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Abstract

Spatio-temporal variability in energy fluxes at the earth’s surface implies
spatial and temporal changes in observed Land Surface Temperatures (LST).
These fluxes are largely determined by variation in meteorological conditions,
surface cover and soil characteristics. Consequently, a change in these pa-
rameters will be reflected in a different temporal LST behavior which can
be observed by remotely sensed time series. Therefore, the objective of this
paper is to perform a quantitative analysis on the parameters that determine
this variability in LST to estimate the impact of changes in these parameters
on the surface thermal regime. This study was conducted in the Russian
Altay Mountains, an area characterized by strong gradients in meteorolog-
ical conditions and surface cover. Spatio-temporal variability in LST was
assessed by applying the Fast Fourier Transform (FFT) on eight year of
MODIS Aqua LST time series, herein considering both day and night time
series as well as the diurnal difference. This FFT method was chosen as it
allows to discriminate significant periodics, and as such enables distinction
between short-term weather components, and strong, climate related, peri-
odic patterns. A quantitative analysis was based on multiple linear regression
models between the calculated, significant Fourier components (i.e. the an-
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nual and average component) and five physiographic variables representing
the regional variability in meteorological conditions and surface cover. Phys-
iographic predictors were elevation, potential solar insolation, topographic
convergence, vegetation cover and snow cover duration. Results illustrated
the strong inverse relationship between averaged daytime and diurnal differ-
ence LST and snow duration, with a R2

adj of 0.85 and 0.60, respectively. On
the other hand, nocturnal LST showed a strong connection with elevation
and the amount of vegetation cover. Amplitudes of the annual harmonic
experienced both for daytime and nighttime LST similar trends with the set
of physiographic variables -with stronger relationships at night-. As such, to-
pographic convergence was found to be the principal single predictor which
demonstrated the importance of severe temperature inversions in the region.
Furthermore, limited contribution of the physiographic predictors to the ob-
served variation in the annual signal of the diurnal difference was retrieved,
although a significant phase divergence was noticed between the majority of
the study region and the perennial snowfields. Hence, this study gives valu-
able insights into the complexity of the spatio-temporal variability in LST,
which can be used in future studies to estimate the ecosystems’ response on
changing climatic conditions.

Keywords: Land Surface Temperature (LST), Fast Fourier Transform
(FFT), Russian Altay Mountains, spatio-temporal variability,
physiographic predictors

1. Introduction1

Land Surface Temperature (LST) plays an essential role in interactions2

and energy fluxes at the surface-atmosphere interface (Coll et al., 2005; So-3

brino et al., 2003). In detail, spatio-temporal variability in LST reveals4

spatial and temporal changes in the state of the land surface which has been5

widely implemented in surface energy and water budget estimations (Bas-6

tiaanssen et al., 1998; Karnieli et al., 2010; Roerink et al., 2000b). In this7

context, LST has been used for a wide range of environmental studies rang-8

ing from forest fire risk assessment (Manzo-Delgado et al., 2009) to urban9

heat island (UHI) monitoring (Chen et al., 2006; Weng et al., 2004) and10

permafrost monitoring and modeling (Hachem et al., 2009; Langer et al.,11

2010; Westermann et al., 2010). All these studies rely on the sensitivity of12

LST to regional differences in surface albedo, the amount of water available13
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for evaporative cooling, wind speed and surface roughness which regulate14

the strength of the sensible and latent heat fluxes (Oke, 1987). These re-15

gional differences are the result of influencing factors like vegetation cover,16

surface moisture, soil types, topography and the meteorological conditions17

(Sun and Pinker, 2004; Julien et al., 2006; Sandholt et al., 2002; Veraverbeke18

et al., in review). Consequently, LST plays a major role in the global change19

problematic and associated feedback effects: an initial increase in surface20

temperature might alter the influencing factors (e.g. accelerated snow melt,21

desertification, precipitation increase) which in turn can reinforce (positive22

feedback) or weaken (negative feedback) this increase. As such, in a changing23

climate, understanding and quantifying the spatio-temporal relationships be-24

tween LST and its influencing factors is essential to make future predictions25

about global and regional temperature trends and coupled feedback effects26

(McCarthy et al., 2001).27

Therefore, the development of quantitative models that describe this28

spatio-temporal relationships between LST and the environmental factors29

is crucial. Accordingly, obtaining these models was set as one of the main30

objectives, recently discussed on the International Workshop on the Retrieval31

and Use of Land Surface Temperature (NCDC, 2008). This is particularly32

important in mountain ranges, where temperatures have increased at a higher33

rate than the global mean during the 20th century (McCarthy et al., 2001).34

A variety of environmental factors interact in mountain systems, resulting35

in complex spatio-temporal patterns of LST with large temperature gradi-36

ents at small distances (Fu and Rich, 2002; Liu et al., 2006; Pouteau et al.,37

2011). These patterns and gradients often are the result of a strong topo-38

graphic variation interacting with heterogeneous snow and land cover and39

variable meteorological conditions. Several studies have examined the ther-40

mal variability in mountain environments to assess the role of different pa-41

rameters in these patterns and gradients. For example, Chuanyan et al.42

(2005) compared methods to model air temperature and demonstrated that43

topographic parameters such as elevation and slope have the biggest impact44

on the variability of local climate. Pouteau et al. (2011) highlighted the role45

of i) topographic convergence and potential insolation on local night frost46

risk, ii) elevation, latitude and the distance to salt lakes on regional tem-47

peratures. Snow cover also plays an important role in high mountains as it48

strongly affects the biotic and abiotic environment which is reflected in veg-49

etation zonation and composition (Kozlowska and Rackowska, 2006). Snow50

influences plant formation by reducing the duration of the growing season,51
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increasing soil moisture due to meltwater supply and altering subsurface tem-52

peratures (Kozlowska and Rackowska, 2006; Zhang, 2005). Additionally, an53

increase in snow cover extent increases surface albedo, which consequently54

reduces surface temperatures by decreasing the absorption of solar radiation55

(Bounoua et al., 2000; Kaufmann et al., 2003). Vegetation cover is another56

major player influencing surface temperatures as reported by Bounoua et al.57

(2000) who observed a cooling in summer temperatures caused by increased58

terrestrial vegetation within land covers. This effect was confirmed by Jeong59

et al. (2009) and Kaufmann et al. (2003). Furthermore, a slight warming60

during the winter was observed, primarily due to reduced albedo which is61

caused by partial masking of the snow surface by a denser canopy (Bounoua62

et al., 2000).63

Accurate models that describe the spatio-temporal relationships between64

LST and the environmental factors require consequently an extensive spatio-65

temporal dataset of LST and factors as topography, snow, vegetation and66

insolation. Remote sensing data, due to its repetitive and synoptic nature, is67

very useful in this framework as they allow to integrate spatial and temporal68

information of LST, snow and vegetation cover with existent topographical69

information. Consequently, remote sensing data can provide a data set, that70

allows to model the spatio-temporal patterns between LST, snow cover and71

vegetation in an mountainous topography.72

Different techniques have been previously reported to describe and quan-73

tify temporal characteristics of remote sensing time series (Coppin et al.,74

2004; Eastman and Fulk, 1993; Jönsson and Eklundh, 2002, 2004). Among75

the different methods, the Fast Fourier Transform (FFT) has been success-76

fully applied by various authors to minimize noise and enhance relevant77

temporal features (Azzali and Menenti, 2000; Evans and Geerken, 2006;78

Jakubauskas et al., 2001; Lhermitte et al., 2008; Menenti et al., 1993; Olsson79

and Eklundh, 1994). The FFT decomposes time series into periodic signals80

in the frequency domain, which enables the analysis of signals with a specific81

frequency. Moreover, by selecting only those relevant harmonics, application82

of the FFT to time series comprising multiple years, retains only the general83

recurring signals. Applied to LST time series, this means that only long-term84

temperature features (climate) can be studied, whereas short-term variable85

temperature signals (weather) can be discarded. Consequently, the FFT is a86

suited technique to compare climate related temperature signals to datasets87

of explanatory variables.88

Hence, the main objective of this paper is to perform a quantitative anal-89
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ysis of the parameters determining the spatio-temporal variability in LST.90

Therefore, the relationship between the significant Fourier components de-91

rived from eight year of LST time series and five physiographic variables92

(elevation, snow cover, vegetation cover, topographic convergence and poten-93

tial solar radiation) is examined by multiple regression analysis. This study94

was performed in the Russian Altay Mountains, an area characterized by95

strong spatio-temporal variability in the five physiographic variables (Klinge96

et al., 2003; Shaghedanova et al., 2002). At first, the study area and satellite97

data are presented in Section 2, while the Fourier transform is explained in98

Section 3. Results of the FFT, and relationships between components and99

physiographic variables are shown in Section 4 and discussed in Section 5.100

2. Study area and data101

2.1. Study area102

The study area (Fig. 1) is situated in the Russian Altay Mountains, more103

detailed in the Kosh-Agach Region of the Altay Republic. This region has104

been subject to a tradition of geophysical, geographical and archaeological105

research (Gheyle, 2009; Goossens et al., 2009; Marchenko, 2007). The Rus-106

sian Altay Mountains extend between approximately 48 an 53◦N latitude and107

83 and 92◦E longitude with the Kosh-Agach Region situated at the meet-108

ing point of four countries: China, Kazakhstan, Mongolia and the Russian109

Federation.110

INSERT FIG.1 HERE111

The climate in the area is extremely continental with long, cold, dry112

winters and short summers (König and Rilke, 2004). The mean annual air113

temperatures (MAAT) at the Kosh-Agach meteorological station (Fig. 1) for114

1966-75 was -5,38◦C, while for 1985-94 it was -4,28◦C (Fukui et al., 2007).115

Furthermore, strong temperature inversions occur in the former Pleistocene116

lake-systems of the Kuray and Chuya basins (Fig. 1) (Baker et al., 1993;117

Rudoy, 2002) and persist for several months (Klinge et al., 2003). In winter,118

the Siberian anticyclone blocks precipitation in the study area, except in the119

high mountains. Summers, however, are relatively warm and humid, with120

precipitation brought by the northwesterly flow. As a result, annual sums of121

precipitation vary from almost zero up to 1500 mm, depending on altitude122

and exposure (Shaghedanova et al., 2002).123

5



The geomorphology of the region can be divided into several categories.124

Firstly, the high mountain ranges of Katun, Tabyn-Bogdo-Ola, North/South125

Chuya and Kuray contain several glaciated peaks, which are among the high-126

est in Siberia ranging up to 4506 meters (Mount Belukha). Furthermore,127

ancient peneplanes (e.g. Ukok Plateau), together with intermontane depres-128

sions (e.g. Chuya and Kuray Steppe) give the landscape an open and vast129

character, typical for the study area (Shaghedanova et al., 2002).130

The vegetation in the study area is characterized by a strong developed131

vertical zonality, further complicated by topography effects (forested north-132

ern and treeless southern slopes) and an increased aridity towards the south133

east (Shaghedanova et al., 2002). Desert steppe (mainly Stipa glareosa)134

is typical for the intermontane depressions (Chuya and Kuray steppe), as135

well as for the northwest of Mongolia (König and Rilke, 2004; Zhigulskaya,136

2009). North-oriented slopes and more humid river valleys are dominated by137

woodlands; mainly Larix sibirica with sporadic occurrence of Pinus sibirica138

(Pelánková and Chytrý, 2009). These types mainly occur in the northwest139

of the study area. Above the tree line, which is situated between 2200 and140

2500m, the subalpine zone accommodates shrublands and subalpine mead-141

ows, which shift towards alpine tundra in the alpine belt (Shaghedanova142

et al., 2002).143

2.2. Data144

2.2.1. Satellite data145

MODIS (Moderate Resolution Imaging Spectroradiometer) satellite time146

series were used in this study. The MODIS sensor is onboard the Terra147

and Aqua satellites and provides four daily observations at 1:30 AM (Aqua148

ascending node), 10:30 AM (Terra descending node), 1:30 PM (Aqua de-149

scending node) and 10:30 PM (Terra ascending node) local time (Justice150

et al., 2002). Eight year of Aqua MODIS daily LST scenes (MYD11A1,151

1km resolution, 1K accuracy (Coll et al., 2005; Wan, 2008), Aqua and Terra152

MODIS daily snow product (MYD10A1/MOD10A1, 500m resolution) and153

Aqua MODIS 16-day NDVI product (MYD13Q1, 250m resolution) cover-154

ing the study area, were acquired for the period 01/10/2002-30/09/2010.155

Daytime LST, nighttime LST, snow cover, NDVI and associated Quality As-156

surance (QA) layers were subsequently extracted. Aqua LST images were157

chosen instead of scenes from the Terra platform, as Aqua record images158

around middle night and day. Eight year of data was acquired to enhance159
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climate related signals and reduce the influence of interannual variability and160

short-term effects.161

Preprocessing included subsetting, reprojecting and the removal of spu-162

rious data-points. These spurious data-points encompass pixels affected by163

clouds and other atmospheric disturbances, which were removed by using164

the enclosed quality assurance file. Several authors address the importance165

of such a thoroughly screening of cloud contaminated data points in time166

series analysis (Chen et al., 2004; Julien and Sobrino, 2010; Julien et al.,167

2006). Nevertheless, some spurious data points might still have entered the168

LST data set resulting in some erroneous values. Therefore, and to enable169

comparison with NDVI composites, daily LST time series were compiled into170

16-day composites(LSTday and LSTnight). Self-created composites, created171

by using a median value composite method, were preferred above standard-172

ized MODIS 16-day LST products due to the non-uniform sample-interval173

near year-end of the latter. These standardized products would affect the174

Fourier components as demonstrated by Scharlemann et al. (2008). The me-175

dian composite method was preferred thanks to its independency towards176

outliers, as well as the representation of more naturally averaged tempera-177

tures. Contrary, the more used maximum value composite algorithm (Hol-178

ben, 1986) would tend to overestimate temperatures. However, despite this179

chosen composite method, some errors were inevitably introduced by the im-180

possibility to retrieve LST images during cloudy periods: By restricting the181

LST data to clear-sky days and cloud free nights, it is likely to underesti-182

mate winter temperatures (due to strong radiative cooling) and overestimate183

summer temperatures. Therefore, the accuracy of the interpreted relation-184

ships between Fourier components and physiographic variables will increase185

with decreasing number of cloud covered days. Finally, time series of the186

diurnal difference, LSTdiff , were created by subtracting the two compiled187

16-day time series, LSTday and LSTnight. This diurnal temperature range188

was incorporated as it reflects the surface’s buffering capacity (Verstraeten189

et al., 2006)190

In addition, daily snow cover time series were calculated at 1km resolution191

by resampling the Aqua snow cover product. Cloud contaminated data was192

as much as possible filled by the corresponding Terra product. Remaining193

data-gaps were filled by comparing the pixel status the day just before and194

after a cloudy period: if both pixels showed the same status, the cloud gaps195

were consequently given this status. If both pixels however showed opposite196

values (mainly during onset/offset periods), the cloudy pixels were assigned197
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as snow covered. The latter was performed as the identification of thin snow198

layers (<1cm) can be problematic (Hall and Riggs, 2007). This uncertainty199

is, however, diminished by the averaging effect and did not exceed seven days200

for a single year. Furthermore, 16-day, 1km NDVI time series were created201

by resampling the 250 m product. Additionally, zero values were assigned to202

snow covered pixels.203

2.2.2. Topographic data204

A digital terrain model was derived from SRTM (Shuttle Radar Topog-205

raphy Mission) elevation data (Jarvis et al., 2008; Reuter et al., 2007). This206

altitudinal data, with 90 m horizontal resolution and a vertical accuracy207

better than 9 m, was resampled to and co-registered with the MODIS LST208

images in order to enable a statistical comparison.209

2.2.3. Physiographic predictors210

Based on the terrain model and satellite data, five different types of phys-211

iographic variables were calculated to examine their explanatory power in212

the observed spatial patterns of LST-metrics (Fig. 2). Firstly, elevation213

at 1km resolution, was directly derived from the obtained digital elevation214

model. Secondly, among several potential snow metrics (Reed et al., 2009),215

the averaged yearly number of snow covered days, nsnow, was selected to216

represent the snow influence for every pixel in the study area. This partic-217

ular metric was preferred because it does not require the calculation of an218

onset/offset value of the snow season, which demands subjective thresholds.219

Thirdly, the influence of vegetation on the LST-metrics was estimated by cal-220

culating the averaged yearly integrated NDVI (iNDVI) for every pixel. This221

iNDVI-metric was chosen among the several phenological metrics as it sum-222

marizes the complete growing season (Reed et al., 1994; Zhang et al., 2003).223

Fourthly, the influence of the topographical position was examined by calcu-224

lating the Compound Topographic Index (CTI) (Gruber et al., 2009; Quinn225

et al., 1991). This index is a function of both the slope and the upstream226

contributing area and has been previously used as an index of cold air pooling227

(Holden et al., 2010; Pouteau et al., 2011). Low CTI values represent convex228

position positions like mountain crests, while high CTI values correspond229

to coves or hillslope bases. This is important as cold-air pooling or tem-230

perature inversions frequently happen in mountain environments, especially231

when large-scale winds are weak and skies are clear (Clements et al., 2003;232

Lundquist et al., 2008). These inversions exist when warm air overlies cooler233
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air. This suppresses turbulence and effectively eliminates upward motion234

(Oke, 1987). Accordingly, cold air, which is the result of radiative cooling, is235

trapped by this effective lid which prevents the surface and air from heating236

up. Finally also the total yearly potential solar radiation (potSRAD) was237

calculated. This variable was obtained by adding up solar radiation, calcu-238

lated at hourly interval by the method described by Kumar et al. (1997), for239

clear sky conditions. This method accounts for latitude, elevation, slope and240

aspect, sun angle and topographic shading.241

INSERT FIG.2 HERE242

3. Methods243

3.1. Fast Fourier Transform244

The three compiled LST time series (LSTday, LSTnight, and LSTdiff )245

were decomposed into the frequency domain by applying the Mixed Radix246

Fast Fourier Transform (FFT) (Singleton, 1969). This is a computationally247

fast variant of the Discrete Fourier Transform (DFT) which can be used to248

transform any equidistant discrete time series f(t) into a set of scaled cosine249

waves (components) with unique amplitude Ak and phase shift φk (Bracewell,250

2000). As such the original time series can be reconstructed by:251

f(t) = A0 +
N−1∑
k=1

Ak cos(2πkt+ φk) (1)

Where A0 is the arithmetic mean of the time series, k is the frequency of252

the FFT component, N is the number of samples in the time series and t is253

an index representing the sample moment. This representation as a sum of254

unique cosine waves, allows to assess the contribution of each frequency to255

the original signal (Lhermitte et al., 2008).256

Applying the FFT to the diurnal difference is similar to calculating the257

Fk-distance between the FFT components of the two time series. This Fk-258

distance is used as a similarity measure in a hierarchical image segmentation259

algorithm (Lhermitte et al., 2008). Mathematically, the Fk-distance corre-260

sponds to subtracting the two time series for each observation in the temporal261

sequence and using the amplitude of the resulting difference vector.262

Relevant harmonics, used in the regression analysis, were selected by263

examining the temporal variability in the FFT components (Lhermitte et al.,264
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2008). This was achieved by means of calculating the contribution of each265

amplitude to the total amplitude variance (Jakubauskas et al., 2001).266

3.2. Regression analysis267

The relation between the five different physiographic predictor variables268

and the relevant Fourier-components was examined by applying multiple lin-269

ear regressions models (i.e. an approach to model the relationship between270

a response variable Y and one or more predictors X) with varying numbers271

of physiographic predictors as independent variables. Linear regression was272

preferred over quadratic equations, to prevent overfitting and promote anal-273

ysis of the different relations. In addition, several authors addressed a linear274

relationship between temperature and one of the physiographic variables:275

e.g. elevation (Oke, 1987; Pouteau et al., 2011). Interaction terms were in-276

cluded to consider that the effect of a certain variable on the response might277

be influenced by the level of another variable. Furthermore, collinearity ef-278

fects were examined by calculating the Spearman’s rank order correlation279

coefficient (e.g. Hjort et al., 2010) which showed no sign of an unacceptably280

high level of intercorrelation between the independent variables (all values281

<0.6). Finally, also the potential problem with spatial autocorrelation (i.e.282

the fact that nearby LST-values are likely to be similar) was addressed by283

taking only one pixel every 10 kilometer. For every possible combination of284

variables, the adjusted R2
adj-value (coefficient of determination adjusted for285

the number of independent variables) and root mean square error (RMSE,286

estimator for the difference between observed and modelled values) were cal-287

culated to evaluate how well the particular variable-constellation explained288

the observed variance in the Fourier component.289

4. Results290

4.1. FFT applied on LST time series291

Fig. 3a displays the regional averaged, single sided amplitude spectrum292

of the FFT analysis applied on all three LST time series. It is clear from293

the figure that significant peaks are found at k=0, k=8 and to lesser ex-294

tent at k=16 and k=24. The frequency peak at k=0 corresponds to the295

average component, which represents the average LST-value throughout the296

observation period. Averaged over the study area, A0,day=3.5◦C, while at297

night, A0,night=-12.7◦C with A0,diff=16.2◦C. However, Fig. 3a also demon-298

strates significant annual oscillations for all three time series as illustrated299
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by the peak at the annual frequency (k=8). These oscillations are related300

to the strong annual signal present in both LSTday and LSTnight series and301

the seasonal difference between them. These strong annual signals reveal the302

extreme seasonality in these continental mountain ranges.303

INSERT FIG.3 HERE304

At night, the annual term explains 93.3 ± 1.7% of the total amplitude305

variance, while during daytime the relative contribution is at 91.7 ± 1.7%.306

Other frequencies hardly exceed the 1% value (both day and night) which is307

reflected by their relatively low amplitudes in Fig. 3a. In contrast, the annual308

term for the diurnal difference only describes 63 ± 12% of the total variance,309

which can be explained by the weaker annual signal present in these series310

and more pronounced higher frequencies. This is well demonstrated in Fig.311

3b which shows more short-term oscillations present in the original LSTdiff312

time series of a random pixel in contrast to its original LSTday and LSTnight313

series. Despite this, the different amplitude spectra confirmed the relevance314

of the annual term in the dataset which will therefore, together with the315

average term, be used for further analysis. These components are illustrated316

in Fig. 3b for the three LST time series of a random pixel. Consequently,317

Fig. 3b also demonstrates how LST composites can be represented by the318

combination of their average and annual Fourier component.319

4.2. Spatio-temporal variability in LST320

Fig. 4 contains representations of the amplitudes of Fourier components321

A0 and A8 for all three temperature time series and reveals the spatio-322

temporal variability in LST. In addition, six pixels showing significant differ-323

ences in average and annual LST signals are plotted in Fig. 5. These pixels324

are characteristic for certain subregions and as such enhance interpretation325

of the regional variability. Accordingly, Fig. 5 shows the thermal regime for326

pixels located in the dry steppe areas of Mongolia (?), Ukok (♦) and Chuya327

(/) as well as for the Chuya River Plain (5, with moist grass) and Katun328

River Valley (�, covered with coniferous forests) and on the perennial snow-329

fields around Mt. Belukha (◦). The location of these pixels is illustrated in330

Fig. 4.331

INSERT FIG.4 AND FIG.5 HERE332
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Spatial (Fig. 4) and temporal (Fig. 5) comparison of the mean term (A0)333

shows that during daytime steppe environments are characterized by an ex-334

treme thermal regime: hot summers, alternated with very cold winters, result335

in high A0,day-values (Fig. 4a). In contrast, lower A0,day-values are seen in336

the peneplanes and river valleys, mainly due to lower summer temperatures337

(Fig. 5a). Perennial snowfields exhibit the lowest average daily tempera-338

tures in the study area. At night however, the steppe areas show relatively339

lower averaged temperatures (A0,night) than for instance in the valleys of the340

northwest (Fig. 4c and 5b). Moreover, A0,night-values on the Ukok plateau,341

which can be seen as a high elevated steppe ecosystem, are among the lowest342

in the study area (Fig. 5b). Consequently, these steppe areas have the high-343

est A0,diff -values (around 25 degrees), while the river valleys experience less344

diurnal amplitude (Fig. 4e and 5c). Furthermore, annually averaged diurnal345

differences on high mountain ranges hardly exceed 10 degrees (Fig. 4e).346

When considering annual amplitudes (A8), steppe areas generally show347

strong seasonality (Fig. 4b and d) characterized by low winter and high348

summer surface temperatures (Fig. 5a and b). In this context, it is striking349

that A8,day-values in Mongolian steppes are much lower than in the Rus-350

sian steppes (Fig. 4b). Secondly, the Chuya River Plain displays less daily351

seasonality than the steppe by which it is surrounded (Fig. 4b), although352

this difference disappears at night. Besides, low A8,day and A8,night-values353

are encountered in the forests of the northwest and on the perennial snow-354

fields. Annual amplitudes of the diurnal difference (A8,diff ) reveal a contrast355

in seasonality between west and east. While relatively low values are typical356

for the west (with the lowest values observed on the perennial snowfields),357

larger annual variation in diurnal amplitude occurs in the east (Fig. 4f).358

Despite this general east-west difference, the lower steppe parts of Mongolia359

experienced relatively lower seasonality as showed in Fig. 4f and Fig. 5c.360

Largest seasonality appears in the Chuya and Kuray steppe, although signif-361

icantly lower A8,diff -values were retrieved in the Chuya River Plain (Fig. 4f362

and 5c). Additionally, these regional differences in seasonality of the diurnal363

difference were not only restricted to divergent amplitudes, but also in the364

timing of the maximum difference: for instance, it is shown in Fig. 5c that365

at Mt. Belukha, this maximum is observed during winter while in contrast,366

all other pixels showed their maximum in late spring/early summer. Re-367

gional variation in timing of this maximum can be assessed by calculating368

the phase of the annual harmonic (k=8). Mathematically, this was achieved369

by calculating φ8 from Eq.(1) for which the results are presented in Fig. 6.370
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Accordingly, Fig. 6 indicates that perennial snowfields showed less diurnal371

difference in summer than during winter which contrast with the overall be-372

havior where the maximum difference is observed in the months May-July.373

The same representations can be made for phases of the annual signal present374

in LSTday and LSTnight, but these were not considered in this study due to375

little regional variation.376

INSERT FIG.6 HERE377

4.3. Linear Regression Analysis378

The results of the multiple linear regression analysis are summarized in379

Table 1 and Fig. 7-9. Table 1 shows R2
adj and RMSE-values for different380

combinations of descriptor variables, while the relationships between those381

variables and the amplitudes of the Fourier components A0 and A8, are graph-382

ically presented in Fig. 7 (day), Fig. 8 (night) and Fig. 9 (diurnal difference).383

Hardly any significant explanatory power could be observed for potSRAD,384

not as a single predictor, nor as an additional predictor variable (Table 1).385

Consequently, potSRAD was not included in Fig. 7-9. Nevertheless, with386

the four remaining predictor variables, between 74 and 87%, and 36 and387

66% of the variance in A0 and A8, respectively, was explained. In Fig. 7-9,388

nsnow, elevation and the CTI-index were chosen as independent variables as389

they explained most of the variance in the Fourier components. As a result,390

iNDVI was chosen as color coding.391

INSERT TABLE 1 HERE392

INSERT FIG.7,8 AND 9 HERE393

4.3.1. Day394

Table 1 and Fig. 7b indicate a robust linear relationship between A0,day395

and the duration of the snow cover (nsnow). Moreover, this relationship shows396

the highest R2
adj (0.85) and lowest RMSE (2.02) for any single predictor vari-397

able. This relationship implies that an increase in the number of snow days398

relates to a linear decrease in the temporally averaged daily LST. Based on399

the slope of the regression fit, this means that if snow cover duration drops400

with twenty days, A0,day increases with 1.5◦C. Besides, it is demonstrated401

that high iNDVI values are restricted to those areas with snow days between402

75 and 250 (Fig. 7b). As such, below and above these limits only low-stature403
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vegetation persist. Elevation shows a weaker relationship with A0,day: the tri-404

angular shape indicates that at lower altitudes, a wide range of annual mean405

temperatures occur (Fig. 7a), partly due to the amount of vegetation cover406

(iNDVI) with lower/higher temperatures for high/low iNDVI-values, respec-407

tively. This interaction between vegetation cover and elevation on A0,day is408

demonstrated by a R2
adj-value which is higher than the sum of their individual409

R2
adj (Table 1). Finally, also a slight positive connection between CTI and410

A0,day was retrieved, which demonstrates higher overall daily temperatures411

for the topographical basins (Fig. 7c).412

For the regression analysis between the predictor variables and A8,day,413

overall lower R2
adj-values are obtained than for A0 (Table 1). This implies414

more complex relationships. Nevertheless, in general, A8,day decreases with415

elevation (Fig. 7d) and (Fig. 7e), and increases with CTI (Fig. 7f). As416

a single variable, CTI, was the best explanatory variable for the variance417

in A8,day with a R2
adj-value of 0.30. Fig. 7d also shows that, the general418

trend of a decreasing A8,day with increasing elevation did not hold true for419

high iNDVI values. Actually, Fig. 7d demonstrates that, temperatures at420

the same altitude show higher seasonality if there is a low-stature vegetation421

cover. Consequently, both variables experience strong interaction effects as422

illustrated in Table 1.423

4.3.2. Night424

In contrast to the robust linearity during daytime, Fig. 8b shows a more425

complicated relationship between nsnow and A0,night. A negative correlation is426

still present for low iNDVI-values, but disappeared for higher iNDVI-values.427

These pixels display independency to nsnow, and consequently other variables428

are required to predict trends in A0,night. As such, elevation shows a higher429

correlation with A0,night than with A0,day, indicating lower temperatures at430

night with increasing altitude (Fig. 8a). Moreover, CTI enhances this rela-431

tionship to a R2
adj of 0.66, which is reflected in the small negative deviations432

in the elevation-A0,night diagram, corresponding to high CTI-values (Fig. 8a).433

This means that a pixel located in a topographical basin experiences overall434

lower night temperatures than pixels at the same elevation but with lower435

CTI-values. In contrast to daytime, iNDVI shows a strong, positive connec-436

tion with A0,night which results in a R2
adj of 0.47.437

For A8,night, similar relationships are found as during daytime, with a438

higher R2
adj for A8,night than A8,day. This means that the annual amplitude439

at night also decreases at higher elevations (Fig. 8d), with more snow days440
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(Fig. 8e) and increases in topographical basins (Fig. 8f). Once more, iNDVI441

and elevation show high dependency (Table 1). With the four principal442

explanatory variables together, a total R2
adj-value of 0.66 could be reached443

and a RMSE of less than 1◦C.444

4.3.3. Diurnal difference445

The major part (R2
adj=0.60) of the observed variance in A0,diff could446

be attributed to changes in nsnow. In fact, a longer snow cover induces447

overall lower A0,diff -values (Fig. 9b). Moreover, strong interaction effects are448

observed between nsnow and iNDVI, which result in relatively lower A0,diff -449

values for pixels with high iNDVI. Overall, a multiple regression with the450

five variables shows a R2
adj of 0.79 and a RMSE of 2.38◦C (Table 1). In451

contrast, low explanatory power is observed between A8,diff and the set of452

physiographic predictors with a R2
adj not reaching above 0.16 for a single453

predictor (nsnow).454

5. Discussion455

5.1. FFT applied on LST time series456

This study exploits the possibilities of the FFT to analyze spatio-temporal457

variability in remotely sensed LST. Hitherto, this method was mainly re-458

stricted to NDVI time series (Azzali and Menenti, 2000; Jakubauskas et al.,459

2001; Menenti et al., 1993; Moody and Johnson, 2001; Roerink et al., 2000a;460

Lhermitte et al., 2008) and few studies have applied the FFT to LST time461

series (Julien et al., 2006). However, in this study, the FFT has shown to462

be particularly useful to analyze LST time series. In fact, the ability of the463

method to discriminate fundamental periodics, enables distinction between464

short-term weather components, and strong, climate related, annual pat-465

terns. As such, it allows to extract mean and annual climatologies. These466

climatologies can then be linked to different environmental parameters to un-467

derstand their role on the surface thermal regime. Moreover, this method has468

the advantage to allow fast comparison between geographical areas, as the469

Fourier components always express a certain periodicity (Lhermitte et al.,470

2008).471

Assessment of the spatio-temporal variability of the Fourier components472

reflected the importance of the average (k=0) and annual signal (k=8) in473

the original time series. These periodics correspond to the relevant signals474
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found by several authors in NDVI time series (Lhermitte et al., 2008; Lo-475

yarte et al., 2008), although this significance is closely related to the local476

climatic conditions, as well as typical vegetation phenologies. As such, the477

FFT method was succesfully applied to analyze spatial variability in aver-478

age and annual climatologies. However, as stated by Wagenseil and Samimi479

(2006) and Lhermitte et al. (2011), care should be taken as the assumption480

of a perfect sinusoidal signal is often not satisfied for the complex shape of481

ecosystem dynamics and FFT analysis may therefore require higher frequency482

terms. Consequently, the annual climatology of time series determined by483

FFT analysis is an approximation which will be less suitable if more shape484

modulation of the annual signal is present in the time series. This is e.g.485

the case for barren pixels with a long lasting snow cover and a short but486

intense heating period. Furthermore, it is likely that in other areas, for ex-487

ample regions experiencing dry and wet seasons, bi-annual and even higher488

frequencies explain significant percentages of the temporal variability in the489

original time series. However, these pronounced higher order harmonics are490

absent in this particular LST-case, due to the extreme continentality of the491

study area, with long and cold winters and relatively hot summers.492

Several limitations of the FFT-method has to be taken into account. The493

Fourier transform requires that signals, present in the data, are stationary,494

infinite in duration and the observation period is large enough to detect495

them. As such, the method, applied on eight year time series, implies the496

assumption of steady state temperatures in the Russian Altay Mountains497

during the observed eight years. This means that trends in averaged annual498

temperature, either an increase or decrease, as a change in the annual curve499

shape (extension/shortening of the seasons, shift in onset/offset of the grow-500

ing season) cannot be detected by the method. Besides, also abrupt changes501

or discontinuities resulting from disturbance events are neglected (Verbesselt502

et al., 2010). Hence, this method fails to retrieve any signal changes, related503

to the global change problematic. This difficulty, was also encountered by504

Lhermitte et al. (2008), who proposed the application of the FFT on a yearly505

basis, and consequently consider the output differences between subsequent506

years. Despite these shortcomings, the main objective of this study is to507

perform a quantitative analysis on the parameters defining spatio-temporal508

variability in LST. Therefore, the influence of inter-annual variability, abrupt509

changes or weak trends are minor.510
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5.2. Relationships between Fourier components and physiographic variables511

The choice of appropriate physiographic variables is a subjective decision,512

which requires in-depth knowledge of the physical processes in the specific513

study area. Previous studies (Pouteau et al., 2011; Liu et al., 2006; Fu and514

Rich, 2002; Chuanyan et al., 2005; Bounoua et al., 2000; Kaufmann et al.,515

2003; Julien et al., 2006) made us test the influence of snow and vegetation516

cover and the local topography on observed differences in calculated Fourier517

components. Topography was further subdivided into three parameters (ele-518

vation, yearly potential solar radiation and the compound topographic index519

(CTI)) to assess the influence of different topographical attributes. The520

CTI-index was used to evaluate the effect of the strong air temperature in-521

versions in the area on the surface temperature regime, while the potential522

solar radiation (potSRAD) was tested as an integrated effect of aspect and523

slope. Despite the use of these five variables, other parameters such as land524

cover and soil characteristics, might significantly contribute to the observed525

spatio-temporal variability in LST. However, due to the relative good fit of526

the regression models built with these five variables and possible intercorre-527

lation between land cover and iNDVI as suggested by e.g. Reed et al. (1994),528

other parameters were neglected in our analysis.529

Statistics from the multiple linear regression analysis illustrate the strong530

predictive capacity of the models, which can consequently be used for assess-531

ing the influence of the physiographic variables on the surface climatology.532

Moreover, these models allow prediction of the response in surface clima-533

tology on changes in these variables. Especially, mean surface climatology,534

represented by A0, is well estimated by the multiple linear regression mod-535

els. This is indicated by high R2
adj and low RMSE-values. While a high R2

adj536

(> 0.7) can be reached with only one variable (nsnow) for A0,day, multiple537

variables are needed to reach the same result for A0,night and A0,diff . When538

the four variables (elevation, nsnow, iNDVI and CTI) are used, predictions539

for mean day, night and diurnal difference temperatures have a RMSE of540

1.88, 1.32 and 2.44◦C, respectively. Annual climatologies (A8) however, are541

slightly less well predicted by the linear regression models which might be542

attributed to the complex shape of the original time series as described in 5.1.543

Nevertheless, R2
adj-values of 0.51 and 0.66, and a RMSE of 2.39 and 0.99◦C,544

for A0,day and A0,night, respectively, show that the model with the four vari-545

ables is still rather accurate. In contrast, little explanation of the observed546

variance in A8,diff could be explained by the set of physiographical variables547

used in this study. Partly, this can be attributed to the lower contribution548
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of the annual signal to the total amplitude variance, which shows the greater549

importance of higher-order components. Consequently, LSTdiff shows a less550

pronounced annual signal and more noise compared to LSTday and LSTnight551

as for instance illustrated in Fig.3b. This higher noise level originates from552

subtracting the two time series LSTday and LSTnight and their corresponding553

white noise, which implies a new time series characterized by white noise554

with a greater variance (Marsaglia, 1965).555

5.2.1. A0556

Observed regional differences in the average component (A0) illustrate557

the combined effect of general, topography-related temperature patterns as558

well as the effect of surface cover on the surface thermal regime.559

Topography controls surface temperatures by changing the air temper-560

ature due to the environmental lapse rate (Oke, 1987). Consequently, as561

surface temperatures connect to air temperatures, LST tends to decrease562

with increasing elevation. In the study area, this effect counts especially at563

night (Table 1) and as such corresponds to the findings of Fu and Rich (2002)564

and Pouteau et al. (2011). During daytime, this effect was less present due565

to the greater importance of surface cover effects. These effects at daytime566

are illustrated by the significant amelioration produced in the linear regres-567

sion models when introducing the surface cover variables, nsnow and iNDVI568

(Table 1).569

As such, snow cover duration shows a strong negative linear correlation570

with A0,day. This relationship is in accordance with the work of Bounoua et al.571

(2000) and Kaufmann et al. (2003), who reported increasing temperatures572

on a continental scale coinciding with a reduction in snow cover extent. This573

increase is caused by the accompanied reduction in surface albedo, which574

enables a longer exposure of the soil to direct solar radiation. This relation-575

ship was the strongest observed in the Kosh Agach region and implies that576

a shift in snow season length would have a severe impact in the region. For577

instance, if the snow cover duration decreases with 20 days, which could be578

attributed to a more pronounced warming in spring, averaged daily surface579

temperatures would increase with 1.5 degrees. Conversely, temperatures will580

decrease if the snow season extends. The latter might be expected if winter581

precipitation increases and spring temperatures remain at the same level.582

At night however, the absence of direct solar radiation ceases the linearity583

between nsnow and A0,night.584

Vegetation cover has a strong dampening effect on mean LST. Firstly, a585
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strong positive connection exists in the study region between the mean night586

temperature (A0,night) on the one hand, and iNDVI on the other (R2
adj=0.47).587

This connection illustrates that surface temperatures at night increase as588

vegetation gets denser. These findings match the results from Van Leeuwen589

et al. (2011) who reported that non-forested areas in the Brazilian state of590

Mato Grosso experienced more cooling at night than forests. However, they591

recorded minimal differences if moisture supply was high. This difference592

in cooling originates from the nocturnal drainage of air from upper canopy593

layers towards soil level. As such, the canopies of forest covers show rela-594

tively warmer nocturnal temperatures (Goulden et al., 2006). However, this595

process of small scale temperature inversions in forest covers cannot take596

place in short-stature vegetation. Moreover, as in short-stature vegetation,597

LST is a combination of both soil and canopy temperatures (Van Leeuwen598

et al., 2011), a pocket of cold air, caused by the nocturnal radiative cool-599

ing of the land surface, remains in contact with the canopy of sparse and600

short-stature vegetation. Consequently, nighttime LST-values of these vege-601

tation types will be lower. Secondly, for mean daytime temperatures (A0,day),602

the effect of vegetation is opposite with lower daytime LST for dense veg-603

etation covers than for sparse types (Fig. 5a). A dense canopy efficiently604

blocks incident shortwave radiation which prevents the surface from a sig-605

nificant temperature increase during daytime. Furthermore, the amount of606

evapotranspirative cooling increases as vegetation gets more developed due607

to their access to greater water resources (Van Leeuwen et al., 2011). This608

effect is minor at night but can be more pronounced if wind speed is high609

(Oke, 1987). However, this drop in daily LST with an increasing vegetation610

cover, which has been reported as a linear relationship during the dry season611

(Nemani et al., 1993), was not observed in the relationship between A0,day612

and iNDVI (Table 1). The main reason is that A0,day aggregates seasonal613

variation and as such also encompasses the winter season where vegetation614

effects are less important on the daytime temperature signal. Nevertheless,615

Fig. 7a clearly shows the strong buffering effect of vegetation cover on the616

relationship between elevation and A0,day which is reflected by their high617

interaction effect (Table 1).618

Temperature inversions oppose the general tendency of decreasing tem-619

peratures with increasing elevation, which results in a strong bias in lin-620

ear regression models if this parameter is neglected (Lundquist et al., 2008;621

Pouteau et al., 2011). Continental mountain systems in general, and the622

Altay Mountains in particular, are highly sensitive to such inversions. Espe-623
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cially in the basins of Chuya and Kuray and on the Ukok plateau, cold air624

ponds itself up at the valley floor and is reinforced by the katabatic flow from625

the surrounding mountains. These inversions occur both seasonal (during626

winter) and diurnal (at night) which results in relatively low A0,night-values627

and a high annual temperature range. Hence, the introduction of the CTI628

to linear regression models as a proxy for the sensitivity to these tempera-629

ture inversions, significantly improves estimations of nocturnal and diurnal630

temperatures. It however should be noted that CTI is built as a hydrological631

index, and as such not completely intended to map inversions. Neverthe-632

less, CTI explains significant parts of the variance and as such corresponds633

to Pouteau et al. (2011), who reported close connection between CTI-values634

and frost risk assessment.635

Finally, topography also determines LST due to regional variation in solar636

radiation loading. This implies that steep and north oriented slopes get less637

solar radiation and exhibit lower temperatures (Scherrer and Körner, 2010).638

However, in contrast to previous studies (Chuanyan et al., 2005; Fu and Rich,639

2002), no clear relationship was observed between potSRAD and any of the640

Fourier components. This corroborates the findings of Daly et al. (2008) and641

Pouteau et al. (2011) who found that that the effect of slope and insolation642

play an important role at local scale climatology, but diminishes as the region643

of interest increases. Therefore, it is expected that solar radiation would play644

a more significant role if for instance an east-west oriented basin or valley645

system is taken as study area.646

The mean diurnal temperature range (A0,diff ) compromises the above647

mentioned effects of snow and vegetation cover on day and nighttime LST648

and as such both variables and CTI explain the major part of the variance649

in A0,diff . In general, diurnal differences decrease with increasing snow cover650

duration which can be explained by the aforementioned surface temperature651

lowering during daytime. Furthermore, if a pixel is characterized by a snow-652

free period, surface temperatures are more resistant to diurnal oscillations as653

vegetation increases. This resistance is caused by the relative surface warm-654

ing at night and shading and evapotranspirative cooling during daytime.655

Moreover, as in this semi-arid environments, higher vegetation types, typi-656

cal reflect higher soil moistures and a subsequently higher soil heat capacity,657

day-night surface temperature differences are further reduced (Van Leeuwen658

et al., 2011). This relation between vegetation-type and soil moisture implies,659

together with the low precipitation amounts and high evaporation rates in660

the study area, the importance of snow cover in the water supply. As such, a661
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clear relationship between vegetation zonation and snow cover as reported by662

Kozlowska and Rackowska (2006), can be retrieved, with high iNDVI-values663

restricted between 75 and 250 snow days. Below 75, soil moisture supply664

is insufficient to enable a well-developed vegetation cover. Furthermore, the665

absence of a stable snow cover, also denotes that these pixels experience more666

low-temperature events, which reduces above ground growth as diagnosed by667

Wipf et al. (2009) on a alpine tundra site. Consequently, species character-668

ized by winter frost hardiness (steppe taxa) will dominate these areas. Above669

250, the growing season is too short to enable extensive grow.670

5.2.2. A8671

Annual amplitudes calculated by the FFT are more difficult to understand672

as they aggregate the above mentioned effects. In general, the same image673

is found during daytime and nighttime which shows that to some extent the674

same processes explain the observed variance in A8. Nevertheless, relation-675

ships between the explanatory variables and the nocturnal annual amplitude676

are stronger and as such demonstrate the influence of solar radiation on the677

annual signal.678

CTI is the physiographic variable which explains most of the variance in679

A8 (day and night). This significance of CTI is related to the aforementioned680

temperature inversions which are vast winter phenomena which creates per-681

sistent relatively low negative temperatures in the valley systems of the Altay682

Mountains. On the other hand, summer temperatures are much warmer in683

these systems due to their lower altitude.684

Although vegetation shows a strong buffering on the annual LST signal as685

stipulated by Bounoua et al. (2000) and confirmed by Kaufmann et al. (2003)686

and Jeong et al. (2009), at first sight, no such trend could be reported in the687

study area. The primary reason for this is the presence of low iNDVI-values688

both in the lower arid steppe-areas as at high elevated pixels. While the689

former corresponds to high A8,day and A8,night-values, perennial snow or brief690

snow-free periods result in low annual amplitudes at the latter. Notwith-691

standing this, similar to the variation observed in A0,day, strong interaction692

is observed between iNDVI and elevation. As such, vegetation cover shows693

its buffering capacity at lower elevations where it dampens the general trend694

of increasing annual amplitude with decreasing elevation (Fig. 7d and 8d).695

However, it has to be noted this general trend might be strongly related to696

case-specific regional variability in snow and land cover.697

Finally, little predictive power was achieved by the linear regression model698
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for A8,diff (see section 5.2). Despite this, an interesting observation was made699

concerning the difference in timing of the maximum diurnal range. In general,700

for the gross of the study area, this maximum occurred in early summer,701

shortly after the snow cover disappeared. Hence, this timing coincides with702

the removal of the buffering snow layer and precedes the grow of a well-703

built vegetation cover. As a result, the soil is subject to both strong heating704

during daytime and fast cooling at night. Contrary, perennial snowfields705

remain their buffer layer throughout the year although a significant change in706

physical properties is observed in summer: at first, due to a strong radiative707

forcing, snow is melting, which happens even on the highest peaks of the708

Altay Mountains. This is reflected in surface temperatures which are both709

during daytime as at night close to 0◦C, as illustrated e.g. in Fig. 5a and710

b. Because of this melt, snow grain size increases which subsequently creates711

a drop in albedo and thus enhances solar radiation absorption (Hall et al.,712

2008). Secondly, melting snow requires latent heat, which transforms the713

upper part of the snowpack isothermal, which in turn lowers the sensible heat714

flux. As this second effect dominates the increased absorption of shortwave715

radiation, this melting period corresponds to the annual minimum in the716

diurnal temperature difference.717

5.3. Spatial variability and implications for the Russian Altay Mountains718

The steppe areas, characteristic for the topographical basins in the Kosh719

Agach Region and great parts of north-west Mongolia, are extreme ecosys-720

tems which exhibit very strong annual oscillations. These ecosystems origi-721

nate from the lack of available soil moisture, and are therefore typically con-722

fined to the valley bottoms. As these topographical settings are subject to723

strong winds, no stable snowpack is able to built up during winter. Together724

with the lack of precipitation in the region, this means that insufficient soil725

moisture is available to enable extensive grow. Consequently, steppe taxa,726

which can endure soil moisture deficits and extreme temperature events, due727

to the severe temperature inversions, will dominate these areas. In turn, this728

steppe vegetation is marked by limited surface shading and therefore prone729

to strong surface heating during daytime in snow-free periods. In contrast,730

these environments are also subject to more pronounced nocturnal radiative731

cooling in summer due to the absence of a protective cover. Despite their732

uniform appearance, significant regional differences can be detected between733

different steppe zones. For instance, significantly lower annual day and (to734

lesser extent) nighttime amplitudes are observed in the Mongolian steppe735
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when compared to the Chuya and Kuray steppes (Fig. 4b and d). This736

difference in A8,day and A8,night can be attributed to far more extensive tem-737

perature inversions which occur in the Russian basins which result in much738

lower temperatures during winter, although summer LST values are alike739

(Fig. 5a and b). Secondly, despite overall high values in A0,diff , the annual740

amplitude of the diurnal difference is much lower in the Mongolian Steppes.741

This effect is ascribed to the absence of snow cover in this Mongolian steppe742

which contrasts with considerable snow duration in the Russian steppes (Fig.743

2b). As a result, no winter buffer layer is present in the former which prevents744

the surface from significant diurnal fluctuations (Fig. 5c). Hence, these ar-745

eas show smaller annual oscillations opposed to e.g. the Chuya Steppe where746

diurnal temperature differences drop in winter below ten degrees.747

Although located 500 meters above the Chuya Steppe, very similar con-748

ditions are retrieved on the Ukok Plateau. This high elevated plateau, is749

surrounded by high mountain ranges and as a consequence also prone to se-750

vere temperature inversions. On the other hand, summer temperatures (both751

day and night) are somewhat lower on this plateau (Fig. 5a and b), which752

can be explained by the environmental lapse rate. This difference is reflected753

in lower A0 and A8-values compared to the Chuya Steppe.754

If sufficient soil moisture is available, low shrubs or even coniferous forests755

are able to develop in the region. This soil moisture can be related to higher756

precipitation amounts or the proximity of a stream, which is for example the757

case in the Katun River Valley located in the northwest of the study area758

(dominated by coniferous forests), and in the Chuya River Plain (a stretch759

of fertile land covered with dwarf willows and moist grass in the middle760

of the semi-dessert). Thanks to their access to water and surface shading,761

these regions are protected to strong heating and cooling, which is reflected762

in much more moderate surface temperatures. However, as canopy density763

is much larger for coniferous forests, this effect is more pronounced in the764

northwest. Moreover, little effect of this protective cover is observed in the765

winter temperatures at the Chuya river. Finally, at high mountain ranges,766

perennial snow acts as an efficient buffer against strong, both diurnal and767

annual, heating and cooling. Consequently, a removal of this snow layer768

would have a dramatic effect on the surface temperature.769
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6. Conclusion770

In this study the ability of the Fast Fourier Transform to discriminate771

between high frequency noise and fundamental periodics was used. As such,772

strong, climate related periodic patterns, could be separated from short-term773

weather signals. This allowed to assess the influence of five physiographic774

variables by multiple regression analysis on the spatio-temporal variability,775

observed in eight years of LSTday, LSTnight and LSTdiff -time series in the776

Russian Altay Mountains. Most of the temporal variance was constrained777

to the average (A0) and annual signal (A8) which is explained by the con-778

tinentality of the study area. Snow cover duration showed a strong inverse779

relationship with the averaged diurnal difference and daytime LST, caused by780

the high albedo of the snow cover, which reduces the absorption of shortwave781

radiation. Nocturnal average LST was mainly influenced by the environmen-782

tal lapse rate and the vegetation cover which prevents strong radiative cool-783

ing. The amplitude of the annual daytime (A8,day) and nighttime (A8,night)784

signal showed a strong connection with CTI which demonstrates the im-785

portance of severe temperature inversions in the region. Furthermore, also786

the combined effect of vegetation and elevation explained large parts of the787

variance in A8,day and A8,night. However, limited connection was retrieved788

between A8,diff and the set of physiographic variables, although a signifi-789

cant difference in temporal behavior was noticed between the majority of the790

study region and the perennial snowfields. The latter can be attributed to791

the summer snow melt of the upper layers which reduces the diurnal range.792

Based on the results from the FFT and multiple regression analysis, it was793

possible to differentiate the steppe zones, characterized by extreme tempera-794

tures, from the more moderate forests, river valleys and perennial snowfields,795

which are buffered by their surface cover and moisture supply.796
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Figure 1: Location of the study area, a Landsat TM (RGB-321) image is used as back-
ground. To increase the knowledge about the regional variability, the border areas around
the Kosh-Agach region were included. Consequently, the region of interest was extended
to the rectangle showed, covering parts of Russia, Mongolia, Kazakhstan and China
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area.
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Figure 4: Spatial variability in amplitudes of the 0th (a, c, e) and 8th (b, d, f) FFT-
component for LSTday (a, b), LSTnight (c, d) and LSTdiff (e, f). The locations of the six
pixels, represented in Fig. 5 are marked by their corresponding symbol.
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the physiographic variables for LSTday. The values of the pixels represented in Fig. 5 are
marked by their corresponding symbols.
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are marked by their corresponding symbols.
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