
i ą |η|{2. Note that if |η|{2 «

θB
i the inter-spike interval will not follow θB

i {b
B
i . Also, if |η|{2 ąą θB

i the
compartment will tend to spike at every timestep which is not desirable.

Compartment M

• For this compartment one should guarantee spike-in-spike-out, i.e. S2ptq “

S1pt´1q. Hence |η|{2ă θ2 ă w12´|η|{2.

Compartment T
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Figure 4.12: Contributions to compartment voltage for T showing restrictions for θT
i .

The dashed black double headed arrow shows the range of possible values for θT
i which

satisfy both conditions highlighted with a shadowing box. Note there is no particular
meaning for the horizontal axis.

We show in figure 4.12 the contributions to the compartment voltage of T , which
will integrate both its bias current (dotted green line), the input current from compart-
ment B (red arrow) and the LFSR noise, represented as the shadows around bT

i in the
figure.

• Every compartment T should fire by default and noise should not interfere with
firing, orange condition in figure 4.12. Thus, θT

i ă bT
i ´|η|{2.

• Input spikes to the multicompartment neuron should make the compartment T to
stop firing. In figure 4.12, this means that when the red arrow is substract from
the maximum value bT

i `|η|{2 the voltage should result in a value below the blue
dotted line (threshold). Then, |uB

i | ą bT
i `|η|{2´θT

i

• Both conditions above imply:

bT
i `

|η|

2
´|uB

i | ă θ
T
i ă 2bT

i ´
|η|

2
(4.34)

which defines the region marked with a dotted double headed arrow in figure 4.12,
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Figure 4.13: Activity of the (B ,M ,T ) multicompartment neuron. The top three pannels
show the compartments voltage and panels four to six the compartments current for
B ,M and T respectivelly. The spiking activity is plotted on the bottom panel. Grey
dashed vertical lines represent the times of injection of inhibitory spikes.

we chose the halfway, resulting in:

θ
T
i “

2bT
i ´|u

B
i |

2
. (4.35)

4.3.5 3-Compartment Model Implementation

Fig 4.13 shows the measured behaviour of the three state variables, vptq, uptq and sptq

for compartments B , M and T in a single 3-multicompartment neuron implemented in
Loihi. These base, middle and top compartments are colour-coded as yellow, green and
red, respectively. As explained above, the noise has been enabled for vptq (evident for
vM , in green), and we have asserted the established parameter ranges so that η does
not interfere with the desired functionality. In order to test the influence of presynaptic
neurons in a controlled manner, we have injected external inhibitory box spikes whose
start is shown as vertical dashed grey lines. The firing times of the injected spikes were
[25, 44, 60, 70, 71, 72, 80, 82, 82, 83, 84, 85, 86] and are intended to test the model
works as expected. In the top panel, vB accumulates bias until the first yellow spike
appears on the lowest panel. vB resets after spiking for the duration of the refractory
period and repeats the process over again. The spiking activity of the three compartments
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Figure 4.14: Schematic representation of the on-chip neural architecture for network
energy integration. The principal network is build from the base compartments (purple)
with their connectivity defined by a weighted adjacency matrix W (green). The top
compartments (dark green) send local (binary) information to the summation neuron Σ

(rose) about their conflict state with the rest of the network. An extra neuron ζ (grey) is
needed to notify Σ about false positives when no-neuron from a given WTA is firing.
When no conflicts exist on the network, Σ notifies the LMT CPU (rigth-top).

shows that every B spike (yellow) triggers a spike on M (green) on the next timestep.
Before the first presynaptic spike arrives (t “ 25), T spikes simultaneously to B because
no conflicts exist and their updating belong to the same timestep. However, incoming
inhibitory input turns off the firing from T at time 25 when the first spike arrives. Note
in the fourth panel (in yellow) that uB integrates such spikes as box synapses, these
accumulate in vT when it is not refractory. Because T resets at t`1 if it spiked at t,
its vT plot does not capture such changes. However, when T does not fire, because
integrates uB ‰ 0. a square pulse appears on vT , reflecting bB ´uB ă θT . Presynaptic
spikes, do not affect the firing of M as its spiking is necessary for the functioning of T .
After timestep 70, when there is enough inhibition to turn off the neuron, none of the
compartments spike.

4.3.6 Σ and ζ Neuron Implementation Details

Because T computes vT from equation 4.29, the configuration of Σ’s current bias and
threshold should make it fire constantly, but be inhibited at the arrival of any signal of
violation from any Mi compartment. Recall Σ is excited by T with weight wT ,Σ and
inhibited by M with an exact and opposite weight wM ,Σ “´wT ,Σ, see figure 4.11. If
both axonic compartments fire, is because the neuron has no conflicts, then, Σ is not
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effectively inhibited by this neuron. If on the contrary only the second compartment
spikes, it is because the neuron received an inhibitory input on Bi, a conflict exists, uT

i

turns off T , and the second compartment effectively inhibits Σ.

When trying to solve large CSPs, it became evident that, although we are showing a
single summation neuron here, this cannot always be the case. For large CSPs where a
single Σ neuron would need to integrate information from more neurons than the fan-in
axons allowed for a single neurocore, a hierarchy of Σ neurons has to be used as follows.
The total population of WTAs is partitioned to create Nσ subpopulations whose size
fits the number-of-axons-per-core constraint, the first layer of Σ neurons will integrate
satisfiability from all these subpopulations of WTAs. The Σ neurons then feed-forward
to a single, and slightly different, integration neuron I, which acts as the global arbiter.
I should have θI “ NΣ{wΣ,I , where wΣ,I is the weight of each synapse from Σi to I (the
same for all).

This hierarchical construction can be used in any general non-CSP SNNs where
one needs to monitor specific subpopulations which should satisfy certain consistency
constraints. For example, it has been demonstrated experimentally that the brain encodes
memories in ensembles of neurons where a few neurons are active, these ensembles
are used to do elaborate computations or create memory associations [PIR`19, Qui16].
In a system like this, several summation neurons will be spread across the network to
monitor specific subsets of neurons, notifying other SNNs or SNIPs when the underlying
conditions have been fulfilled. In such a general SNN, not all neurons would need to
be 3-multicompartment neurons as that of figure 4.10, only those subsets whose state,
or ε̂, hold relevant information. In general, the architecture demonstrated here can be
integrated into any network where its functionality renders useful.

Back into the case of a single Σ neuron, because uΣ “
ř

i wiΣsT
i , where wiΣ is the

weight of the excitatory connection between principal neurons i and the Σ neuron. Then,
θΣ “ NσwiΣ, so that this neuron fires when all principal neurons acknowledge a non-
conflicting state. This protocol generates a coarsely quantised energy function because
spikes can only transfer binary variables, unless coding through their timing. Each
incoming spike from a neuron without conflicts will contribute the same energy to uΣ

independently of the number of violations it experiences. Still, the temporal dependence
of uΣ will reflect a proxy Ê of E. In particular, one is interested in the extrema of E or
states with a particular value of it, if the target is a value SpE ‰ 0q, one could modify
θΣ so that Σ will fire when the network reaches the desired energy level. Note that the
coarseness of Ê worsens as more Σ layers are added. But still, E “ 0 ðñ Ê “ 0, so
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Figure 4.15: On-chip vs off-chip evaluation of E for a small spin chain. Excitatory
input has been used to control the progressive relaxation to the ground state. Notice
the resemblance of the summation current as a proxy for E shown in the right bottom
plot. As soon as E “ 0, uΣ “ 0 and the summation neuron begins to fire, except
for the intervals where the network state is undefined. Vertical red and blue lines
(superimposed) represent the offline and online times to solution respectively.
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Figure 4.16: Spiking activity of all 3-multicompartment neurons in the spin chain of
figure 4.15, one per panel. Yellow, green and red event lines represent the spike times of
base, middle and top compartments of a multicompartment neuron respectively. Every
two neurons represent a spin variable with up and down states. The long vertical purple
line represents the superimposed offline and online times to solution respectively

the CSP functionality is never lost.

One should only measure E when valid states of the ensembles exist, avoiding false
positives when the network dynamics gives rise to under-determined states. A false
positive will occur if Σ measures E “ 0 because certain WTAs were not active at all
and the only active WTAs did not have violations. Inactive WTAs have energy zero but
represent undefined variables, then, a partial assignment of variables that satisfies all
constraints has energy 0 but does not solve the CSP problem. Still, the problem will not
be solved, and the information encoded in the network state is not useful. Hence, an
auxiliary state-enforcement neuron ζ (grey box in figure 4.14) is set for each WTA to
inhibit Σ if the respective WTA is idle. Every ζ neuron is set to fire by default, the B
compartments of the respective WTA, in turn, inhibit the ζ neuron. This means ζ does
not fire whenever one or more WTA neurons fire which implies the population has a
defined state or is actively searching, in which case conflicts will be acknowledged to
Σ directly by the WTA neurons. The state from B takes two timesteps to arrive at Σ
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because of the one timestep delay between B and M . The same delay applies for the
propagation of information from B to ζ to Σ, so the system remains coherent. We say
the layer of ζ neurons enforces the one-hot representation,

Si¨|Di|`k “ S1ik | S
1
ik P t0,1u^

ÿ

k

S1ik “ 1. (4.36)

It seems that the all-to-one connectivity will generate substantial spike traffic.
Recall, however, that spikes are only sent to Σ whenever neurons are in the satisfying
configurations. Thus, the firing is expected to be sparse most of the time, until complete
satisfaction, when the neurocore finishes its computation.

4.3.7 Multicompartment WTAs

Now, we turn to test the model works when using multiple neurons.

4.3.7.1 One Multicompartment WTA

In figure 4.17, the top 3 panels show an ensemble of three 3-multicompartment neurons
whose dynamics correspond to that of figure 4.13. The neurons inhibit each other
laterally so that they encode a random variable in a one-hot representation. The bottom
three panels illustrate the activity of the state-enforcement neuron (grey block in figure
4.14), which stops firing whenever at least one neuron in the ensemble is firing. Notice
that due to the lateral inhibition, the third compartment (red spikes) does not fire during
the periods where more than one neuron in the ensemble is active, which causes E ‰ 0.

4.3.7.2 Network of WTAs with Σ and ζ Neurons

To illustrate the activity of the whole neural architecture, we built two neural ensembles
similar to that of figure 4.17 with the condition (cross-inhibition) that both random
variables should not assume the same value, the spiking activity of the six multicompart-
ments is shown by the top 6 panels of figure 4.18. The lower panels show the activity
of the Σ and ζ neurons (pink and grey blocks in figure 4.14). Clearly, the summation
neuron fires (third panel from bottom-up) only when the network is in its ground state
and both populations acknowledge their no-conflicts state.
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Figure 4.17: ζ neuron (bottom three panels) with a multicompartment WTA made of
three neurons (top three panels). Notice how ζ fires whenever no neuron is active and
stops when at least one neuron is firing.

4.3.8 Solution Readout

To this point, each neuron computes ε̂i, send it to Σ. Σ integrates Ê with help from ζ to
detect false positives and fires if Ê “ E “ 0. The next steps consist of detecting sΣ with
an LMT, so that the host knows when to read out the solving network state.

4.3.8.1 Sequential Neural Interfacing Processes

We can create communication channels between the Σ neuron and any LMT processor
(or any other neuron), as well as from that LMT and the superhost. We create a process
whereby if Σ fires, it will trigger the following execution (4.21):

1. LMT sends the current time to the superhost

2. Superhost requests the neurocores for the current network state of every principal
neuron.

3. LMT reads the state variables of interest from the principal population

4. The state variables are transferred to the superhost.
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Figure 4.18: Σ neuron (bottom three panels) for a network with two WTAs (top six
panels) as that of figure 4.17. There is one ζ neuron per WTA. Note Σ never fires if
ζ is active, also, Σ fires only when both neurons have converged to a winner which is
compatible with the non-equal constraint.

5. Host decodes the original network state

Decoding is necessary because of a three timesteps delay for information to flow
from the principal neurons to the LMTs. Once the network solves the CSP, at ts, the
T compartment of the last neuron which generated ts will spike at ts`1. At ts`2, Σ

will recognize that the network solved the problem and will, in turn, send a message
to the LMT, which arrives at t ` 3. However, the network state could have already
changed at ts`3. For this reason, we need to store the network state during this small,
but important, delay.

Our original method for readout consists of using decaying activity traces, originally
intended for homeostasis (figure 4.19). Such traces can be activated for any compart-
ment, with characteristic gain and decay. The decay of the original traces includes
stochastic rounding, making its use to store sB unreliable. We used NxCore to make
the decay deterministic so that the value of each trace reflects the neuron state from 3
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Figure 4.19: Soma activity traces with default stochastic rounding for decay (top).
Dashed grey lines indicate the spike train triggered by a bias current which accumulates
on the compartment voltage (bottom).

Figure 4.20: Soma activity traces without default stochastic rounding can be used to
read out network state after a given number of timesteps.



4.3. ON-CHIP VALIDATION SOLVER 113

Figure 4.21: Computational graph for the network state readout SNIPs. Time unfolds to
the right.

timesteps into the past.

Using activity traces is economical and our preferred method. However, given some
unexpected behaviour, we had to use an alternative method. It consists in creating an
extra autapse from T to M with a negligible excitatory weight wread ăă waut , so that
it causes no interference. When T spikes, it sends a box autapse with τw “ 2, so that
vM stores sT during two timesteps. When the Host gets notified, it reads all vMiS and
detects the small fingerprint. In this way, the Host reads the network state that solved
the CSP.

To complete the implementation of the on-chip validation solver, we create python
SNIPs to instruct the Host and a C SNIP to be run by the LMT.

4.3.8.2 SNIPS Implementation in Python

Listing 4.1 shows the python SNIP for readout. It consists of a setup snips function,
whose input is a pre-compiled loihi board. The function defines the C SNIP, chip ID
and core ID to run. create notification channels and connect sumation neuron to lmt

(listing 4.2) create the necessary communication channels across the heterogeneous
hardware stack. Finally, a helper function tells the system whether to use activity traces
or readout autapse.
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Table 4.4: Additional constructor attributes for the CSPNxNet API with on-chip valida-
tion.

MULTICOMPARTMENT ON-CHIP VALIDATION CHIP
multicompartment set summation num dendritic acumulators

noise at multicompartment set one hot enforcement num delay bits
enable activity traces setup snips neurons per core

enable refractory readout autapse delay
online window

multiple summation

4.3.8.3 SNIPS Implementation in C

On the C side, a guard function (Listing 4.3) controls the execution of the main function
(Listing 4.4). This latter, in turn, detects the Σ spiking and transfers the firing timestep
to the host.

4.3.9 Update of the API Design for Multi-compartment on-chip
Validation

The extra functions for on-chip validation explained through the previous sections, have
been integrated into the CSPNxNet API. Table 4.4 shows the on-chip validation solver
attributes available through the constructor, table 4.1 shows the properties concerned
with multicompartments in its second column. In figure 4.3, the methods in the ONLINE

block set up most of the on-chip validation architecture. Nevertheless, the PROTO-

TYPES, PROBES, BUILD NET and DRAWING blocks had to be augmented to support
the online validation and multicompartment features of the system.

4.3.10 Online Solution and Validation of CSPs

Figure 4.22 shows the off-chip and on-chip validation methodologies for finding the
solution to the 3-colouring of the map of Australia. On the right, the red and blue vertical
lines (superimposed) mark the time to solution, at which Σ begins firing acknowledging
E “ 0. This time is consistent across the CSN raster plot (top), summation activity
(spikes, voltage and current on the three central panels), and off-chip computation of E,
bottom panel. The constraint graph labelled as on-chip evaluation corresponds to the
solution retrieved online without probing any compartment. Note that uΣ serves as a
proxy to track the evolution of the stochastic search. This is evident in figures 4.15 and
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Figure 4.22: Comparison of on-chip and off-chip validation of solution to the 3-
colouring map of Australia. The constraint networks to the left show the colouring as re-
trieved with off-chip validation (top) and with on-chip validation and no probes(bottom).
The plots to the right show the probed activity for spikes from principal neurons (top),
summation neuron spikes, voltage and current (middle blue), and off-chip evaluation of
E (bottom). Red and blue vertical lines (superimposed) label the time to solution from
off-chip and on-chip validation respectively.

4.16 where we have forced the progressive relaxation to the ground state for a small
spin chain. Note the direct correspondence between uΣ and E.

4.3.10.1 Building Apps

The CSPNxNet API is intended for creating applications for specific CSPs. These
should hide most of the low-level details to the end user. To build these apps one
generally implements a translator to have the problem readily encoded as input. Then,
the user should do a minimal call to the solver specifying the input and validation mode:

i m p o r t s o l v e r
n e t = s o l v e r ( CSP i n s t a n c e , mode=” o n l i n e ” )
n e t . run ( )
n e t . p l o t ( )

We have implemented such applications for both colouring map problems and Latin
squares (including Sudoku) (see section 2.6.2). Calling the latter for sizes from 1 to
12 reproduces the figure 4.23. In which all puzzles have been solved with on-chip
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Figure 4.23: On-chip solution to Latin squares of increasing sizes, the same digit cannot
appear more than once per row and per column, digits are encode by colours to ease
visualisation.

validation. Figure 4.24 shows the time per timestep for each one of these problems. The
mean solving time and energy consumption are shown in figure 4.25.

Note, however, that execution time per timestep is expected to be in the range of
10-50 µs, while figure 4.24 shows timesteps of 400 µs, suggesting the existence of a
software or hardware bug. Nevertheless, further investigation is needed to confirm
these facts and, if necessary, perform optimisations. Still, by verifying the solution
on-chip, the total overhead of extracting and postprocessing data, which is in the order
of seconds, has been eliminated. The API has not been optimised fully, so we foresee
further improvements to exploit the capabilities of the chip.

4.3.10.2 Buffer Layer to Speed Up Solution Detection

We have demonstrated the functioning of our strategy for on-chip validation of CSP
solutions. Such a protocol, however, shares a weakness with the off-chip validation,
namely, the possibility to miss a solution when the firing of the neurons encoding such a
solution does not co-exist in the time window used to measure E. When validating on the
host, this means one should sweep the box length when determining if the network found
a solution or not. This problem becomes more critical as the problem size increases for
two reasons. Firstly, the probability of randomly firing neurons to coincide in a given
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Figure 4.24: Time per timestep vs problem size for the Latin squares in figure 4.23.

Figure 4.25: Execution time (left) and consumption energy (right) vs puzzle size for the
Latin squares in figure 4.23.
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time window decreases with the number of neurons to be considered. Secondly, more
extensive networks require a larger θi{bi ratio, which governs the average inter-spike
interval, to allow for stochasticity, as well as to avoid deadlock by synchronisation.
This latter occurs when two neurons fire at the same time, which would, in principle
help with the coincidence in the readout time window. However, recall the symmetry
on the connections of our networks. These reflect the equiprobability that should be
assigned to the possible valuations of competing variables, but when simultaneous
spiking happens in symmetrically connected neurons, the inhibition will not result in
any competition. We prevent such spurious synchronisation by both randomising the
initial voltage of all neurons to different values, as well as keeping θi{bi large enough
so that the LFSR noise reflects in stochastic behaviour of the voltage increase in every
inter-spike interval. Hence, it is expected that when large networks converge to the
equilibrium firing distribution, the spikes are sparse in time through intervals that can
potentially reach hundreds of timesteps. Nevertheless, the maximum PSP lenght for
box synapses in Loihi is eight timesteps when using 1024 neurons per chip. For every
new bit we use for the box synapse, we sacrifice half of the compartments that can be
used in a core, a situation that renders the use of larger box lengths unfeasible, actually
impossible for more than 10 bits. In the following, we present the design of a readout
layer of neurons which buffers the last valid state of the network allowing for fast
detection of a solution with arbitrary sparsity.

Figure 4.26 shows the architecture and activity of the proposed buffer layer. This
example shows the functionality for storing the last value of a WTA population rep-
resenting a CSP variable with five possible values encoded by colours in figure 4.26.
The spikes, voltage and current plots correspond to the neurons in the buffer layer with
colours encoding the neuron which is presynaptic to each buffer neuron. The firing of
the principal neurons is shown colour-coded as vertical dashed lines in the spikes plot of
the buffer layer. We want the buffer layer to keep firing the neuron which is postsynaptic
to the last active principal neuron independently of its time sparsity. The blue neuron
spikes first with spiking times [0, 1, 1, 12, 15]. The orange neuron then begins spiking
at time step 23. Notice that the blue buffer neuron spikes regularly from time step 0
up to time step 23 when it stops firing, and the orange neuron takes on. The same
behaviour is consistent across the firing of the subsequent neurons. In order to ease
visualisation, the neurons are activated sequentially with random firing and allocated
intervals of 20 timesteps for each one. To achieve the switching of the active neuron for
each change of valuation, we require for an incoming spike to activate the respective
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Figure 4.26: Implementation of a neural buffer layer which stores the last valid state of
an SNN. Here, we represent the activity for a single WTA of our CSP network. The
architecture is shown in b) for five principal neurons whose identity is encoded by
colours. The same colour code is used in the plots in a) for the spikes, voltage and
current of the corresponding buffer neuron (grey triangular neurons). The principal
neurons feedforward excitation to the buffer layer on the yellow square. Dashed vertical
lines in the raster plot show the spikes of every principal neuron. Notice that the activity
of the buffer layer encodes the last active neuron.
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postsynaptic neuron and deactivate its set complement, the neuron should remain active
until other principal neuron spikes, which in turn deactivates it and turns on the neuron
encoding the new winner. Activity is kept on by assigning self-excitation to each buffer
neuron, switching off the complementary neurons is done by lateral inhibition between
all buffer neurons mapping to the same WTA. The constraints for such architecture to
work are:

δu ÞÑ 8 (4.37)

δv ÞÑ 8 (4.38)

0ă θb ă wsel f ă winh ă winh`wsel f ă wtriger (4.39)

wtriger`wsel f ą vth`2 ˚winh. (4.40)

Where wtriger is the weight for synapses from principal neurons to the buffer layer, wsel f

is the weight for self exccitation (green loops in figure 4.26), which allows the buffer
neurons to sustain activity. winh is the weight of latteral inhibitory connections between
buffer neurons and θb is their voltage threshold.

4.4 Conclusion

In this chapter, we demonstrated the development of a solver for constraint satisfaction
problems with both on-chip and off-chip validation. We have demonstrated a neuron
design which harnesses the multicompartment operations and the hierarchical hardware
structure offered by the Loihi systems architecture, to obtain a scalar measure analogous
to the energy of a physical system. Tracking the activity of the network in this way
eliminates the need for probing the state variables of each neuron in order to know the
network activity or trigger other processes in the network. By modifying the biases and
thresholds of the axonic compartments, it is possible to set target values for the proxy
of the energy function at which the network stops the simulation and informs the micro-
state of the system. This, in turn, can be used to trigger network modifications, sample
the network and continue the run, or to stop the simulation altogether for scenarios
where a decision or the result of a computation can be decoded from the output network
state.

Here we integrate the energy across the whole network. It may also be useful to
implement this architecture sparsely in certain SNNs as a neural motif for feedback
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control.
The mathematical operations being carried out by the network are almost the same

as those for post-processing. Thus, despite the requirement for additional neural and
synaptic resources, we are improving performance by avoiding unnecessary data storage
and events traffic across heterogeneous computational hardware.



Part II

Neuronal Excitability from
Cellular-level Stochastic Dynamics
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Chapter 5

Neuromorphic Implementation of
Postsynaptic Currents

In this chapter, I propose a methodology for the implementation of the alpha, dual
exponential and rectangular postsynaptic currents (PSCs) into the Spiking Neural
Network Architecture (SpiNNaker). These currents are widely used in both theoretical
developments [PIR`19, Flo12] and analysis of experimental results [LSH`02, HR97].
The characteristic flexibility of SpiNNaker allows the unique ability of totally modifying
neural models and features. This and the next chapter advance the biological detail of
the neural models in SpiNNaker so that more experimental data can be integrated with
neuromorphic simulations, resulting in testing and improving models and hypothesis of
neural dynamics in behaviour and high-level cognitive tasks.

Consider an arbitrary neuron l in a network of spiking neurons. If a second neuron µ

is presynaptic to l and emits a spike at a time tp f q
m , it will generate a postsynaptic current

jpt´ tp f q
m q into the neuron l. In a general case, every single neuron receives spikes from

several presynaptic cells. Thus, at an arbitrary time t, the total current induced in neuron
l is given by:

Jlptq “
ÿ

m
wlm

ÿ

f

jpt´ tp f q
m q, (5.1)

where the subindex m runs over every neuron that is presynaptic to l and wlm is the
weight of each synapse from neuron m to neuron l. The index f accounts for multiple
firing times from the same presynaptic neuron.

Several expressions, having a different level of realism, are available to represent j,
the most commonly used functions in implementations of networks of spiking neurons

123
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(a) single exponential (b) dual exponential (c) alpha function

Figure 5.1: Standard types of postsynaptic conductance changes showing their depen-
dence with the decaying time constants.

are the exponential, dual exponential and alpha functions. However, only the former
was implemented on the sPyNNaker module [RBB`18]. This is because the other
PSCs were thought to be non-linearizable, meaning that memory requirements would
grow with the number of synaptic events, making their implementation in SpiNNaker
impracticable. This document aims to provide a method for the implementation of the
missing alpha and dual exponential PSCs.

The aforementioned standard PSCs are defined as follows [SGGW11].

• The exponential PSC is given by:

jptq “
q
τ

e´
t´t
p f q
m
τ Θpt´ tp f q

m q, (5.2)

where q is the total electric charge transferred through the synapse, τ is the
characteristic decaying time of the exponential function, ti is the initial time of
response to the i-th spike and Θ represents the Heaviside step function.

• The dual exponential PSC is introduced when –besides a decaying characteristic
time – the specification of finite rising time is desirable. In such a case, two
characteristic time constants τr and τ f are used, which control the rising and
falling rates, respectively. Then, the dual exponential PSC acquires the form:

jptq “
q

τ f ´ τr

˜

e
´

t´t
p f q
m

τ f ´ e´
t´t
p f q
m

τr

¸

Θpt´ tp f q
m q. (5.3)

• An alpha PSC is obtained in the limiting case of τr Ñ τ f , which transforms
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equation 5.3 into an alpha function i.e. a function of the form f pxq “ xe´x, then:

jptq “ q
t´ tp f q

m

τ2

˜

e´
t´t
p f q
m
τ Θpt´ tp f q

m q

¸

. (5.4)

The dependence of equations 5.2, 5.3 and 5.4 on their time constants is shown in
figure 5.1.

When considering neuromorphic hardware with limited local memory resources,
the feasibility of implementing any PSC depends entirely on its linearizability. The
goal is to find an expression that preserves the mathematical form of an individual PSC
while accounting for the summations of several incoming spikes. I demonstrate on
the following sections how with an adequate use of the Heaviside function piece-wise
version of equations 5.3 and 5.4 are able to satisfy the desirable linear condition upon
summation. Linearizability implies that one should assign a block of memory (buffer) to
each neuron, but not to each synaptic event. Otherwise, the system would be unsustain-
able. The approach presented here has minimal implications on memory consumption
when compared with that of the already implemented exponential function. Importantly,
the same strategy can be used to implement alpha or dual exponential elegibility traces
for both, plasticity [KTK`16a] and neuromodulation [MPGKF18]. These are essential
features for supervised, unsupervised and reinforcement learning in SNNs. The current
versions of plasticity and neuromodulation in SpiNNaker, presented in [KTK`16a] and
[MPGKF18] respectively, are based on equation 5.2. However, implementing a skewed
bell-shaped trace, opens the possibility for ranking the importance of events in a given
time window into the past. The formulation of such traces would be identical to the
PSCs presented here, so we focus on these for the rest of this chapter.

5.1 Linearisation of Alpha PSC

Let us consider N arbitrary spikes triggering postsynaptic currents jiptq at times ti in a
particular neuron α. In general, the spikes are emitted by several presynaptic neurons,
but in a point neuron model they are indistinguishable to neuron l. Thus, without loss
of generality, we disregard such distinction in what follows and characterize spikes just
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(a) (b)

Figure 5.2: a) Alpha function postsynaptic currents (in yellow) generated by individual
spikes arriving at arbitrary times. The blue line is the total induced current. b) Linear
piece-wise decomposition of the arbitrary postsynaptic current in a). The piece-wise
linear component in green and piece-wise exponential component in red are obtained
from equations 5.10 and 5.11. The total overlapping of the total current from equation
5.1 with 5.5 and that from the multiplication of 5.10 with 5.11 is shown by the blue and
orange dashed lines in b).

by their times, consequently,
ř

m
ř

f Ñ
ř

i in equation 5.1 and equation 5.4 becomes:

jiptq “ q
t´ ti

τ2

´

e´
t´ti

τ

¯

Θpt´ tiq. (5.5)

Figure 5.2a shows the effect of five arbitrary of such PSCs, on the total postsynaptic
current Jptq induced by their arrival to the postsynaptic neuron. In the following let
us denote Θpt ´ tiq by Θi. Inserting equation 5.5 in 5.1 and assuming wαβ “ 1 (see
appendix B), we demonstrate that for an arbitrary number of spikes:

Jpt ą t0q “ q

ˆ

t´
ř

i tie
ti
τ Θti

ř

i e
ti
τ Θti

˙

τ2 e´
t´τlnp

ř

i e
ti
τ Θti q

τ , (5.6)

where we have denoted by t0 the time corresponding to the first spike. Let us write
α “

ř

i e
ti
τ Θti and β “

ř

i tie
ti
τ Θti , so we can define the auxiliary times tγ “

β

α
and

tκ “ τlnpαq. Thus we have:

Jpt ą t0q “ q

`

t´ tγ
˘

τ2 e´
t´tκ

τ , (5.7)

which has the same form of equation 5.4 but this time with the constants defined
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piecewise by the Heaviside functions Θi. Notice from equation 5.6 that tγ “ β{α is
undetermined before any spike arrives, resulting in a 0{0 indetermination and motivating
our restriction to t ą t0. Clearly, before any spike has been emitted, the PSC due to
presynaptic firing is exactly zero. Hence for any arbitrary time we have:

Jptq “

$

&

%

qp
t´tγq
τ2 e´

t´tκ
τ if t ą t0

0 if t ă t0.
(5.8)

Redefining α as α“
ř

i e
ti
τ Θti`pΘ0´Θt0q allows us to account for the two cases with a

single expression, in which case tγ is well defined for every t and equation 5.8 becomes
simply:

Jptq “ q

`

t´ tγ
˘

τ2 e´
t´tκ

τ . (5.9)

It is evident now, that in order to implement the alpha PSC in SpiNNaker two buffers
need to be updated, one for the linear component:

λptq “ q

`

t´ tγ
˘

τ2 , (5.10)

and another for the exponential component:

εptq “ e´
t´tκ

τ . (5.11)

Equation 5.9 and their components 5.10 and 5.11 have been plotted in figure 5.2b,
together with the total current obtained from 5.1 with 5.5. The total overlap of the
curves from equation 5.1 and from its piece-wise linear version 5.9 highlights their
equivalence. The most important feature to note from figure 5.2b is that at each point
the induced current can be obtained by multiplying the values from a linear function
and an exponential function, resulting in a generalized alpha function. In other words,
the sum of several alpha functions results in a piece-wise alpha function.

Now that we have a linearized form for the total current caused by several alpha
postsynaptic responses, let us see how can we implement it in our system. Recall
from section 1.2 that SpiNNaker only supports 64K data memory (DTCM) and 32K
instruction memory (ITCM)available for each processor, these store the state variables
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describing each of the 1024 neurons per core and their updating rules respectively. Thus
at any particular time tn SpiNNaker does not contain explicit information of the past
events (e.g., input spike times), it only knows its current state, the general rules that
govern its dynamics and some persistent parameters. Furthermore, as a digital system,
SpiNNaker runs in discrete time characterized by some time-step ∆t. Then, we need to
define recurrent relations that allow us to infer the next value of a function based only
on its current state and a set of general updating rules, which should also account for the
arrival of new spikes. Otherwise, input spike times would have to be saved in memory,
quickly consuming any available memory as spikes are generated by the network and
limiting the simulation to a very small runtime, while SpiNNaker should be able to run
unlimitedly. We use data buffers to save the function value corresponding to the current
time tn, and establish the updating rules as follows. At tn the buffers corresponding
to equations 5.10 and 5.11 are designated by λn and εn, so we need to determine the
values λn`1 and εn`1 for the next time-step. The updating is twofold, an updating rule
for the time between spikes where the function is continuously differentiable, and one
for the discontinuities at the spikes arrival. In appendix B.1.3 we compute, for both
cases, ∆λ“ λn`1´λn and ∆ε“ εn`1´ εn. Obtaining 1:

λn`1 “ λn`
q
τ2 ∆t (5.12)

and

εn`1 “ εne´
∆t
τ (5.13)

as the updating rules for each continuous segment of the linear and exponential
buffers. And:

εn`1 “ e´
∆t
τ εn`1 (5.14)

with

λn`1 “
” q

τ2 ∆t`λn

ı

ˆ

1´
1

εn`1

˙

(5.15)

1See section 5.5 for an alternative formulation in the framework of [RD99].
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for the updating rules at the discontinuities of the linear and exponential functions.
Notice that equations 5.12-5.15 depend only on the current value stored on each buffer
and the global parameters q,τ and ∆t defined a priori. It is interesting to highlight that
λn`1 depends on the updated value εn`1 which is readily available given the fact that at
tn we know εn. As a proof of concept, equations 5.12-5.15 have been plotted in figure
5.3 together with equations 5.9-5.11 demonstrating the match between the discrete
buffered and the piecewise continuous systems.

(a) (b)

(c) (d)

Figure 5.3: a) discrete-time generalized alpha function using linearly and exponentially
updated buffers (discrete markers), the piecewise continuous functions were also plotted
for comparison (continuous lines). b) shows the matching between the analytical
version of the alpha PSC and the buffer updating deduced here. c) linear kernel and d)
exponential kernel (also shown in figure a).

5.2 Linearisation Dual Exponential PSC

In the same way, as with the alpha function, we consider N arbitrary spikes arriving at
times ti to our postsynaptic neuron l. Using equations 5.1 and 5.3, the the total current
on l at an arbitrary time t can be expressed as (see deduction on Appendix B.2):
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Jptq “
ÿ

i

jiptq

“
q

τ f ´ τr

¨

˚

˝

e
´

t´τ f lnp
ř

i e

ti
τ f Θti q

τ f ´ e´
t´τrlnp

ř

i e
ti
τr Θti q

τr

˛

‹

‚

. (5.16)

Let us define α “
ř

i e
ti
τ f Θti and β “

ř

i e
ti
τr Θti So we can write tγ “ τ f lnpαq and

tκ “ τrlnpβq as the generalized times for the dual exponential PSC. Now equation 5.16
takes the form:

Jptq “
q

τ f ´ τr

ˆ

e
´

t´tγ
τ f ´ e´

t´tκ
τr .

˙

(5.17)

Equation 5.16 defines N+1 regions of time characterized by the respective values of Θi

in each zone. This implies that for an arbitrary region t j´1 ă t j ă t j`1, α“
ř j

i e
ti
τ f and

β“
ř j

i e
ti
τr .

We need two buffers again to implement this PSC in the SpiNNaker toolchain.
These are given by:

ε
γ
ptq “ e

´
t´tγ
τ f

ε
κ
ptq “ e´

t´tκ
τr (5.18)

These have the same form of the exponential buffer in the alpha PSC of the last
section. Thus, the updating rule for each continuous segment of the generalized dual
exponential function is:

ε
γ

n`1 “ εne´
∆t
τγ

ε
κ
n`1 “ εne´

∆t
τκ . (5.19)

And the updating rule at the discontinuities is given by:
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ε
γ

n`1 “ e´
∆t
τγ εn`1

ε
κ
n`1 “ e´

∆t
τκ εn`1 (5.20)

for . Once again we evidence how equations 5.19 and 5.20 depend only on the current
value stored on each buffer and the known global parameters q, τ and ∆t. Figure 5.4
shows the behavior of the buffers, equation 5.18, updated with equations 5.19 and 5.20,
as well as how these match the piecewise continuous version of equation 5.16.

(a) (b)

(c) (d)

Figure 5.4: a) discrete-time generalized dual exponential function using two exponential
updateding buffers (discrete markers), the piecewise continuous functions were also
plotted for comparison. b) shows the matching between the analytical version of the
dual exponential PSC and the buffered version described here. c) and d) show the two
exponential kernels with their respective buffers.

5.3 Linearisation of Rectangular PSC

A rectangular PSC can be expressed as:
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jptq “ j0pΘi´Θi`τq (5.21)

where τ is the span of the response and j0 its intensity, which remains constant
along τ. With N spikes arriving at times ti the total response current is given by:

Jptq “
ÿ

i

j0pΘi´Θi`τq (5.22)

The implementation of such PSC in SpiNNaker requires a temporally local mea-
surement of time to control the pulse duration τ. As there is no global clocking in the
system, an implementation of this rather abstract PSC can be achieved by a using the
ceiling function rs together with a linear function. We need to rewrite 5.22 as:

Jptq “
ÿ

i

j0rpti´ tqτ´1
`1spΘi´Θi`τq (5.23)

where the function pti´ tqτ´1`1 is a decreasing linear function which equals 1 at ti
and goes to 0 at ti`τ, this function leaves 5.22 intact, but allows SpiNNaker to measure
the finite duration of the square pulse. We will then need a buffer for the linear function:

λptq “ pti´ tqτ´1
`1 (5.24)

which is set to the value 1 at the arrival of the first spike and is then updated –until a
new spike arrives– according to:

λn “ λn´1´
∆t
τ

(5.25)

where the subindex n run over discrete steps with separation ∆t. At the arrival of a new
spike the buffer is updated as:

λn “ λn´1`1 (5.26)
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5.4 Implementation

Following our model Dr. Oliver Rhodes, one of the core SpiNNaker software devel-
opers, implemented the alpha and dual exponential PSCs. These are now released
as part of the SpiNNaker tool-chain [Tea20a]. The code for the alpha PSC is publi-
caly available at https://github.com/SpiNNakerManchester/sPyNNaker/blob/
master/neural_modelling/src/neuron/synapse_types/synapse_types_alpha_

impl.h [Tea20b] and that for the dual PSC can be found in https://github.com/

SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/

synapse_types/synapse_types_dual_excitatory_exponential_impl.h [Tea20c].

5.5 Previous Work

After the development exposed in the previous sections, we found ours to be a special
case of the more general formulation of S. Rotter and M. Diesmann [RD99]. They
found that time-invariant linear systems can be iteratively integrated exactly, while these
evolve over a discrete-time regular grid. Such systems are described by a first-order
n-dimensional linear differential equation of the form:

9y“ Ay`x. (5.27)

The n-dimensional vectors y and x correspond respectively to the evolution of the
system and its input. In turn, the input-output relation is encoded in the square matrix
A. The solution to equation 5.27 is given by:

yptq “ eApt´sqypsq`
ż t

s`
eApt´τqxpτqdτ (5.28)

Where the initial value ypsq and input response govern the time evolution of y. Notice
that all previous dynamics is encoded on the initial value ypsq. Thus, for generalised
inputs xptq “

ř

k δpt´ tkq, the simulation of y over regular discrete times tk “ k∆t can
be done recursively in an exact manner through:

yk`1 “ eA∆tyk`xk`1 (5.29)

Where eA∆t is a matrix exponential. The fact that the matrix exponential is constant
for constant ∆t and that yk`1 can be written in terms of yk and any input at timestep tk,

https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_alpha_impl.h
https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_alpha_impl.h
https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_alpha_impl.h
https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_dual_excitatory_exponential_impl.h
https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_dual_excitatory_exponential_impl.h
https://github.com/SpiNNakerManchester/sPyNNaker/blob/master/neural_modelling/src/neuron/synapse_types/synapse_types_dual_excitatory_exponential_impl.h
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implies the linearisability algebraically demonstrated in the previous sections. Rotter
and Diesmann demonstrate the evolution of yk for exponential damped, oscillatory and
polynomial systems by considering the fundamental variations for A. In particular, the
alpha and beta functions are obtained as solutions to:

9ηηη`pa`bq 9ηηη`pabqηηη“ 0 (5.30)

Subject to ηηηp0q “ 0 and 9ηηηp0q “ ηηη0. Alpha and beta functions are obtained for
a “ b and a ‰ b respectively. Note that 5.30 is a second order differential equation,
however, high-order differential equations can be transformed into first-order differential
equations by adequate substitution of variables. In terms of equation 5.27, it is thus
possible to write:

yyy“

«

bηηη` 9ηηη

ηηη

ff

(5.31)

xxx“

«

0
0

ff

(5.32)

yyyp0q “

«

ηηη0

0

ff

(5.33)

A“

«

´a 0
1 ´b

ff

(5.34)

The corresponding matrix exponential for the alpha and beta functions are:

«

e´a∆t 0
∆e´a∆t e´a∆t

ff

(5.35)

and

«

ea∆t 0
1

b´a

`

ea∆t ´ eb∆t
˘

e´b∆t

ff

(5.36)
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The fact that this method further allows the implementation of sinusoidal and
damped oscillations opens further possibilities for neural coding in neuromorphic
hardware, see for example [FS19, BW12].

5.6 Conclusions

This chapter demonstrates how the mathematical shape of the standard alpha and dual
exponential postsynaptic currents, which govern the integration of spiking input to a
neuron, remains when several inputs are added, which is, they are linearizable. A model
suitable for SpiNNaker’s discrete-time dynamics and limited memory availability was
presented with minimal implications for performance. This is because the fraction of
instructions memory assigned for synaptic updating is a modest fraction of the total
memory assigned to a neural model [RBB`18], the cost of the new currents consists on
the use of an extra memory buffer per neuron, as well as the instructions for its updating.
Both postsynaptic currents have been implemented as a novel feature of the machine
and are publicly available for use through the sPyNNaker software.

The formulation is useful also to implement a new kind of plasticity and neuro-
modulation traces. Using alpha or dual-exponential traces will allow the control of the
point in time, which makes the maximum contribution to synaptic changes or intrinsic
excitability. The relative value of the time constants defining the curves controls the
summit of the traces. The implementation and analysis of the benefits for learning in
SNNs are left as future work.



Chapter 6

Intrinsic Currents Generated by
Voltage-gated Ion Channels

Chapters 2 and 4 have demonstrated the advantages of spiking point neuron models
for the development of efficient stochastic computations in neuromorphic hardware for
the solution of mathematical problems. However, when modelling biological networks,
some intrinsic features of synaptic integration, excitability and plasticity are not account-
able for unless the modulation of the intrinsic excitability of the neuron caused by the
interplay between transmembrane ionic currents is included in the formulation. Such
currents originate from the collective kinetics of ions across ensembles of transmem-
brane ligand- and voltage-gated ion-channels and are known to play a significant role
both in cognitive tasks and in medical conditions. However, modelling intrinsic currents
is computationally expensive because their formulation involves nonlinear coupled
differential equations, these are described by voltage-dependent conductances and the
voltage-dependence appears in exponential and divide functions. In chapter 5, the exact
integration of exponential functions was possible due to the regular time grid over which
the simulation happens, the same strategy is used in neural simulators and neuromorphic
hardware for the integration of exponential postsynaptic currents and membrane voltage
[RBB`18]. Here, however, the membrane voltage can assume arbitrary and nonmono-
tonic values with time, making it not possible to harness the bounding of computational
resources achieved through exact integration in a discrete-time regular grid. Here, we
present preliminary results on the implementation of neuronal voltage-dependent in-
trinsic currents in SpiNNaker. Such capabilities in a million-core digital neuromorphic
system, open new possibilities to bridge modelling done in a diversity of scales, helping
to understand the brain functioning from first principles. In SpiNNaker, the largest and

136
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most versatile neuromorphic machine to date, the hardware architecture still imposes
hard constraints on a model implementation, compromising its feasibility. In particular,
one counts only with floating-point arithmetic and limited local memory for instructions
(32 KB). Hence, the compactness, stability and accuracy of the software should be
carefully analysed. The development presented here uses a fixed-point implementation
of the exponential function available in the SpiNNaker software stack (expk). We also
approximated the voltage-dependence of the conductance with piece-wise linear and
polynomial functions, however, such strategy results more expensive than expk, while
preserving the same error range. Hence, such an approach was abandoned.

6.1 Background and Motivation

Given the unique complexity and dimensionality of the brain, it is essential to choose
an adequate level of abstraction which disregards a large number of variables while
preserving the relevant details affecting the phenomena under study. Point spiking
neuron models are one such abstraction which captures the dynamics of the action
potentials (spikes) generation, transmission and integration, disregarding intrinsic prop-
erties which emerge from a complex molecular dynamics happening both, inside the
cell and across the plasma membrane [GKNP14]. The description of such intrinsic
properties, when possible, requires several coupled nonlinear differential equations
per neuron [H`01]. Hence, disregarding them allows the simulation of extensive net-
works of spiking neurons and their dynamics (the current world record being 1.86ˆ109

neurons connected by a total of 11.1ˆ1012 synapses) [KSE`14, vARS`18, Fur16a].
This simplified neuron model approach has evolved our understanding of diseases
[ACM12, MHB08, MB09] cognitive processes [WBK10a, WBK10b, Flo05] and task
performing behaviour [ESC`12, FGF17]. Nonetheless, some aspects of cognition, neu-
rological disorders, plasticity and neuromodulation, depend critically on the neglected
phenomenology [RG02, LLW`04, FJ05b, FMJ04, DRT99, CT04, BW80, BLR`02,
ARTD00, ALS82, TAM94, vWvHW04, ZL03]. Thus, although some fine-grained
details, like those related to energy consumption, energy maintenance or nutrients recy-
cling, may not be very prominent for information processing and diseases studied at the
network level, others are, and at some point should be taken into account. Advancement
has been done with dynamically richer models like that of [Izh03]. These, however, are
indirectly related to the ion’s dynamics and are not adaptive, changing firing behaviour
according to a pre-defined set of parameters. Despite the undeniable usefulness of these
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latter models, it remains desirable to implement models that can harness cellular and
molecular data from single neuron recordings and enable the exploration of their effect
at network levels which are implausible experimentally. In the following, we keep
some well known biological and theoretical details explicit aiming to a self-contained
chapter which gives enough information to both the neuroscientist and the computer
engineer. In this way, the underlying assumptions, and hence the validity of the model,
are clear for the former while the latter can reason about the limitations, implementation
constraints and future extensions to the software and hardware platforms.

On a first approximation, both the action potentials and the intrinsic excitability
of a neuron are originated from the interplay between diverse transmembrane ionic
currents [SGGW11]. The underlying ion kinetics depends on factors such as binding of
ligand molecules to membrane receptors, membrane voltage, temperature, mechanical
deformation and ion concentrations [H`01]. The ion transport across the membrane is
mediated by iontophoretic proteins (ion carriers) and can be passive – along the electric
or concentration gradients– and active – spending energy (e.g. ATP) against those
gradients. The main passive transporters are the voltage-gated and the ligand-gated
ion-channels, these are pore-forming transmembrane proteins that control what ions
enter and leave the neuron at a particular membrane voltage or after the binding of
some intracellular or extracellular ligand molecule (or second messengers) respectively
[PK87]. This passive transport can drastically influence the firing behaviour of the cell,
contributing to the electrical identity of each neuron type [Lli14, Lli88]. For example,
the interplay between currents governing a fast-spiking response and those responsible
for slow modulation of activity, generate the high-frequency bursting characterising
the low-threshold bursters, hippocampal pyramidal neurons located in the area CA1
[SAKY01].

Single neurons typically contain tens of thousands of ion channels spanning more
than 12 types per neuron on average [Sig14, H`01]. Furthermore, genetic studies in
humans have identified over 140 members for the superfamily of genes expressing
voltage-gated ion-channels giving rise to a total of around 5000 ion-channel types
[GSMG07, H`01]. The diversity of channels causes that even under the same connec-
tivity and neurotransmitter bath, the response of two neurons could be vastly different.
Taking into account the demonstration by [IE08] that even a single spike suffices to
change the global state of a network of spiking neurons, it becomes evident that a
change in the neuronal response implies a potential change in the network trajectory
through its state space. Such variability is disregarded in the simplified spiking neuron
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models, somehow conflicting with the law of no interchangeability of neurons (Llinás’s
law) [Lli88]. In this chapter, we explore the possibility of including neuron variability
through explicitly augmenting a spiking neuron model with voltage-dependent intrinsic
currents. As for the role of active transporters, like the sodium-potassium pump and
the sodium-calcium exchanger, it is well covered abstractly by standard spiking neuron
models. For example by the existence of a resting membrane potential or its recovery
after the refractory period [SGGW11, GKNP14]. Hence the detailed implementation
of active transporters is of less importance and potentially unnecessary. Thence, the
implementation here offers a trade-off between biological detail and computational
feasibility, advancing towards bridging the gap between neuromorphic computing
and neurophysiology. It enables the use of the experimental data from voltage-clamp
protocols, standard in the study of real neurons, to fit the activation and inactivation
parameters readily available in the next version of SpiNNaker. The experimenter will
then able to explore the network behaviour caused by the specificity of the neuronal
dynamics of recorded neurons. With further development, the intrinsic currents and
voltage-clamp simulations presented here for SpiNNaker will be made part of SpyN-
Naker [RBB`18], the standard software backend for PyNN simulations on SpiNNaker
that we used in chapter 2. The integration will make it usable along with the diverse
functionalities already available on the machine.

Historically, our understanding of intrinsic currents began when K. S. Cole and
R. F. Baker [CB41a, CB41b] characterised the squid giant axon electrical response to
alternating currents, identifying its inductive reactance and the rectifying character in
terms of ion permeability, leading in the subsequent years to the confirmation of the
ionic theory of membrane excitation. Later, Hodgkin and Huxley [HH52] developed the
voltage clamp protocol to analyse the potassium and sodium ion currents on the squid
giant axon and explained their origin through a model of voltage-gated membrane pores
built from independent particles. Their mathematical description explained the axon’s
generation of action potentials from a precise interplay between voltage-dependent
sodium, potassium and leak currents. Further, electrical noise measurements [KM70],
together with the development of the patch-clamp technique [SN84], which allows
performing voltage clamps in tiny patches of cell membranes, as small a to include a
single channel, confirmed the existence of the ion channels and their relation to the
previously observed ionic currents [see for example VB91]. Since then, voltage-clamp,
single-ion channel and whole-neuron recordings have allowed the identification of
numerous ion-channel types and ionic currents which affect the excitability of neurons
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well beyond the action potential generation mechanism.

The kinetics between the opening and closing states of a single voltage-gated ion
channel obeys a stochastic Poisson process with the open probability influenced by the
membrane potential. The channel activity averaged over the thousands of channels
existing along the neuronal membrane or equivalently over several measurements on
the same channel, reveals a qualitative behaviour resembling that of the corresponding
intrinsic current. Hence, intrinsic currents can be thought of as an ensemble manifes-
tation of the ion-channels dynamics. The electrophysiological studies during the ’80s
and ’90s improved after Hodgkin and Huxley [HH52], allowed the identification of
diverse families of intrinsic currents involved in for example the rhythmic oscillations
in relay cells [HM92, DBS93, DNUH98]; the electrical resonance at theta frequencies
in rat hippocampal pyramidal cells [HVS02]; and the shaping of intrinsic firing of rat
abducens motoneurons [RCA`03]. The data from these experiments constitutes an
integral part of our current understanding of brain functioning. However, the field of
neuromorphic computing has focused more strongly in neuroanatomical and functional
maps of the neural networks in the brain, a development that has reached a sufficient
level of maturity to make it essential to explore further complexities and the limits
of these machines. Driving new developments, as well as the next generation of the
physical realisations of the existing paradigms. Here, we aim to leverage neuromorphic
computing one-level down to the modelling of cellular variability while seizing the
massive parallelism offered by SpiNNaker. It is worth mentioning that neural variability
has been accounted for before in SpiNNaker through the use of the Izhikevich neuron
model, it offers efficiency while keeping some of the rich dynamics of the original
Hodgkin-Huxley model. However, the neuron-type of an Izhikevich neuron is controlled
through 4 parameters which are indirectly related to the cellular phenomenology and
remain constant through the simulation runs. Though one could hard-code runtime
changes in the neuron-type, these will not depend on the network activity. On the other
hand, real neurons adapt to the network activity through intrinsic currents, for example
in homeostasis and intrinsic plasticity, switching between a repertoire of dynamics
characterised by both different firing patterns and different sub-threshold dynamics.

In the following section, we review the previous work on implementing intrinsic
currents on neuromorphic hardware, then, in section 6.3, we use the known kinetic
scheme descriptions of ion-channel dynamics as a Markov process to derive the voltage
and time dependence of a generic intrinsic current in a form suitable for implementation
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in SpiNNaker. Our contribution here is on setting the stage for a software imple-
mentation on the SpiNNaker hardware by assembling several converging theoretical
frameworks. Ideally, the theoretical background sets a principled formulation with
broad application and few assumptions. The limitations would then come from the
hardware specification, unraveling its limitations and directions fro future hardware
development. The model leverages Hodgkin-Huxley models but uses rate coefficients
as described by the transition state and Kramer’s theories of reaction kinetics. The
goal is to avoid the need for implementing the diversity of freely defined functions for
fitting such coefficients while allowing reuse and fitting of experimental data. Some
collective effects from ligand-gated ion-channels are already included implicitly on the
plasticity, neuromodulation, and synaptic transmission implementations of the SpiN-
Naker Software [KTK`16b, MPGKF18, RBB`18]. Hence, a more detailed approach
to ligand-gated ion-channels is also left for subsequent work.

6.2 Previous Work

The first neuromorphic hardware implementation of intrinsic currents is perhaps the one
by M. Mahowald and R. Douglas [MD91]. They recognized the similarities between
the sigmoid shape of the current-voltage relation of a differential pair formed by
complementary metal-oxide-semiconductor (CMOS) transistors and the conductance-
voltage relation of the steady-state activation and inactivation variables describing
ion-channel dynamics in cell membranes. Using a very-large-scale integration (VLSI)
process, they fabricated a two-compartment CMOS circuit that was able to produce
some of the observed electrophysiological responses of real neurons under current-
clamp conditions, as well as the modulation of the firing rate by both the slow potassium
current IKA and the calcium-dependent potassium after-hyperpolarizing current IAHP.
A conductance transistor represented each conductance, differential pairs controlled
the kinetics, the maximum activation/inactivation was set by bias transistors, and the
knee transistor of each pair determined the activation voltages. The neuronal membrane
was implemented with a fixed capacitor and a variable leak conductance to account
for voltage-independent conductances. The hardware model accurately represented the
voltage dependence of the steady-state with a power dissipation from the whole circuit of
about 60 µW . However, the time dependence implemented by using follower-integrators
with variable time constants to act as a low-pass filters for the membrane voltage, do
not correspond to the the bell-shaped voltage-dependent time constant characterizing
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intrinsic currents.

Later, D. Dupeyron et al., [DMD`96] also implemented an analogue circuit to
compute the current generated by Hodgkin Huxley conductances. They used a full-
custom ASIC (2 µm Bipolar-CMOS) to approximate the exponentials-based sigmoids
defined by the steady-state activation and inactivation variables raised to their respective
powers, by linear sigmoids of these variables where the offset and slope were mod-
ified to make it approximately equivalent to the original functions through Vo f f set “

Vo f f set0´Vslope0 lnp n
?

2´1q and Vslope “Vslope0 ¨
n
?

2{2np n
?

2´1q. This strategy allows
the reduction from iion“ gmax ¨mp ¨hq ¨ pVmem´Vequiq to iion“ gmax ¨m ¨h ¨ pVmem´Vequiq.
Their chip implemented three circuit blocks able to represent any pair of activation
or inactivation variables (e.g., Na+, K+, leakage). This was done by harnessing the
sigmoidal shape of the transmission characteristic of a bipolar differential pair and the
ability of a MOS transistor to implement offsets. The kinetics was implemented through
a subtractor and an integrator operational amplifiers, achieving a maximum τm of 5ms

and maximum gmax of 3ˆ106 S. Again, such a model reproduces some of the quali-
tative behaviours of Hodgkin-Huxley currents and is energy efficient. Unfortunately,
the hardware imposes limits on parameter values. The chip cannot model the voltage
dependence of τm, which plays a fundamental role in intrinsic currents not involved in
the action-potential generation, and it is sensible to noise.

More recently, [MHSM12] presented an implementation of a four-channel bursting
silicon neuron (IL, IT ,IK and Ileak, note that IT and IL here only included m and were
raised to the power of 1). By using a few transistors, a current-reuse technique and a
subthreshold region operation of MOSFETs they achieved ultra-low power consump-
tion. Similarly to [MD91], intrinsic currents were implemented by a sigmoid-function
circuit based on a MOS differential pair, a subthreshold MOSFET-based differential
amplifier for both IL and IK , and a gate controlled MOSFET differential amplifier for
the fast-response sigmoid function in IT . A linear transconductance was used to control
the output current with changes in the membrane voltage. Setting the currents time
constants, through the capacitor of a log-domain filter, allowed the generation of four
different neuronal behaviours: spiking, spiking with latency, bursting, and chaotic sig-
nals. The circuit was built using a 0.13 µm standard process, it comprises 43 transistors,
and consumes 43 nW .
To the author’s knowledge, the only complete neuromorphic implementation of the
thermodynamic model of voltage-dependent ion-channel currents, including voltage-
dependence in both the steady-state activation, inactivation and in the respective time



6.3. MODEL OF INTRINSIC CURRENTS 143

constants, is that of K. M. Hynna and K. Boahen [HB07]. Previous hardware proposals
had avoided the complexity introduced by the voltage dependence on τm to save area of
the silicon die. Although such approach allows more neurons per chip, the dependence
on V can not always be disregarded, as pointed out in [HB07], V causes an order of
magnitude change on τm for the case of ICapT q in thalamic relay cells and underlies its
bursting behaviour.

K. M. Hynna and K. Boahen [HB07] used 8 transistors and harnessed the isomor-
phism between energy barriers in a transistor and those of the neural membrane in
section 6.3. Because the Boltzman distribution describes both, their implementation
was developed in terms of reaction rates.

Other neuromorphic designs for intrinsic ion-channel and synaptic variability are
based on carbon nanotubes transistors [MP11]. However, this was not realized physi-
cally and did not model the intrinsic currents explicitly. Instead, included both possible
sources of neural variability, chaos and noise, by embedding either Gaussian noise or
a chaotic signal generator into the synaptic and axon hillock circuits, preserving no
relation to electrophysiological data from intrinsic currents.

All the works above present high energy-efficiency and a small circuit area. This
works well for single neurons or very small networks. However, none of these report on
the use or testing of scaled versions of the models. This may be because of sensibility
to noise and miss-match, which may seriously limit the scalability of analogue circuits
with detailed models of neuronal dynamics. Analogue neuromorphic hardware for large
or very large networks are restricted to simplified spiking neuronal models precisely
because of that. The SpiNNaker architecture paradigm offers an advantage here, the
flexibility of a digital implementation of the neuron models together with the neuromor-
phic asynchronous massive parallelism, implies that large networks can be built despite
the complexity of the model as long as the model fits the instructions memory i.e., the
event-driven computation makes the system globally agnostic to the local dynamics
allowing separation of scales.

6.3 Model of Intrinsic Currents

In order to derive a principled theoretical model of the electrophysiological currents
described in section 6.1, we take a bottom-up approach beginning from the dynamics
of a single channel. There are two advantages to this approach. Firstly, experimental
data obtained at the molecular and cellular levels may be used together with our
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implementation. Secondly, we set the basis for more detailed implementations in future
hardware, having fewer constraints and more resources.

6.3.1 Time-Dependence of Channel Dynamics

A voltage-gated ion channel is a complex transmembrane protein composed of a pore-
forming substructure, a group of voltage-sensing domains (VSDs) which control the
pore aperture, and in some cases one or more inactivating amino acid-protein conjugates
which are also voltage-sensitive and intracellularly block the ion-channel pore. Both
are made up of a few protein segments composed of thousands of atoms. Given the
size and structural complexity of ion channel proteins, any atomistic first-principles
approach becomes intractable due to the huge size of the associated Hilbert space, as
well as the high temperature of biological systems respect to the ground state. Even a
coarse-grained molecular dynamics becomes practically intractable (although free en-
ergy profiles of the channel can be obtained in this way as input for kinetic formulations)
[Sig14]. Hence we resource to a phenomenological approach [H`01, DH10]. Each
VSD has the ability to undergo reversible voltage-dependent conformational changes
V SDa éV SDd between activated and deactivated positions, so that the channel under-
goes transitions Xi é X j between conformational states X “ tXi,X2, ...,Xnu. In general,
only those channel conformations in which all VSDs are in the activated state and the
inactivation segment is not blocking the pore will allow ions to pass through, we call
these the open states Oi and label the other and the inactivated configurations as closed

states Ci. Besides interacting with the electric field across the membrane, which acts
as a driving force, the channel is also subject to thermal fluctuations which cause it to
undergo stochastic transitions. We can then resort to a probabilistic description of the
ion channel dynamics. Assuming that the probability PpXi Ñ X jq of transitioning to a
new conformational state of the protein depends only on the current state, which has
the probability PpXi, tq of being Xi at time t, one can describe the dynamics of a single
channel as the Markov process,

X1
β1
ÝáâÝ
α1

X2
β2
ÝáâÝ
α2

...Xn
βn
ÝáâÝ
αn

Xn`1. (6.1)

Here, αi “ PpXi Ñ Xi`1q and βi “ PpXi`1 Ñ Xiq are the forward and backward
transition probabilities between two adjacent states in the Markov chain. Notice that
the Markovian assumption is less limiting than it appears at first, as one can always
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generalise the state definition to include several conformations per state so that the as-
sumption is satisfied. We are interested in the temporal evolution of PpXi, tq. Following
6.1, the change in PpXi, tq will have a positive contribution from the probability that the
channel was in the neighbouring states Xi´1 or Xi`1 and makes a transition to Xi and a
negative contribution from the probability that it was in Xi and transitions to one of the
neighbouring states, this is given by the Master equation [DH10]:

dPpXi, tq
dt

“

n
ÿ

j“1

PpX j, tqPpX j Ñ Xiq´

n
ÿ

j“1

PpXi, tqPpXi Ñ X jq. (6.2)

Notice that because the process is Markovian, several transition probabilities are ex-
pected to be zero, though one still has one equation from 6.2 for each of the n` 1
states of the process. In general activation and inactivation may be coupled, and the
transition coefficients may depend on the membrane potential, as well as on the channel
state. In such a general case, equation 6.2 is computationally too expensive for SpiN-
Naker and requires data from single-channel recordings. Here we consider the simpler
case of independence between activation states A, and inactivation states I, as well as
voltage-dependent or constant transition coefficients. Furthermore, we consider the
VSDs to be independent of each other. This is analogous to [HH52] assumption that
the channel opening is governed by a small number of conditionally independent gating
particles. In such a case, the activation states can be associated with a sequentially
decreasing number of VSDs in the activated configuration, while taking into account the
corresponding multiplicity. Considering a single open state and hence n nonconducting
conformations, the respective probabilities are given the probability mass function of a
binomial distribution multiplied by the deinactivation probability (when considering a
single inactivation segment):

PpAiq “

ˆ

n
i

˙

pi
Ap1´ pAq

n´i pI (6.3)

PpIiq “

ˆ

n
i

˙

pi
Ap1´ pAq

n´i
p1´ pIq. (6.4)

Here,
`n

i

˘

“ n!
i!pn´iq! , pA is the probability of a VSD being in the activated conformation,

pI is the probability of an inactivating particle being in the deinactivating conformation,
and n is the total number of VSDs, here equal to the number of closed states A. Accord-
ingly, the transition coefficients can be expressed in terms of the coefficients α and β of
an individual VSD transition times the number of VSDs available for the transition in
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Figure 6.1: Markov state diagram for the ion channel kinetic model.

each state. Hence, following an n : n´1 : n´2 : ... : 1 ratio in the forward direction and
a 1 : 2 : 3 : ... : n ratio in the backward direction. Under these assumptions and a single
inactivating segment, one can rewrite equation 6.1 as the restricted Markov model in
figure 6.1.

Where λ and κ are the forward and backward transition coefficients for the inac-
tivation segment and apply to all vertical arrows. Top states in figure 6.1 correspond
to the unblocking configuration of the inactivating particle and bottom to the blocking
or inactivated states, the presence of inactivating transitions to and from all activating
states is due to the independence assumption between activation and inactivation. In
some cases, as is the case of some Na` channels, the inactivating state is reachable only
from some of those states (O for example). Such constraint can considerably increase
the number of parameters to be fitted and hence the number of coupled rate equations
describing the model. The next generation of SpiNNaker (section 1.2), could handle
some of this more complex Markov models, but the independence assumption should
be held for SpiNNaker 1.

In figure 6.1 the leftmost states are those where the n VSDs are in the closed state.
The open state (rightmost top) corresponds to the conducting conformation in which all
VSDs are positioned to open the pore, and no inactivation exists. According to equation
6.3, PpOq “ pn

A pI . It is easy to verify that if q inactivating segments exist, PpOq “ pn
A pq

I .
Furthermore, following the Master equation 6.2:

1
pI pn

A

dPpO, tq
dt

“
n
pA

d pA

dt
`

1
pI

d pI

dt
(6.5)

“
n
pA
pαp1´ pAq´βpAq`

λ

pI
p1´ pIq´κ. (6.6)



6.3. MODEL OF INTRINSIC CURRENTS 147

Thus:

d pA

dt
“ αp1´ pAq´βpA (6.7)

d pI

dt
“ λp1´ pIq´κpI. (6.8)

The problem has then been reduced to a single equation for activation and one
for inactivation [SGGW11]. Here, we only need a tuple of backward and forward
coefficients for each equation. As neuromorphic hardware evolves to support more
expensive operations, more general versions of 6.7 and 6.8 derived from the Master
equation 6.2 can be considered.

We count now with a probabilistic description of the dynamics of single ion channels.
Consider now the cellular membrane of a neuron. The thousands of channels present on
it will constitute a statistical ensemble in which, by the law of large numbers, the fraction
m of VSDs in the activated states converges to pA (the activation probability for a single
VSD). Likewise, the fraction h of inactivating segments in the unblocking conformation
converges to pI . Equations 6.9 and 6.10 correspond to the microscopic version of 6.7
and 6.8 and describe voltage-dependent ionic currents across the membrane:

dm
dt
“ αp1´mq´βm (6.9)

dh
dt
“ λp1´hq´κh. (6.10)

These are Hodgkin Huxley models, but clearly derived from Markov models. Thus,
suitable for extensions, for taking into account the ion-channel inverse problem [CD06],
to allow an easy integration of activation-deactivation dependence, as well as to include
drug interactions. All of these may be possible in future neuromorphic hardware, like
SpiNNaker 2. Hence, though SpiNNaker 1 is better suited for restricted Markov models,
as availability of resources increases, unrestricted Markov models and the corresponding
terms from the Master equation (6.2) may be included.

In order to obtain expressions suitable for experimental fitting, it is conventional to
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consider the steady-state transition rate (when t Ñ8) for a given voltage V , defined by:

m8pV q “
αpV q

αpV q`βpV q
(6.11)

“
1

1`βpV q{αpV q
, (6.12)

(note it has the shape of a sigmoid curve) and the associated time constant

τmpV q “
1

αpV q`βpV q
. (6.13)

The same shape holds for h. Then, equations 6.9 and 6.10 can be expressed as:

dx
dt
“

x8´ x
τx

| x P tm,hu. (6.14)

Where it becomes clear that for a given V , x approaches x8 exponentially fast.

Despite the underlying assumptions, both the Hodgkin Huxley and kinetic Markov
models depicted above allow the same equations for their description, the ion-channel
dynamics in a probabilistic fashion and the macroscopic ion-currents across the neuronal
membrane in a deterministic fashion. In its current form, the model has been reduced
enough to fit the SpiNNaker constraints. Modelling of the above equations in SpiNNaker
allow the use of experimentally measurable and theoretically deducible parameters,
which correspond to both macro-molecular and cellular scales. Such an approach
enables the exploration of the effect of such scales on the high-dimensional dynamics
of SNNs.

6.3.2 Voltage-Dependence of Transition Coefficients

Equation 6.14 gives the time evolution of the fraction of open channels, through the
dynamics of activation and inactivation. For our results in section 6.4, We still need,
an explicit expression for the transition coefficients. Following the transition state
theory of reaction kinetics [TGK96], the starting point is to realise that different channel
states, e.g., Xi and X j, have in general different energies Ei and E j [SQB99]. To
transition between these two meta-stable configurations, the channel needs to overcome
an energy barrier ∆E˚i, j “ E˚i, j´Ei separating the two states. Here, E˚i, j is the energy
of the transition state (the top of the potential energy barrier between states Xi and X j)
denoted by ˚. Beyond internal energy, the activation enthalpy adds pressure-volume
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work: ∆H˚i, j “ ∆E˚i, j`∆vP, similarly, the Gibbs energy of activation also takes entropy
∆S˚ “ k lnpZ1b{Z

1
Rq into account: ∆G˚i, j “ ∆H˚i, j´∆S˚T . Here Z1b and Z1R denote the

partition functions for the nonreactive degrees of freedom of the barrier and initial
(reactant) states respectively. Hence, ∆G˚i, j “ G˚i, j ´Gi has to be acquired by the
ion-channel segments in order to transition from the deactivated (inactivated) to the
activated (deinactivated) states. It is this quantity which controls the transition rate,
while ∆Gi, j “ Gi´G j determine the equilibrium distribution. The formulation in terms
of energy allows a common approach in ion-channel modelling which is, to borrow the
rate constants formulation from the theory of reaction kinetics for chemical reactions.
Back in 1935, Henry Eyring [Eyr35a] [Eyr35b] already formulated the rate constant
from the assumptions that the initial states achieve thermal quasi-equilibrium with the
activated complex, an infinitesimal region around the transition state, from which the
system transitions to the next state. This transition state theory (TST) [TGK96] finds:

r “ κ
kBT

h
e´

∆G˚i, j
kBT . (6.15)

Where κ is a transmission coefficient which accounts for re-crossing of the energy
barrier.

Computing 6.15 from first principles would require the exact form of the potential
energy surface, which is very difficult to calculate for the proteins of interest here
[RABI04, Sig14]. Still, equation 6.15 allows the inverse problem of deriving ∆H˚i, j,
∆S˚i, j and ∆G˚i, j if the transition rate is measured experimentally. Facing the difficulty in
calculating ∆Gi, j˚, one can express Gi as a Taylor series expansion over the membrane
voltage, Gi “ Ai`BiV `CiV 2` ..., which gives rise to the so-called nonlinear thermo-
dynamic model for the transition coefficients [DH00]. Hence, the standard energy of
activation ∆Gi, j˚ “ ai, j`bi, jV `ci, jV 2` ..., has a contribution ai, j “ A˚i, j´Ai from the
free energy which is independent of the electric field ~E and a contribution bi, j “ B˚i, j´Bi

from the interaction between ~E and independent charges or rigid dipoles, ci, jV 2 on
the other hand accounts for mechanical constraints due to the channel’s structure, for
electronic polarisation and for pressure induced by V, and so on for higher order terms
in the expansion. Then,

r “
kBT

h
e´

ai, j`bi, jV`ci, jV
2`...

kBT . (6.16)

The number of terms from the expansion that would be needed can be determined
by the fitting of equations 6.12, 6.13 and 6.14 to experimental data and using 6.16 with
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varying orders. Furthermore, an explicit expression for the first order approximation
can be found from ∆G“ ∆H´T ∆S, where both terms can be obtained experimentally
varying T . It is also possible to consider that the channel opens through the displacement
of an effective electric charge qeq by an effective distance δeq where it reaches the
activated complex. Hence, the fordward and backward terms are ∆H f “ ∆H f pV “

0q ´ δeqzeqFV and ∆Hb “ ∆HbpV “ 0q ` p1´ δeqqzeqFV [SGGW11]. Where F is
Faraday’s constant. In this case we have:

r f pV q “ Ke
´δpV´V1{2q

σ (6.17)

rbpV q “ Ke
p1´δqpV´V1{2q

σ (6.18)

Where r f P tα,λu, rb P tβ,κu, V1{2 is the half-activation voltage given by V1{2 “

zF
”

∆Hp0q1 ´∆Hp0q´1 ´T
´

∆Sp0q1 ´∆Sp0q´1

¯ı

, σ is the inverse slope given by σ“ RT{zeqF

and K is the maximum rate parameter, which includes the voltage-independent energy
components [BG91, DH00]:

K “
kBT

h
e

δ1∆S
p0q
´1δ´1∆S

p0q
1

R e
δ1∆H

p0q
´1 δ´1∆H

p0q
1

R . (6.19)

With this simplification, we can then rewrite 6.12 as:

x8 “
1

1` e´
V´V1{2

σ

(6.20)

and

τxpV q “
1

Ke
δpV´V1{2q

σ `Ke
´p1´δqpV´V1{2q

σ

. (6.21)

Here, δ controls the skew of the τ curve and both K, V1{2 and σ can be determined
experimentally. This more simplified formulation can be used to reduce hardware
requirements when biological accuracy is less relevant than the computations performed
by the neuron, this is usually the case for nonbiological problem-solving applications of
neuromorphics [DSL`18, FGF17, HJM13].

A further step in detail can be introduced through the Kramers theory of reaction
kinetics, an improvement to the transition state theory (TST), which besides assuming
the existence of an activated transition state which is in quasi-equilibrium with the
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initial states, here corresponding to the closed state, includes the presence of the
background substances which may exchange energy with the ion-channel activated
state, triggering its transition to either the open or the closed states. This is relevant
because the state transitions are driven by the transmembrane electrical potential but
are under the influence of thermal fluctuations and the viscosity of the extracellular
medium. The Kramer’s theory rest on the fundamental assumptions that the channel
obeys detailed-balance and satisfies the fluctuation-dissipation theorem, in this way,
Kramer’s theory can be derived from the the generalised Langevin equation [TTBP91],
allowing the formulation of a principled model in which the rate constant is given by:

r “
ˆ

ωRγ

4πωBm

˙

»

–

«

1`
ˆ

2ωBm
γ

˙2
ff1{2

´1

fi

fle´
∆G˚i, j
kBT . (6.22)

Here, ωR and ωB define the curvature of a potential energy surface around the initial
states and barrier respectively [SQB99]. γ is the extracellular medium viscosity, T is the
temperature and kB is the Boltzman constant. In the limiting case of very high viscosity
equation 6.22 approximates to:

r “
ωRωBm

2πγ
e´

∆G˚i, j
kBT . (6.23)

Equation 6.23 opens the possibility of approximate first-principles modelling in
SpiNNaker following 6.14, 6.12, 6.13, because ωR, ωB and γ can be obtained from
molecular dynamics simulations.

Alternative Forms For The Rate Coefficients An alternative form for the time con-
stant, which limits its value without the need for nonlinear terms in the rate coefficients
and then simplifies implementation is given by adding a rate-limiting factor τ0 [BG91].

τx “
1

α1pV q`β1pV q
` τ0. (6.24)

This adjustment is very economical despite not being physically plausible [DH10].

Another important formulation is that used by software tools for fitting experimental
data, these often use rate coefficients of the form

rpV q “
A`BV

C`H e
V`D

F
(6.25)

To the author’s knowledge, this form has not a clear derivation from physical
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arguments, it increases the gap between Hodgkin-Huxley and Markov models and,
by forcing an additional divide on τx and six parameters per coefficient, becomes
exceedingly expensive for SpiNNaker 1. Nevertheless, implementing equation 6.25
for SpiNNaker 2, has the advantage of directly accepting input from data found in the
literature and hence becomes worth to support.

6.3.3 From Ion-Channels to Membrane Conductance and Cur-
rent

Currently, the neuron models in SpiNNaker assume a constant membrane conductance,
an assumption that is true only in a very restricted region of biological neurons. In-
corporating the channel dynamics described above allows the formulation of voltage-
and time-dependent conductances, in turn, these are observed to be either ohmic or
rectifying depending on the concentration difference of the participating ions across the
cellular membrane. For a given ion A, if rAsout{rAsin « 1, the currents tend to behave
linearly. If rAsout{rAsin ą 1, as it is for Ca2`, the ions will flow more easily from the
outside to the inside of the neuron and an inward rectification is observed, similarly,
outward rectification occurs when rAsout{rAsin ă 1.

Consider the ensemble of channels of type A that may exist in the neuronal mem-
brane at a given time, each contributing n VSDs and q inactivating segments, the
evolution of the fraction of segments in the open state rOs “ mnhq (recall that all VSDs
should be activated and the pore deinactivated in order for a channel to conduct) controls
the in-flux and out-flux of ions to the cell, hence determining the instantaneous trans-
membrane conductance. If a single open channel causes a gA increase in conductance,
a membrane with channel density ηA reaches the maximum increase in conductance
density ĝA “ ηAgA when all channels are open. Then, the voltage-dependent gain in
conductance density can be expressed as

gpV q “ ĝAmpV qnhpV qq. (6.26)

For Markov models with multiple conducting (open) states gA “
ř

i ĝoiMi, with Mi

the fraction of channels in the Oi open state. For the ion species for which the linearity
condition is satisfied during ion electrodiffusion, equation 6.26 can be used along an
ohmic approximation to the current density:

IA “ ĝAmnhq
pV ´EAq. (6.27)
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Here, EA is the membrane potential at which no net flux of the ion A is observed.
An explicit expression for EA can be found by considering that when the channel is
open, the ions move in aqueous media under the influence of drift and diffusion and in
the absence of any energy barriers. Thus, the ion flux obeys the Nernst-Planck equation
(NPE), IA “ JAzAF “´

´

µz2FrAsBV
Bx `µzRT BrAs

Bx

¯

, in which the first term describes the
ion’s interaction with the electric field and the second the influence of the concentration
gradient, µ is the molar mobility of the ions and z their valence. By making IA “ 0 in the
NPE, one obtains the Nernst equation EA “ RT lnprXsout{rXsinq{zxF . This expression
can be used to obtain EA from experimentally measured concentrations, but also, to
infer the effects of changes in those concentrations on the network as has been done by
[TT14].

When rectification is present, as for example in Ca2` currents, for which
rCa2`sout{rCa2`sin « 104, the simplest nonlinear model for the current across the
thickness of the membrane can be derived from the NPE by considering the steady-state
( dI

dx “ 0), noninteracting ions – so that these can be considered independent of each
other– and that the electric field across the membrane with thickness l is constant,
i.e., ~E “´dV

dr “
∆V
l . Under these conditions the Goldman-Hodgkin-Katz voltage- and

concentration-dependent equation is obtained for the ion current [SGGW11]:

IA “ PA
z2

AF2V
RT

˜

rAsin´rAsout e´zAFV{RT

1´ e´zAFV{RT

¸

. (6.28)

Where the membrane permeability to ion A, PA “
µRT β

lF has been derived from the
Einstein relation for the diffusion coefficient D“ µRT

F and the assumption of a linear
drop (or rise) in concentration across the membrane.

When the Nernst-Planck equation does not describe adequately the ion movement
traversing the open channel, due to, for example, the presence of energy barriers, a
description from the transition state theory similar to that exposed above for the rate
coefficients of the channel conformations is necessary. Alternatively, Poisson-Nernst-
Plank equations allow the inclusion of inhomogeneous (position-dependent) diffusion
coefficients by using the Poisson equation to relate ion concentration and the dielectric
response function across the channel [LE14, LE15]. This enters as a term in the free
energy function of the NPE.

In contrast, fine-grained approaches such as Brownian dynamics or all-atom molec-
ular dynamics seem out of the scope of any near-future network-level neuromorphic
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computing architecture as even conventional computers struggle to simulate a time-
interval long enough to observe a single ion crossing through the channel [FCAA10].

6.3.4 Temperature Dependence

It is common to adjust for the simulation temperature Ts given the temperature Tm at
which the data was recorded. This is done by multiplying the maximum conductance
and either the rate coefficients or the time constants by the experimentally accessible
factor Q10 “ ripT `10q{ripT q:

ĝpTsq ÐÝ ĝpTmqQ
Ts´T m

10
10 (6.29)

with

αpTsq ÐÝ αpTmqQ
Ts´T m

10
10 (6.30)

βpTsq ÐÝ βpTmqQ
Ts´T m

10
10 (6.31)

or

τxpTsq ÐÝ τxpTmqQ
Ts´T m

10
10 (6.32)

m8pTsq ÐÝ m8pTmq (6.33)

Tipical values for Q10 range between 100 and101 for both conductance [SGGW11]
and rate constants [Foh15]. Hence, it is straightforward to include it in the imple-
mentation and provides the ability to change the simulated temperature across runs
and infer its network-level effect. If the activation energy Ea has been deduced from
theoretical considerations Q10 can be determined as Q10 “ e10Ea{rkBT pT`10qs. Similarly,
the activation energy can be obtained from the measured Q10.

6.4 Implementation

In this section, we present our preliminary implementation of intrinsic currents on
SpiNNaker based on experimental data [HT05]. Such data is conventionally acquired
through voltage-clamp and patch-clamp experiments on biological neurons with various
chemical baths [SN84].
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6.4.1 Considerations for SpiNNaker

The hardware architecture of SpiNNaker imposes a few but important constraints into
the software development cycle:

• Firstly, the whole neural model should fit into DTCM (32KB).

• Secondly, the error introduced by the fixed-point arithmetic should not change
the qualitative behaviour of the model. In the sense of not being too sensitive to
initial conditions.

• Thirdly, firing rates cannot saturate the communication fabric.

• Lastly, to run in realtime all state update operations need to always be completed
within a millisecond time interval by each processor.

Saturation of the interconnect is not relevant for the present study as we are con-
cerned with the local properties of the neurons by adding up to their dynamical com-
plexity, SpiNNaker is well suited for the highest rate of 1spike{ms as long as there is
enough spatial sparsity in the network. However, the other constraints above limit the
implementability of the model. For realtime resolution, the state update operations that
need to be completed within a millisecond for all neurons existing in a single processor
include, the updating of the neuron membrane voltage equation (e.g. LIF or Izhikevich
neuron models), the processing of incoming spikes, computation of plasticity rules
(e.g. STDP, STD, STP), neuromodulation selectivity traces [RBB`18], as well as the
intrinsic currents considered here. Then, for certain current types the intrinsic currents
overhead to the model, exposed in the previous section, demands the simulation be
slowed down by a factor of 10 to keep their stability or accuracy. For this reason, the
persistent sodium INaP and depolarization-activated potassium IDK currents in figures
6.4, 6.5 and 6.6 were run with a timestep of 0.1ms.

In the standard way of programming SpiNNaker, the software stack consists of a
lower and higher-level C layers, a python layer which links the C models to the PyNN de-
scription language and a further python (or other high-level programming languages) ap-
plication programming interface (API) for SNN-based algorithms [RBB`18, RBD`18].
For the simulations in this chapter, the fixed-point implementation of the exponential
(expk) function developed by D. Lester [Les14] and available in the SpiNNaker software
stack was implemented in the low-level C [Les14] (it follows a similar approach to the
one in [PHE`17]), the intrinsic currents and their integration with the neuron models
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are implemented in high-level C and their object-oriented versions in python. These
latter two implemented by the author and colleagues O. Rhodes and M. Mikaitis. The
higher-level layers allow the integration of intrinsic currents with SpyNNaker, in this
way intrinsic currents and voltage-clamp parameters can easily be modified or defined
from the front end.

Due to the model complexity and requirements for precision, the widespread use
of intrinsic currents may only happen for SpiNNaker 2. Two improvements from
this next generation of SpiNNaker (see section 1.2) have a direct implication on the
performance of intrinsic currents modelling. Firstly, the adoption of the ARM M4F
cores implies access to a single-precision floating-point hardware unit [MHF19]. Such
an extra precision improves both stability and accuracy for solving differential equa-
tions while maintaining a modest energy expenditure. In contrast, the SpiNNaker 1
hardware only supports fixed-point arithmetic (alongside the GCC implementation of
the ISO 18037 standard [EWR09]), if any floating-point operation is needed, it has
to be implemented in software, resulting in poorer performance and power efficiency.
Secondly, and in contrast to the 95 cycle soft-exponential expk, SpiNNaker 2 is boosted
by fixed-point (internal 39-bits with programmable approximation to 32-bit output)
elementary function hardware accelerators, including exponential and logarithmic (base
e) functions [MHF19, PHE`17, MLS`18]. The election of fixed-point arithmetic for
the accelerators represents at least four times less area and energy than floating-point
[Dal15]. When designing new neuromorphic hardware involving intrinsic currents, the
arithmetic range of the parameters will dictate whether to support fixed- or floating-point
architecture in hardware.

6.4.2 Intrinsic Currents Under Voltage Clamp in SpiNNaker

The intrinsic currents implementation is intended to follow the free dynamics of the
membrane potential of each neuron. However, to verify the implementation it is impor-
tant to compare the behaviour of these currents with that observed experimentally. As
emphasized in section 6.1, each neuron contains thousands of ion channels spanning
tens of current types, these currents are isolated experimentally by harnessing chemical
blockers, intracellular and extracellular mediums and electrical properties. Once iso-
lated, the dynamic response of the target current can be studied through a voltage clamp
protocol. A voltage clamp consists in clamping the neuronal membrane to a certain
hold potential Vh and stepping to a series of potentials Vi | i P t1,2,3, ...u after which V

can be returned to Vh or to new clamp values. The objective is to measure the response
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of the neuron to discrete changes in V . Such a response allows the extraction of x8pV q

and τxpV q. These are obtained for both activation and inactivation by following the
maximum conductance, as well as the time course of the conductance when the neuron
transitions from equilibrium at the hold potential to equilibrium at the step voltage.
We can then use the parameterisation of x8pV q and τxpV q for the implementation of
equation 6.14 in SpiNNaker. This in turn provides the evolution of m and h in equation
6.27, i.e., IA “ ĝAmnhqpV ´EAq. The activation and inactivation exponents n, q, as well
as the equilibrium potential EA are also obtained in these experiments.

Under voltage-clamp conditions:

xptq “ x8pViq´px8pViq´ x0qe´t{τxpViq (6.34)

Where x is either m or h. For simulation in SpiNNaker’s discrete-time world, it is
necessary to approximate the time evolution of x through small steps ∆t, for tractability
under SpiNNaker constraints, we assume the voltage as constant during such intervals.
This is the same methodology used in SpiNNaker to integrate the LIF neuron model,
which receives the current value of V at time t and returns an updated value for t`∆t.
In a similar way, equation 6.34 defines the difference equation:

xtpVtq “ x8pVtq`pxt´∆tpVt´∆tq´ x8pVtqqe´∆t{τxpVtq (6.35)

with x8 and τx determined experimentally or estimated with equations 6.12 and
6.13 alongside any of the techniques in section 6.3.2. The approximation of constant
voltage across 1ms or 0.1ms intervals, will only be critical for rapidly varying currents
or when using these as input into strongly nonlinear neuron models. Here, we follow
[HT05] in using a modified LIF model where the intrinsic currents of table 6.1 enter as
an addition to the input current to the membrane potential:

dV
dt
“

1
τm

«

´gNaLpV ´ENaq´gKLpV ´Ekq´ Isyn´
ÿ

int

Iint

ff

´
1

τspike
gspikepV ´Ekq.

(6.36)

Where Iint corresponds to any of the intrinsic currents.
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Current Model Equations

Dynamics:
dx
dt
“

x8pV q´ x
τxpV q

Update: xt “ x8pV1q´px8pV1q´ xt´1qe
´∆t

τxpV1q

Ih m8 “
1

1` epV´p´75qq{5.5 τm “
1

ep´14.59´0.086V q` ep´1.87`0.0701V q

IT m8 “
1

1` e´pV`59.0q{6.2 τm “
0.22

e´pV`132.0q{16.7 ` epV`16.8q{18.2
`0.13

h8 “
1

1` epV`83q{4 τh “
8.2`56.6`0.27epV`115.2q{5.0

1.0` epV`86.0q{3.2

INapPq m8 “
1

1` ep´V`55.7q{7.7 τm “ 0

Dynamics:
dD
dt
“ Din f lux´

Dp1´Deqq

τD

Update: Dt “ pDin f lux`
Deq

τD
qp1´ e

∆t
τD q`Dt´1e

∆t
τD

Update: xt “ x8pV1q

IDK m8 “
1

1`pd1{2D3.5q
Din f lux “

1
1` e´pV´Dθq{σD

Table 6.1: Model equations for intrinsic currents of relevance in the wakefulness-sleep
transition (for further details, see [HT05] and references therein).
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6.4.2.1 Simulation of Intrinsic Currents from the Thalamocortical System

We show in figures 6.4-6.6 the implementation in SpiNNaker of the intrinsic cur-
rents summarised in table 6.1. These currents are present in diverse neurons of the
thalamocortical system and are relevant for both sleep regulation, as well as for the
wakefulness-sleep transition [HT05]. We follow the parameterisation in [HT05] and
references therein for the pacemaker cation current Ih, the persistent sodium current
INaP, and the depolarization-activated potassium current IDK . These have been obtained
elsewhere from fittings to experimental electrophysiological recordings of neurons un-
dergoing diverse voltage-clamp protocols [HM92, CSVMW03, FFG96, WL03]. Their
modulation was found to contribute to the transitions between different sleep stages in
the model of the thalamocortical system developed by S. Hill and G. Tononi [HT05].
Ih is a noninactivating hyperpolarisation-activated cation current. It has a pacemaker
role and is present in thalamic and intrinsically bursting cells [HM92]. INaP is present
in most cortical neurons, it presents a quick activation near the resting potential but
follows a slow inactivation, this is the reason for τm “ 0 and no inactivation in table 6.1.
The low-threshold fast-activating calcium current IT , together with Ih, is responsible
for bursting behaviour in thalamic relay cells [MB97]. The depolarization-activated
potassium current IDK is involved in the termination of the depolarized phase of the
slow oscillation during sleep. Although it is activated by Na` or Ca2`, these ions
concentration is modeled implicitly through a dependence in a depolarisation measure
D (table 6.1). This is because the rise in their concentrations is proportional to the
rise in membrane potential (depolarization). The diverse dependence of the equations
in table 6.1 and other represent a challenge for their implementation in SpiNNaker,
although hardcoding each particular current is doable (as we did here), such a process
would require expertise and access to the low-level software of the SpiNNaker software
stack. Instead, we aim to give high-level general support for integration of currents
derived experimentally or in a principled way. Nevertheless, the hardware imposes hard
constraints on the functional forms that can be reliably supported, this was the main
motivation for the theoretical exploration presented in previous sections and future work
will follow from it.

Figures 6.2 and 6.3 show the implementation of the Ih and IT currents in SpiNNaker
(dashed lines) and CPU with double-precision floating-point arithmetic (dotted lines).
The difference between in-hardware fixed-point and floating-point implementations is
within 10 % and will be critical only when high-accuracy is desired in the correspon-
dence between experimental and simulated spike times. For Ih A voltage-clamp protocol
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Figure 6.2: a) 1.0ms timestep implementation in SpiNNaker of the Ih current (dashed
lines) compared with the python double-floating point implementation (dotted lines),
both undergoing the same voltage clamp protocol. The neuron has been submitted to the
same clamp protocol as that of figure 5 in [HM92]. b) Difference between SpiNNaker
fixed-point and CPU floating-point implementations.

has been applied to the neuron according to the experimental results in [HM92]. The
curves show good qualitative and quantitative correspondence with the experimental
measures shown in figure 5 in [HM92].

Figures 6.4 and 6.5 show the SpiNNaker implementation of the IDK and INaP, as
well as their absolute and relative error when compared with a CPU implementation with
full-precision double floating-point implementation. Here we used a 0.1ms simulation
timestep, see in table 6.1 how the IDK includes a fractional exponent which further
affects precision. This causes that under a 1ms timestep the simulation suffers from
overflowing and propagation of rounding errors in fixed-point arithmetic making the
current to evaluate to zero for some clamp potentials. Yet, by sacrificing realtime
performance the simulation can also generate results within an absolute error of 10%
and a relative error of 1 %. In contrast, the simple formulation of the INaP current
results in very good error margins in the order of 10´3.

Finally, in figure 6.6 we compare our SpiNNaker implementation with an equivalent
implementation on the state-of-the-art neural simulator Nest1 [LLM`18]. For this, we

1Kindly provided by Andr Sevenius and Hans Ekkehard Plesser from the Institute of Basic Medical
Sciences at Universitetet i Oslo.
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Figure 6.3: a) 1.0ms timestep implementation in SpiNNaker of the IT current (dashed
lines) compared with the python double-floating point implementation (dotted lines),
both undergoing the same voltage clamp protocol. The neuron has been submitted to the
same clamp protocol as that of figure 5 in [HM92]. b) Difference between SpiNNaker
fixed-point and CPU floating-point implementations.

Figure 6.4: Implementation in SpiNNaker of the IDK current compared with the python
double-floating point implementation. A voltage clamp protocol has been applied to the
neuron for various holding voltages.
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Figure 6.5: Implementation in SpiNNaker of the INaP current compared with a python
double-floating point implementation. A voltage clamp protocol has been applied to the
neuron for various holding voltages.

endowed a LIF neuron with the IDK and INaP currents of figures 6.4 and 6.5. Figure 6.6
shows the behaviour of the membrane potential and both currents when the neuron is
undergoing a current clamp. Although mismatch still exists in the exact spike times
due to the difference in numerical precision, the neuron exhibits spike adaptation as
expected and SpiNNaker matches exactly the numbers of spikes.
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Figure 6.6: SpiNNaker implementation of spike adaptation (top) through the inclusion
of the IDK (middle) and INaP (down) intrinsic currents. The implementation using
full-precision in Nest is shown for comparison. There is a mismatch between the spike
times predicted by both systems but qualitative behaviour is achieved.
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Chapter 7

Conclusions and Future Work

In chapter 1 we stated the following hypothesis:

H1 Constraint satisfaction problems can be solved efficiently on neuromorphic hard-
ware.

H2 Neuromorphic hardware can deliver competitive problem-solving with low energy
expenditure and biologically relevant processing times.

H3 It is possible to validate CSP SNNs online (on-chip) without probing the neural
activity of the entire network.

H4 Realistic postsynaptic currents are linearisable, allowing for their efficient imple-
mentation on neuromorphic hardware.

H5 Intrinsic currents are implementable in SpiNNaker

After the development of this thesis and the results presented in chapters 2, 4, 5 and
6, we can answer the hypothesis as follows:

H1&2 Chapters 2 and 4 demonstrate that CSP problems can indeed be solved in neuro-
morphic hardware with competitive performance in time while requiring a low
energy consumption.

H3 We developed and implemented in chapter 4 a methodology for the on-chip valida-
tion of CSPs demonstrating its functionality. Hence, no probing or postprocessing
is required for solving CSPs in Loihi.

H4 Hypothesis H4 has been proved in chapter 5 leading to the addition of the alpha
and postsynaptic currents implementation into SpiNNaker’s software stack.
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H5 The preliminary results of chapter 6 show that voltage-gated ion-channel currents
can be implemented in SpiNNaker and that these influence the neuron dynamics
as expected. Qualitative behaviour is preserved while some quantitative discrepan-
cies are observed. Thus, the adequacy of an implementation of intrinsic currents
in SpiNNaker depends on whether qualitative or quantitative accuracy is required.

7.1 Constraint Satisfaction Solvers

In this thesis, we demonstrated the solution of constraint satisfaction problems (CSPs)
using the SpiNNaker and Loihi neuromorphic chips. CSPs have the advantage of no
requiring massive training datasets, while being useful in a wide variety of applications,
from scheduling in factories to compiler optimisation. We used CSPs of distinct nature
to highlight this flexibility and extent of applicability on our neuromorphic solvers.

Although a thorough benchmark is needed, it is possible to have at least one order
of magnitude improvement over classical solvers. We showed performance ranging
from milliseconds to tens of seconds. For comparison, complete traditional solvers,
those guaranteed to find a solution if it exists, have typical solving times in the order of
seconds to minutes. While the best general-purpose optimisation tools, which use both
heuristics and constraint propagation, solve in milliseconds to seconds. Additionally,
the D-wave quantum computer has been reported to find solutions in microseconds
to seconds. Due to our time constraints, the results shown here have not been fully
optimised to explore the resources of the chip maximally, this means that with further
research, neuromorphics have the potential of becoming the state-of-the-art solutions
for energy-efficient constraint satisfaction.

It is worth mentioning that in this thesis we did not focus on the important issue of
scalability to very large problems. This was because the more immediate problems of
demonstrating feasibility, convergence, competitive performance and on-chip validation
had to be solved first. Larger problems in both SpiNNaker and Loihi are possible, but
not explored here because our APIs were based on dense Numpy arrays for which
memory requirements on the host increase rapidly. Such a limitation is easily overcome
by refactoring the API to use Scipy sparse matrices. Also, due to the version of the
sPyNNaker software used for the SpiNNaker solver (three years old at the time of
writing) the compiler was not optimised and required hours or days for partitioning and
resource allocation for large Sudoku problems, e.g. 16ˆ16 up to 64ˆ64. Since then,
the compiler has been optimised and a refactoring of the API to the latest sPyNNaker
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version should allow the handling of larger problems.

7.1.1 Key Contributions

• Development of an application programming interface (API) for the solution
of CSPs in the massively parallel SpiNNaker machine. The API constitutes a
stochastic general-problem incomplete solver which requires a few seconds to
solve Sudoku and map colouring problems and converges to the problem solution
for CSPs of moderate difficulty.

• Development of software and theoretical frameworks for the solution and on-chip
validation of CSPs in Intel’s Loihi neuromorphic chip and systems. The mul-
ticompartment spiking neural network which solves the problem also measure
it’s own cost function and notifies the host CPU when a solution to the problem
is found. Only at this point, the solution is read from the network state. This
methodology avoids constantly reading the network and transferring the data to
host for post-processing, both of which cause an overhead of several minutes
and seconds on SpiNNaker and Loihi respectively. On-chip validation implies
satisfaction is known online. In our SpiNNaker solver, the solution and whether
one was found is only known after gathering and processing the recorded net-
work activity. The solver in Loihi achieves a speedup of two to three orders of
magnitude improvement for Sudoku and map colouring problems (problems are
solved in milliseconds).

All in all, we have demonstrated the usefulness of neuromorphic hardware for real-world
problem-solving.

7.1.2 Future Work

Avenues for future work on constraint satisfaction are:

• Scalability: to allow scaling to larger CSP problems, the SpiNNaker and Loihi
APIs should be refactored to use sparse matrices and the latest compiler versions.
Due to the regularity and straightforward definition of these problems, it is also
possible to modify the compilers to be more efficient in resources allocation
for CSPs. We mentioned in chapter 4 how a hierarchy of integration neurons is
necessary for adding the local contributions to the energy function in on-chip
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validation. Testing and validation of such a methodology is also required for
handling larger problems online.

• Constraints: the problems presented in this thesis use the all-different constraint
type. A logical next step is to extend the solver to other constraint types, e.g. the
inequality constraints for the travelling salesman problem in [JHM16].

• Embedded systems: one of the promising applications of our solvers is to use
them on the edge in robotics and wearables.

• Realtime: our hypothesis that the solvers can interact with biological systems in
realtime should be tested.

• Heuristics: our results from chapters 2 and 4 are a proof-of-concept and use
the stochastic network dynamics to solve the problem. Further strategies can be
borrowed from the state-of-the-art algorithms.

7.2 Postsynaptic Integration

The second part of the thesis enabled increased biological realism on the SpiNNaker
machine. Chapter 5 demonstrates the implementation of biologically realist postsynaptic
currents. The hard constraint is that required memory (buffer size and number of buffers)
should not increase with the input spikes history. Thus, all previous activity has to be
encoded on the last value in the memory local to the neuron, otherwise, the simulation
will not be sustainable.

7.2.1 Key Contributions

• Development of a theoretical framework for the implementation in SpiNNaker of
more biologically plausible alpha- and beta-shaped postsynaptic currents. These
currents were subsequently implemented and integrated into the SpiNNaker
software stack. Previously, SpiNNaker only supported Dirac delta and exponential
kernels. These shapes control how synaptic input is integrated by a neuron into
its membrane potential, directly affecting its spiking behaviour.
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7.2.2 Future Work

• Exact integration: we mentioned in chapter 5 how our derivation is a subset of the
more general framework of [RD99]. This latter includes all time-invariant linear
systems. In particular, systems involving exponentially damped, oscillatory and
polynomial dynamics. Further research can leverage these systems for dynamical
systems simulations in neuromorphic hardware. Here, each SpiNNaker core
would solve a set of time-invariant linear systems through exact integration and
perform asynchronous event-driven updates according to a predefined set of rules.

• Plasticity: several learning algorithms for SNNs relay on plasticity rules for
updating the synaptic weights. In SpiNNaker, plasticity rules like STDP require
the use of exponential traces to save the presynaptic and postsynaptic spike history,
it is worth exploring the use of alpha, beta and sinusoidal traces, for example, for
the credit-assignment type of problems in reinforcement learning.

7.3 Voltage-gated Ion-channel Currents

Intrinsic currents originating from the collective behaviour of voltage-gated ion-channels
underlay the complex changes in both, firing patterns and subthreshold dynamics
observed in real neurons. These are the basis for homeostasis, bursting and intrinsic
plasticity. In chapter 6 we demonstrated how these currents can be integrated into the
SpiNNAker machine to achieve adaptive dynamics in spiking neurons which depends
on the network activity. This means that the neurons will respond with a repertoire
of firing behaviours depending on the current types these integrate, as well as on the
network dynamics. This is in contrast to neuron models which require parameter tuning
to change a neuron’s response. Furthermore, our implementation paves the way for the
use of experimental recordings from neurophysiology and bring neuromorphics closer
to experimental neuroscience.

7.3.1 Key Contributions

• SpiNNaker implementation of voltage-gated ion-channel currents, also known
as intrinsic currents. These follow the Hodgkin-Huxley formalism in which
the neuron conductance is formulated in terms of the ensemble response of
thousands of ion-channels across the neuronal membrane. The integration of data
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from electrophysiological recordings e.g., from voltage-clamp experiments on
biological neurons, as well as their effect on the neuron dynamics, e.g., spike
adaptation, is achieved. The intrinsic currents response to voltage changes remains
within 10 % of the CPU double floating-point version, this error is expected due to
the use of fixed-point arithmetic. Spike adaptation has qualitative correspondence
with an equivalent implementation on the state-of-the-art neural simulator Nest.
There are however quantitative differences on the exact spike times, all within a
few milliseconds, yet the same number of spikes is observed.

7.3.2 Future Work

• Experimental Data: to obtain the results shown in chapter 6 we hardcoded each
current type across the different layers of the software stack. Nevertheless, we
have exposed in chapter 6 the theoretical background for supporting generic
current types. The next step is to give support to a generic current which is
parameterised with experimental fittings to represent the various current types.
Thus allowing the integration of experimental data from the front-end.

• Analysis: once arbitrary currents can be coded from the sPyNNaker front end, ex-
haustive comparison of the currents available in the Channelpedia [RKG`11] and
voltage-clamp results from SpiNNaker will reveal the usefulness of SpiNNaker1
for simulating biological networks with increased biological detail.

• SpiNNaker2: given the encouraging results of chapter 6, the models can be ported
to SpiNNaker2 while in the prototyping stage to influence further hardware design
decisions.

• Arithmetics: some issues have been found on the GCC implementation of the ISO
18037:2008 standard fixed-point arithmetic [Mik20], as well as improvements
for the numerical accuracy of operations with SpiNNaker fixed-point arithmetic
[HMLF19]. It is important to assess how such results can improve the intrinsic
currents implementation and lower their error.
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Appendix A

Constraint Satisfaction In Loihi:
Listings

Listing A.1: Python SNIP for on-chip validation.
s e t u p s n i p s ( boa rd ) :

””” S e t u p s n i p s t o n o t i f y s o l u t i o n , s t o p s i m u l a t i o n and read ne twork s t a t e . ”””
# D e f i n e SNIP p r o c e s s which s e n d s i n f o r m a t i o n from l m t c o u n t e r r e g i s t e r t o
s u p e r h o s t a b o u t summation s p i k e s .
MANAGEMENT PROCESS = c r e a t e p r o c e s s ( name=” runMgmt ” ,

C f i l e = p a t h t o C FILE ,
Management f u n c t i o n =” run mgmt ” ,
Guard f u n c t i o n =” do run mgmt ” ,
phase =management ,
Chip ID =0 ,
LMT ID =0)

C a l l c r e a t e n o t i f i c a t i o n c h a n n e l s ( boa rd )

c r e a t e n o t i f i c a t i o n c h a n n e l s ( boa rd ) :
””” C re a t e c h a n n e l s f o r communica t ion be tween LMT and s u p e r h o s t
n o t i f i c a t i o n c h a n n e l Ð c r e a t e c h a n n e l from board
# c o n n e c t c h a n n e l from LMT t o s u p e r h o s t t o send s p i k e c o u n t from LMT r e g i s t e r
n o t i f i c a t i o n c h a n n e l . c o n n e c t (MANAGEMENT PROCESS , Host )

# C re a t e a c h a n n e l f o r acknowledg ing s u p e r h o s t r e c e p t i o n o f s p i k e t i m e
a c k n o w l e d g e m e n t c h a n n e l Ð c r e a t e a c h a n n e l from board
# c r e a t e n o t i f i c a t i o n c h a n n e l from LMT t o s u p e r h o s t which i s r e c e i v i n g
s p i k e c o u n t from LMT r e g i s t e r
a c k n o w l e d g e m e n t c h a n n e l . c o n n e c t ( Host , MANAGEMENT PROCESS)

Listing A.2: Python SNIP for on-chip validation.
def c o n n e c t s u m a t i o n n e u r o n t o l m t ( s e l f ) :

””” S e t u p axon from summation neuron t o LMT b u t do n o t read from h o s t . ”””
p r o b c o n d i t i o n <́ t ime t o s t a r t = r u n t i m e *2
i f number o f summation n e u r o n s >1:

197



198 APPENDIX A. CONSTRAINT SATISFACTION IN LOIHI: LISTINGS

sum mat i on p r obes = SUMMATION NEURON. probe ( s p i k e s , p r o b c o n d i t i o n )
e l s e :

sum mat i on p r obes = SUMMATION NEURONS[´1] . p robe ( s p i k e s , p r o b c o n d i t i o n )
re turn su mmat i on p ro bes

def c h o s e a n d c o n f i g u r e r e a d o u t m e c h a n i s m ( mechanism=” a u t a p s e ” ) :
i f mechanism==” t r a c e s ” :

e n a b l e a c t i v i t y t r a c e s ( Impulse , decay )
e l s e i f mechanism==” a u t a p s e ”

c r e a t e a u t a p s e from T t o M ( weight , box d u r a t i o n )

Listing A.3: C Guard SNIP for on-chip validation.
i n t SPIKE PROBE ID = probe ID i n LMT

/ / Run SNIP from t h e s t a r t o f s i m u l a t i o n and g e t c h a n n e l s IDs .
i n t do run management ( s i m u l a t i o n s t a t e ){

i f t i m e s t e p > 0 :
i n t CHANNEL ID NOTIFY Ð g e t ID f o r n o t i f i c a t i o n c h a n n e l from LMT t o Host
i n t CHANNEL ID ACKNOWLEDGE Ð g e t ID f o r acknowledgeement c h a n n e l from Host t o LMT

i f t i m e s t e p > 2 :
re turn 1

e l s e :
i n t SPIKE COUNT Ð g e t s p i k e c o u n t e r from s i m u l a t i o n s t a t e
R e s e t SPIKE COUNT t o 0
re turn 0

}

Listing A.4: Main C SNIP for on-chip validation.
/ / Read s p i k e c o u n t e r , r e s e t c o u n t e r t o z e r o and w r i t e c o u n t t o c h a n n e l

void run management ( s i m u l a t i o n s t a t e ) {
SPIKE COUNT Ð g e t s p i k e c o u n t e r from s i m u l a t i o n s t a t e

i f SPIKE COUNT==1:
SPIKE COUNT = 0 ; / / Avoid o v e r f l o w
i n t s o l u t i o n t ime = c u r r e n t t i m e s t e p ;
w r i t e s o l u t i o n t ime t o CHANNEL ID NOTIFY
l i s t e n / w a i t CHANNEL ID ACKNOWLEDGE f o r acknowledgement from LMT

i f t i m e s t e p == t o t a l s t e p s :
w r i t e ´1 t o CHANNEL ID NOTIFY / / W r i t e ´1 t o c h a n n e l i f no s o l u t i o n t i m e r e g i s t e r e d
l i s t e n / w a i t CHANNEL ID ACKNOWLEDGE f o r acknowledgement from LMT
p r i n t f ( End of s i m u l a t i o n was r e a c h e d )

}



Appendix B

Details on Linearisability of
Postsynaptic Currents

B.1 Details on Alpha PSC

B.1.1 An Example with Two Spikes

Let us first consider two spikes arriving at times t1 and t2 at the postsynaptic neuron α,
producing alpha postsynaptic currents:

j1ptq “ q
t´ t1

τ2

´

e´
t´t1

τ

¯

Θpt´ t1q, (B.1)

j2ptq “ q
t´ t2

τ2

´

e´
t´t2

τ

¯

Θpt´ t2q. (B.2)

Denoting Θpt ´ tiq by Θi and inserting equations B.1, B.2 in 5.1 and assuming
ωαβ “ 1, we have:
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Jptq “ j1ptq` j2ptq

“ q
t´ t1

τ2 Θ1

´

e´
t´t1

τ

¯

`q
t´ t2

τ2 Θ2

´

e´
t´t2

τ

¯

“ q
” t

τ2 ´
t1
τ2

ı

Θ1

´

e´
t
τ e

t1
τ

¯

`q
” t

τ2 ´
t2
τ2

ı

Θ2

´

e´
t
τ e

t2
τ

¯

“

´

rt´ t1sΘ1e
t1
τ `rt´ t2sΘ2e

t2
τ

¯ q
τ2 e´

t
τ

“

´

tΘ1e
t1
τ ´ t1Θ1e

t1
τ ` tΘ2e

t2
τ ´ t2Θ2e

t2
τ

¯ q
τ2 e´

t
τ

ñ Jptq “
´

rΘ1e
t1
τ `Θ2e

t2
τ st´rt1Θ1e

t1
τ ´ t2Θ2e

t2
τ s

¯ q
τ2 e´

t
τ , (B.3)

“ pAt´Bq
q
τ2 e´

t
τ

(B.4)

were we have recognized the terms inside square brackets in the penultimate step as
a set of piece-wise constants (one value for each temporal domain) defined by:

A“ rΘ1e
t1
τ `Θ2e

t2
τ s, (B.5)

B“ rt1Θ1e
t1
τ ´ t2Θ2e

t2
τ s. (B.6)

Thus:

Jpt ą t1q “
ˆ

t´
B
A

˙

q
τ2 Ae´

t
τ

“
q
τ2

ˆ

t´
B
A

˙

e
τ

τ
lnpAqe´

t
τ

“
q
`

t´ B
A

˘

τ2 e´
t´τlnpAq

τ . (B.7)

We have restricted t ą t1 because before any spike arrives the fraction B
A is undeter-

mined, but from equation B.4 we do know that Jpt ă t1q “ 0. In B.7 the terms B
A and

τlnpAq remain constant (piece-wise), so we have arrived to the same functional form as
the one of equation 5.4. Notice that A and B contain the Heaviside functions Θ1 and Θ2,
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this imply the definition of three time domains for J(t):

t ă t1, where Θ1 “ 0 and Θ2 “ 0,

t1 ă t ă t2, where Θ1 “ 1 and Θ2 “ 0, (B.8)

and t ą t2, where Θ1 “ 1 and Θ2 “ 1.

Let us see what the form of A and B for each region:

t ă t1 : A“ 0 and B“ 0,

t1 ă t ă t2 : A“ e
t1
τ , and B“ t1e

t1
τ , (B.9)

t ą t2 : A“ e
t1
τ ` e

t2
τ and B“ t1e

t1
τ ´ t2e

t2
τ .

Thus, substitution of these set of conditions in B.7 defines Jpt ą t1q for each region
(note that B

A “ t1 for t1 ă t ă t2.):

t ă t1 : Jptq “ 0, (B.10)

t1 ă t ă t2 : Jptq “
qpt´ t1q

τ2 e´
t´t1

τ , , (B.11)

t ą t2 : Jptq “
q
ˆ

t´ rt1e
t1
τ ´t2e

t2
τ s

re
t1
τ `e

t2
τ s

˙

τ2 e´
t´τlnpe

t1
τ `e

t2
τ q

τ . (B.12)

before any spike arrives J “ 0, when just the first spike arrives at t1 equation B.11
reduces to equation B.1. Finally, equation B.12 gives the postsynaptic current when
both spikes are present after time t2 (see figure 5.2a). To better write equation B.12, let

us define tγ “ τlnpre
t1
τ ` e

t2
τ sq and tκ “

rt1e
t1
τ ´t2e

t2
τ s

re
t1
τ `e

t2
τ s

, now:

Jptq “
qpt´ tκq

τ2 e´
t´tγ

τ . (B.13)

B.1.2 Generalization to N Spikes

The procedure of B.1.1 can be generalized for an arbitrary number of spikes N at times
ti, each of them producing a postsynaptic current jiptq. From equations 5.1 and 5.4, the
total current on α for an arbitrary time t, is given by:
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Jptq “
ÿ

i

jiptq

“
ÿ

i

q
t´ ti

τ2

´

e´
t´ti

τ

¯

Θti

“
ÿ

i

q
” t

τ2 ´
ti
τ2

ı

e´
t
τ e

ti
τ Θti

“
qe´

t
τ

τ2

ÿ

i

rt´ tise
ti
τ Θti

“
qe´

t
τ

τ2

ÿ

i

”

te
ti
τ Θti´ tie

ti
τ Θti

ı

“
qe´

t
τ

τ2

«

t
ÿ

i

e
ti
τ Θti´

ÿ

i

tie
ti
τ Θti

ff

(B.14)

“
qe´

t
τ

τ2 ptα´βq

(B.15)

Again we have recognized the summations as piece-wise constants for each temporal
domain, for readability we have denoted them by α“

ř

i e
ti
τ Θti and β“

ř

i tie
ti
τ Θti . We

have now for any time after the first spike at t0:

Jpt ą t0q “ q

´

t´ β

α

¯

τ2 αe´
t
τ

“ q

´

t´ β

α

¯

τ2 e´
t
τ elnpαq

“ q

´

t´ β

α

¯

τ2 e´
t´τlnpαq

τ

“ q

`

t´ tγ
˘

τ2 e´
t´tκ

τ (B.16)

where we have written tγ “
β

α
and tκ “ τlnpαq, as they naturally appear as

generalized versions of ti, in fact, they seem to emerge from the dual role of ti on the
exponential and linear parts of equation 5.5
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the open version of equation B.16 is:

Jpt ą t0q “ q

ˆ

t´
ř

i tie
ti
τ Θti

ř

i e
ti
τ Θti

˙

τ2 e´
t´τlnp

ř

i e
ti
τ Θti q

τ (B.17)

here, one can see how t is segmented in N+1 sections, defined by the particular
values of the Heaviside functions. For an arbitrary region t j´1 ă t j ă t j`1, defined by
the interval between spike j and spike j+1, the total current is thus expressed as:

Jpt jq “ q

¨

˚

˝

t´

j
ř

i“0
tie

ti
τ

j
ř

i“0
e

ti
τ

˛

‹

‚

τ2 e´
t´τlnp

j
ř

i“0
e

ti
τ q

τ (B.18)

Which can be written as equation B.13 with generalized times defined by:

tκ “

j
ř

i“0
tie

ti
τ

j
ř

i“0
e

ti
τ

, (B.19)

tγ “ τlnp
j
ÿ

i“0

e
ti
τ q. (B.20)

B.1.3 Discrete Buffered Version

Here we derive the recurrence relations for updating the buffer values corresponding to
the exponential and linear components of the generalized alpha function of equation
5.9. We begin with the exponential kernel as it will be needed for the linear updating at
the spike times. We use the subindex n to account for the values at the current time tn
and n`1 for their values at the next time tn`∆n.
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B.1.3.1 Exponential Buffer

Updating Between Spike

In order to obtain the relation for εn`1 let us compute ∆ε from the definition of equation
5.5:

∆ε“ εn`1´ εn

“ e´
tn`1´τ lnp

ř

i
e

ti
τ Θiq

τ ´ e´
tn´τ lnp

ř

i
e

ti
τ Θiq

τ

“ e´
tn`1

τ e
τ lnp

ř

i
e

ti
τ Θiq

τ ´ e´
tn
τ e

τ lnp
ř

i
e

ti
τ Θiq

τ

“ e´
tn`1

τ

ÿ

i

e
ti
τ Θi´ e´

tn
τ

ÿ

i

e
ti
τ Θi

“
ÿ

i

e
ti
τ Θi

”

e´
tn`1

τ ´ e´
tn
τ

ı

“
ÿ

i

e
ti
τ Θi

”

e´
tn`∆t

τ ´ e´
tn
τ

ı

“
ÿ

i

e
ti
τ Θi

”

e´
∆t
τ ´1

ı

e´
tn
τ

“ e´
tn
τ e

τ

τ
lnp

ř

i e
ti
τ Θiq

”

e´
∆t
τ ´1

ı

“ e´
tn´τ lnp

ř

i e
ti
τ Θiq

τ

”

e´
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(B.21)

equation B.21 implies that the updating rule for each continuous segment of the
exponential buffer is:

εn`1 “ εne´
∆t
τ (B.22)

B.1.3.2 Updating at Spike Times

To get the expression for updating the buffer value at the time of a new spike arrival, let
us say spike number η, we use again the definition 5.5, but keeping in mind that at tn
only η´1 spikes have arrived whilst at tn`1 the η should be taken into account. We
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have also that tn`1 “ tη then:

εn`1 “ e´
tn`1´τ lnp

řη

i e
ti
τ Θiq

τ

“ e´
tn`1

τ

η
ÿ
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e
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e
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τ e
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τ e
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τ
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i e
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τ q
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τ e

tη
τ

“ e´
∆t
τ e´

tn´τ lnp
řη´1

i e
ti
τ Θiq

τ `1 (B.23)

where we recognize the second exponential as εn, hence:

εn`1 “ e´
∆t
τ εn`1 (B.24)

which is our recurrence relation under the presence of a new spike.

B.1.3.3 Linear Buffer

Updating Between Spike

From equation 5.10 we compute ∆λ“ λn`1´λn as:

∆λ“
q
τ2

¨

˚

˝

tn`1´

ř

i
tie

ti
τ Θi
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i
e
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τ Θi

˛

‹
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i
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ř

i
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˛

‹

‚

“
q
τ2 ptn`1´ tnq (B.25)

“
q
τ2 ∆t (B.26)

thus the updating rule for each continuous segment of the linear kernel is given by:

λn`1 “ λn`
q
τ2 ∆t (B.27)



206 APPENDIX B. LINEARISABILITY OF POSTSYNAPTIC CURRENTS

B.1.3.4 Updating at Spike Times

Similarly as we did with the exponential buffer, we proceed to calculate λn`1 for the
event of a new spike η arriving to the postsynaptic neuron α, using equation 5.10 we
have:

λn`1 “
q
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(B.28)
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where we recognize the term in square brackets as εn`1 from equation B.24, thus:
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(B.29)

let us recover the open expression of εn`1 just for the term inside square brackets:
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(B.30)
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remembering that pac`bq “ apc` b
aq we get a very convenient expression:

λn`1 “
q
τ2

¨

˚

˚

˚

˝

∆t
ˆ

1´
1

εn`1

˙

`

„

´
tn`∆t

τ

N´1
ř

i
e

ti
τ



εn`1

»

—

—

—

–

tn´

N´1
ř

i
tie

ti
τ

N´1
ř

i
e

ti
τ

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

(B.31)

where we recognize the first term in square brackets as εn`1´1 and the second as τ2

q λn,
which allow us to make:
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. (B.32)

Equation B.32 is the updating rule for the linear buffer at the arrival of any new
spike. Notice that it uses the updated value of the exponential buffer which is the reason
for having deduced it first, remember from equation B.24 that εn`1 “ e´

∆t
τ εn`1 so it

is known to us from the available information at tn.

B.2 Details on Dual Exponential PSC

Figure B.1: Dual exponential postsynaptic currents generated by individual spikes
arriving at times 4, 5 and 6 ms. The light blue line represents the total induced current.

Similarly, as we did in the alpha case, let us begin with two incoming spikes:
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j1ptq “
q
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e
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j2ptq “
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e
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Θpt´ t2q (B.34)

substituting B.34 in 5.1:
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Recognizing the terms in parentheses as piece-wise constants, we can write: A“

e
t1
τ f Θ1` e

t2
τ f Θ2 and B“ e

t1
τr Θ1` e

t2
τr Θ2. Thus, equation B.35 becomes:
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As in the last section, let us analyze the time regions defined by the Heaviside
functions inside A and B (e.g. by the spike times), which are the same as in equation
B.8. This time A and B for each temporal domain are given by:

t ă t1 : A“ 0 and B“ 0,

t1 ă t ă t2 : A“ e
t1
τ f , and B“ e

t1
τr , (B.37)

t ą t2 : A“ e
t1
τ f ` e

t2
τ f and B“ e

t1
τr ´ e

t2
τr .
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The corresponding expressions for Jptq are as follows:

t ă t1 : Jptq “ 0, (B.38)

t1 ă t ă t2 : Jptq “
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„
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, (B.39)
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Equation B.40 can be rewriting as:

Jptq “
q

τ f ´ τr

„

e
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t´λ

τr



. (B.41)

where ζ and λ are known constants.

B.2.1 Generalization to N Spikes

Generalization can be achieved for an arbitrary number of spikes N at times ti, each of
them producing a postsynaptic current jiptq. Using equations 5.1 and 5.3, we have for
the the total current on α at an arbitrary time t:
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, (B.42)

rewriting the summations on the right hand as α and β:
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Jptq “
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where we have written tγ “ τ f lnpαq and tκ “ τrlnpβq, arriving at the analogous of
equation B.16, but for a dual exponential function.

In order to identify the time domains, let us open B.43 as:
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Equation B.44 defines N+1 regions of time characterized by the respective values
of Θti in each zone. This implies that for an arbitrary region t j´1 ă t j ă t j`1, equation
B.44 takes the form:
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i“0
e

ti
τ f q

τ f ´ e´
t´τrlnp

j
ř

i“0
e

ti
τr q

τr

˛

‹

‹

‹

‚

(B.45)

Which has the same form as B.41 but this time with constants:

ζ“ τ f lnp
j
ÿ

i“0

e
ti
τ f q (B.46)

λ“ τrlnp
j
ÿ

i“0

e
ti
τr q (B.47)

in the same way of equation B.13 is generalized with B.20, equation B.41 generalizes
with B.47.
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