
In proceedings of PPoPP’14

Concurrency Testing Using Schedule Bounding:
an Empirical Study ∗

Paul Thomson, Alastair F. Donaldson, Adam Betts
Imperial College London

{paul.thomson11,afd,abetts}@imperial.ac.uk

Abstract
We present the first independent empirical study on sched-
ule bounding techniques for systematic concurrency test-
ing (SCT). We have gathered 52 buggy concurrent software
benchmarks, drawn from public code bases, which we call
SCTBench. We applied a modified version of an existing
concurrency testing tool to SCTBench to attempt to answer
several research questions, including: How effective are the
two main schedule bounding techniques, preemption bound-
ing and delay bounding, at bug finding? What challenges
are associated with applying SCT to existing code? How ef-
fective is schedule bounding compared to a naive random
scheduler at finding bugs? Our findings confirm that de-
lay bounding is superior to preemption bounding and that
schedule bounding is more effective at finding bugs than un-
bounded depth-first search. The majority of bugs in SCT-
Bench can be exposed using a small bound (1-3), supporting
previous claims, but there is at least one benchmark that re-
quires 5 preemptions. Surprisingly, we found that a naive
random scheduler is at least as effective as schedule bound-
ing for finding bugs. We have made SCTBench and our tools
publicly available for reproducibility and use in future work.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging

Keywords Concurrency; systematic concurrency testing;
stateless model checking; context bounding

∗This work was supported by an EPSRC-funded PhD studentship and
the EU FP7 STEP project CARP (project number 287767).

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
In recent years, researchers have shown great interest in sys-
tematic techniques for testing concurrent programs [7, 12,
26, 32, 34, 36] to expose concurrency bugs—software de-
fects (such as crashes, deadlocks, assertion failures, memory
safety errors and errors in algorithm implementation) that
arise directly or indirectly as a result of concurrent execu-
tion. This is motivated by the rise of multicore systems [31],
the ineffectiveness of traditional testing for detecting and re-
producing concurrency bugs due to nondeterminism [19],
and the desire for automatic, precise analysis, which is hard
to achieve using static techniques [1].

Systematic concurrency testing (SCT) [7, 12, 26, 32, 34],
also known as stateless model checking [12], is used to find
and reproduce bugs in multi-threaded software. It has been
implemented in a variety of tools, including CHESS [26] and
Verisoft [12]. The technique involves repeatedly executing
a multi-threaded program, controlling the scheduler so that
a different schedule is explored on each execution. This
process continues until all schedules have been explored,
or until a time or schedule limit is reached. The analysis
is highly automatic, has no false-positives and bugs can be
reproduced by forcing the bug-inducing schedule.

Assuming a nondeterministic scheduler, the number of
possible thread interleavings for a concurrent program is
exponential in the number of execution steps, so explor-
ing all schedules for large programs using SCT is infeasi-
ble. To combat this schedule explosion, schedule bounding
techniques have been proposed, which reduce the number
of thread schedules that are considered with the aim of pre-
serving schedules that are likely to induce bugs. Preemp-
tion bounding [23] bounds the number of preemptive context
switches that are allowed in a schedule. Delay bounding [7]
bounds the number of times a schedule can deviate from the
scheduling decisions of a given deterministic scheduler. Dur-
ing concurrency testing, the bound on preemptions or de-
lays can be increased iteratively, so that all schedules are ex-
plored in the limit; the intention is that interesting schedules
are explored within a reasonable resource budget. Schedule
bounding has two additional benefits, regardless of bug find-
ing ability. First, it produces simple counterexample traces; a

Concurrency Testing Using Schedule Bounding: an Empirical Study 1

trace with a small number of preemptions is likely to be easy
to understand. This property has been used in trace simplifi-
cation [15, 16]. Secondly, it gives bounded coverage guaran-
tees; if the search manages to explore all schedules with at
most c preemptions, then any undiscovered bugs in the pro-
gram require at least c+ 1 preemptions. A guarantee of this
kind provides some indication of the necessary complexity
and probability of occurrence of any bugs that might remain,
and recent works on concurrent software verification employ
schedule bounding to improve tractability [6, 20].

The hypothesis that preemption and delay bounding are
likely to be effective is based on empirical evidence sug-
gesting that many interesting concurrency bugs require only
a small number of preemptive context switches to mani-
fest [7, 23, 26]. Prior work has also shown that delay bound-
ing improves on preemption bounding, allowing additional
bugs to be detected [7]. However, these works have focused
on a particular set of C# and C++ programs that target the
Microsoft Windows operating system, most of which are
not publicly available. Additionally, these works do not ex-
plicitly show that schedule bounding provides benefit over a
naive random scheduler for finding bugs.1

We believe that these exciting and important claims about
the effectiveness of schedule bounding would benefit from
further scrutiny using a wider range of publicly available ap-
plications. To this end, we present the first independent, fully
reproducible empirical study of schedule bounding tech-
niques for SCT. We have put together SCTBench, a set of 52
publicly available benchmarks amenable to systematic con-
currency testing, gathered from a combination of stand-alone
multi-threaded test cases, and test cases drawn from 13 dis-
tinct applications and libraries. These are benchmarks that
have been used in previous work to evaluate concurrency
testing tools, with a few additions. Our study is based on an
extended version of Maple [36], an open source concurrency
testing tool. Our aim was to answer the following questions
over a large and varied set of benchmarks:

• Can we find the known bugs in the publicly available
benchmark suites using SCT?

• How do preemption and delay bounding compare in their
effectiveness at finding concurrency bugs?

• How effective is schedule bounding compared to a naive
random scheduler at finding bugs?

• How easy is it to apply SCT to various existing code
bases in practice?

• Can we find examples of concurrency bugs that require
more than three preemptions (the largest number of pre-
emptions required to expose a bug in previous work [7])?

1We note that [23] plots the state (partial-order) coverage of preemption
bounding against a technique called “random” on a single benchmark, but
the details of this and the bug finding ability are not mentioned.

1.1 Main findings and contribution
We now summarise the main findings of our study. The con-
clusions we draw of course only relate to the 52 benchmarks
in SCTBench, but this does include publicly available bench-
marks used in prior work to evaluate concurrency testing
tools. We forward-reference the Venn diagrams of Figure 2,
which are discussed in detail in §6. These diagrams pro-
vide an overview of our results in terms of the bug-finding
ability of the various techniques we study: iterative preemp-
tion bounding (IPB), iterative delay bounding (IDB), depth-
first search with no schedule bound (DFS) and naive ran-
dom scheduling (Rand). For each method evaluated, a limit
of 10,000 schedules per benchmark is used.
Schedule bounding is similar to naive random scheduling
in terms of bug-finding ability. Our assumption prior to this
study was that a naive random scheduler would not be ef-
fective at finding bugs. This claim is not made explicitly in
prior work, but neither is it addressed; prior work (such as
[7, 23, 26]) only includes depth-first search or preemption
bounding as a baseline for finding bugs.1 Our findings, sum-
marised in Figure 2b, contradict this assumption: the bugs in
44 benchmarks were found by both schedule bounding and a
naive random scheduler within 10,000 executions. Schedule
bounding and random scheduling each found one additional,
distinct, bug. The random scheduler almost always led to
faster bug detection than with schedule bounding. This raises
two important questions: Does schedule bounding actually
aid in bug finding, compared to more naive approaches? Are
the benchmarks used to evaluate concurrency testing tools
(captured by SCTBench) representative of real-world con-
currency bugs? Our findings indicate that the answer to at
least one of these questions must be “no”. As noted above,
schedule bounding provides several benefits regardless of
bug finding ability which are not questioned by our findings.
Many bugs can be found via a small (1-3) schedule bound.
Schedule bounding exposed each bug in 45 of the 52 bench-
marks and the highest preemption bound required in these
cases was three. Thus, a large majority of the bugs in SCT-
Bench can be found with a small schedule bound. This sup-
ports previous claims [7, 23, 26]. It also adds weight to
the argument that bounded guarantees provided by schedule
bounding are useful. However, we note that one benchmark
is reported to require a minimum of five preemptions for the
bug to manifest. A straightforward depth-first search with
no schedule bounding exposed bugs in 33 benchmarks, all
of which were also found with schedule bounding.
Delay bounding beats preemption bounding. Delay bound-
ing found all of the 38 bugs that were found by preemption
bounding, plus seven that were not (see Figure 2a).
SCT can be difficult to apply. Many interesting benchmarks
could not be included in our study, as they use nondetermin-
istic features or additional synchronisation that is not mod-
elled or controlled appropriately by most SCT tools. This in-

Concurrency Testing Using Schedule Bounding: an Empirical Study 2

cludes network communication, multiple processes, signals
(other than pthread condition variables) and event libraries.

Additionally, we found several program modules that
could not easily be tested in isolation due to direct dependen-
cies on system functions and other program modules. Thus,
creating isolated tests suitable for SCT may require signif-
icant effort, especially for those who are not developers of
the software under test.
Data races are common. Many benchmarks feature a large
number of data races that are not regarded as bugs. Treat-
ing them as errors would be too easy for benchmarking pur-
poses, as they are very common. For the study, we explore
the interleavings arising from sequentially consistent out-
comes of racy memory accesses in order to expose bugs such
as assertion failures and incorrect output.
Bugs may not be detected without additional checks. Some
concurrency bugs manifest as out-of-bound memory ac-
cesses, which do not always cause a crash. Tools need to
check for these, otherwise bugs may be missed or manifest
nondeterministically, even when the required thread sched-
ule is executed. Performing such checks reliably and effi-
ciently is non-trivial.
Trivial benchmarks. We argue that certain benchmarks used
in prior work are “trivial” (based on certain properties – see
Table 2) and cannot meaningfully be used to compare the
performance of competing techniques. Instead, they provide
a minimum baseline for any respectable concurrency testing
technique. For example, the bugs in 19 benchmarks were
exposed 50% of the time when using a random scheduler,
with 10,000 runs. In nine of these cases, the bugs were
exposed 100% of the time.
Non-trivial benchmarks. We believe most benchmarks
from the CHESS, PARSEC and RADBench suites, as well
as the misc.safestack benchmark, present a non-trivial
challenge for concurrency testing tools. Furthermore, these
represent real bugs, not synthetic tests. Future work can use
these challenging benchmarks to show the improvement ob-
tained over schedule bounding and other techniques.

1.2 SCTBench and reproducibility of our study
To make our study fully reproducible, we provide the 52
benchmarks (SCTBench), our scripts and the modified ver-
sion of Maple used in our experiments, online:

http://sites.google.com/site/sctbenchmarks

We believe SCTBench will be valuable for future work
on concurrency testing in general and SCT in particular.
Each benchmark is directly amenable to SCT and exhibits
a concurrency bug.

As discussed further in §5, our results are given in terms
of number of terminal schedules, not time, which allows
them to be easily compared with other work and tools.

2. Systematic Concurrency Testing
Systematic concurrency testing (SCT) works by repeatedly
executing a concurrent program using a custom scheduler,
forcing a different thread schedule to be explored on each
execution. Execution is serialised, so that concurrency is em-
ulated by interleaving instructions from different threads. It
is assumed that the only source of nondeterminism is from
the scheduler so that repeated execution of the same sched-
ule always leads to the same program state. Nondetermin-
ism such as user input, network communication, etc. must
be fixed or modelled. This continues until all schedules have
been explored, or until a time or schedule limit is reached.
The search space is over schedules; unlike model checking,
program states are not represented. This is appealing because
the state of real software is large and difficult to capture.

A schedule α = 〈α(1), . . . , α(n)〉 is a list of thread iden-
tifiers. We use the following shorthands for lists: length(α) =
n; α · t = 〈α(1), . . . , α(n), t〉; last(α) = α(n). The element
α(i) refers to the thread that is executing at step i in the
execution of the multi-threaded program, where step 1 is
the first step. For example, the schedule 〈T0, T0, T1, T0〉
specifies that, from the initial state, two steps are executed
in the context of T0, one step in T1 and then a step in T0.
A step corresponds to a particular thread executing a visi-
ble operation [12], such as a synchronisation operation or
shared memory access, followed by a finite sequence of in-
visible operations until immediately before the next visible
operation. Considering interleavings involving non-visible
operations is unnecessary when checking safety property vi-
olations, such as deadlocks and assertion failures [12]. The
point just before a visible operation, where the scheduler
decides which thread to execute next, is called a schedul-
ing point. Let enabled(α) denote the set of enabled threads
(those that are not blocked, and so can execute) in the state
reached by executing α. We say that the state reached by α
is a terminal state when enabled(α) = ∅. A schedule that
reaches a terminal state is referred to as a terminal schedule.

Context switches A context switch occurs in a schedule
when execution switches from one thread to another. For-
mally, step i in α is a context switch if and only if α(i) 6=
α(i − 1). The context switch is preemptive if and only if
α(i − 1) ∈ enabled(〈α(1), . . . , α(i − 1)〉). In other words,
the thread executing step i − 1 remained enabled after that
step. Otherwise, the context switch is non-preemptive.

Preemption bounding Preemption bounding [23] bounds
the number of preemptions in a schedule. Let the preemption
count PC of a schedule be defined recursively; a schedule of
length zero or one has no preemptions, otherwise:

PC(α · t) =

{
PC(α) + 1 if last(α) 6= t ∧ last(α) ∈ enabled(α)
PC(α) otherwise

With a preemption bound of k, any scheduleαwith PC(α) >
k will not be explored.

Concurrency Testing Using Schedule Bounding: an Empirical Study 3

http://sites.google.com/site/sctbenchmarks

T0

a)create(T1,T2,T3)

T1

b)x=1

c)y=1

T2

d)z=1

T3

e)assert x==y

Figure 1: Simple multi-threaded program.

Example 1. Consider Figure 1, which shows a simple multi-
threaded program. T0 launches three threads concurrently
and is then disabled. All variables are initially zero and
threads execute until there are no statements left. We refer
to the visible actions of each thread via the statement labels
(a, b, c, etc.) and we (temporarily) represent schedules as a
list of labels. Note that ‘a’ cannot be preempted, as there
are no other threads to switch to. A schedule with zero pre-
emptions is 〈a, b, c, e, d〉. Note that, for example, e is not a
preemption because T1 has no more statements and so is
considered disabled after c. A schedule that causes the as-
sertion to be violated is 〈a, b, e〉, which has one preemption
at operation e. The bug will not be found with a preemption
bound of zero, but will be found with any greater bound.

Delay bounding A delay conceptually corresponds to
blocking the thread that would be chosen by the scheduler at
a scheduling point, which forces the next thread to be chosen
instead. The blocked thread is then immediately re-enabled.
Delay bounding [7] bounds the number of delays in a sched-
ule, given an otherwise deterministic scheduler. Executing a
program under the deterministic scheduler (without delay-
ing) results in a single terminal schedule – this is the only
terminal schedule that has zero delays.

In the remainder of this paper we assume the determin-
istic scheduler that is non-preemptive and when blocked
chooses the next enabled thread in thread creation order in
a round-robin fashion. We assume this instantiation of delay
bounding because it has been used in previous work [7] and
is straightforward to explain and implement.

The following is a definition of delay bounding assuming
the non-preemptive round robin scheduler. Assume that each
thread id is a non-negative integer, numbered in order of
creation; the initial thread has id 0, and the last thread created
has id N − 1. For two thread ids x, y ∈ {0, . . . , N − 1}, let
distance(x, y) be the unique integer d ∈ {0, . . . , N − 1}
such that (x+ d) mod N = y. Intuitively, this is the “round-
robin distance” from x to y. For example, given four threads
{0, 1, 2, 3}, distance(1, 0) is 3. For a schedule α and a thread
id t, let delays(α, t) yield the number of delays required to
schedule thread t at the state reached by α:

delays(α, t) = |{x : 0 ≤ x < distance(last(α), t))
∧ (last(α) + x) mod N ∈ enabled(α)}|

This is the number of enabled threads that are skipped when
moving from last(α) to t. For example, let last(α) = 3,
enabled(α) = {0, 2, 3, 4} and N = 5. Then, delays(α, 2) =
3 because threads 3, 4 and 0 are skipped (but not thread 1,
because it is not enabled).

Define the delay count DC of a schedule recursively; a
schedule of length zero or one has no delays, otherwise:

DC(α · t) = DC(α) + delays(α, t)

With a delay bound of k, any schedule α with DC(α) > k
will not be explored.

The set of schedules with at most c delays is a subset
of the set of schedules with at most c preemptions. Thus,
delay bounding reduces the number of schedules by at least
as much as preemption bounding.

Example 2. Consider Figure 1 once more. Assume thread
creation order 〈T0, T1, T2, T3〉. The assertion can also fail
via: 〈a, b, d, e〉, with one delay/preemption at d. However,
a preemption bound of one yields 11 terminal schedules,
while a delay bound of one yields only 4 (note that an
assertion failure is a terminal state). Now assume that T2
comprises the same statements as T1, which we label as:
f) x=1; g) y=1. Now, the assertion cannot fail with a delay
bound of one because two delays must occur so that T1 and
T2 do not both execute all their statements. For example,
〈a, b, e〉 exposes the bug, but executing e uses two delays.
However, note that this schedule only has one preemption,
so the assertion can still fail under a preemption bound of
one. Adding an additional n threads between T1 and T3
(in the creation order) with the same statements as T1 will
require n additional delays to expose the bug, while still
only one preemption will be needed. Empirical evidence [7]
suggests that adversarial examples like this are not common
in practice. Our results (§6) also support this.

Theoretical Complexity Upper-bounds for the number of
terminal schedules produced by SCT techniques are de-
scribed in [7, 23]. In summary, assume at most n threads
and at most k execution steps in each thread. Of those k, at
most b steps block (cause the executing thread to become
disabled) and i steps do not block. Complete search is expo-
nential in n and k, and thus infeasible for programs with a
large number of execution steps. With a scheduling bound of
c, preemption bounding is exponential in c (a small value),
n (often, but not necessarily, a small value) and b (usually
much smaller than k). Crucially, it is no longer exponen-
tial in k. Delay bounding is exponential only in c (a small
value). Thus, it performs well (in terms of number of sched-
ules) even when programs create a large number of threads.

Finding bugs The intuition behind schedule bounding is
that it greatly reduces the number of schedules, but still al-
lows many bugs to be found [7, 23, 26]. The reasoning is
that only a few preemptions are needed at the right places in
order to enforce an ordering that causes the bug to manifest.
Performing a preemption elsewhere will have little impact.
A complete depth-first search becomes infeasible as the ex-
ecution length increases due to the large number of context
switches, many of which are likely to be irrelevant.

Concurrency Testing Using Schedule Bounding: an Empirical Study 4

Iterative schedule bounding Schedule bounding can be
performed iteratively [23], where all schedules with zero
preemptions or delays are all executed, followed by those
with one preemption or delay, etc. until there are no more
schedules or a time or schedule limit is reached. In the limit,
all schedules are explored. Thus, iterative schedule bound-
ing creates a partial-order in which to explore schedules:
schedule α will be explored before schedule α′ if PC(α) <
PC(α′), while there is no predefined exploration order be-
tween schedules with equal preemption counts. The partial
order for iterative delay bounding with respect to DC is anal-
ogous. Thus, iterative schedule bounding is a heuristic that
aims to expose buggy schedules before the time or schedule
limit is reached, based on the hypothesis discussed above.

In this study, we perform iterative schedule bounding to
compare preemption and delay bounding.

3. Modifications to Maple
We chose to use a modified version of the Maple tool [36]
to conduct our experimental study. Maple is a concurrency
testing tool framework for pthread [21] programs. It uses the
dynamic instrumentation library, PIN [22], to test binaries
without the need for recompilation. One of the modules, sys-
tematic, is a re-implementation of the CHESS [26] algorithm
for preemption bounding. The main reason for using Maple,
instead of CHESS, is that it targets pthread programs. This
allows us to test a wide variety of open source multi-threaded
benchmarks and programs. Previous evaluations [7, 23, 26]
focus on C# programs and C++ programs that target the Mi-
crosoft Windows operating system, most of which are not
publicly available. In addition, CHESS requires re-linking
the program with a test function that can be executed repeat-
edly; this requires resetting the global state (e.g. resetting the
value of global variables) and joining any remaining threads,
which can be non-trivial. In contrast, Maple can test native
binaries out-of-the-box, by restarting the program for each
terminal schedule that is explored, although a downside of
this approach is that it is slower. Checking for data races is
also supported by Maple; as discussed in §5, this is impor-
tant for identifying visible operations. The public version of
CHESS can only interleave memory accesses in native code
if the user adds special function calls before each access.2

Delay bounding We modified Maple to add support for
delay bounding, following a similar design to the existing
support for preemption bounding. At each scheduling point,
Maple conceptually constructs several schedules consisting
of the current schedule concatenated with an enabled thread
t. These are added to a set and will be explored on subse-
quent executions. If switching to thread t will cause the de-
lay bound to be exceeded (as explained in §2), the schedule
is not added to the set.

2See “Why does wchess not support /detectraces?” at http://

social.msdn.microsoft.com/Forums/en-us/home?forum=chess

Depth-first search Even with a schedule bound, there are
many possible orders in which to explore schedules. Maple’s
systematic mode only supports a depth-first search, as this
allows a stack to be used to efficiently record which sched-
ules still need to be explored. Since the stack is deeply in-
grained in Maple’s data structures and algorithms, we did not
attempt to implement other search strategies. We note that
the initial terminal schedule explored by iterative preemption
bounding, iterative delay bounding and unbounded depth-
first search is the same for all techniques (a non-preemptive
round-robin schedule). We discuss the impact of depth-first
search on our study further in §5.

Random scheduler Maple also includes a naive random
scheduler mode, where, at each scheduling point, one en-
abled thread is randomly chosen from the set of enabled
threads to execute a visible operation. Unlike schedule
fuzzing, where randomisation is used to peturb the OS
scheduler, this yields truly (pseudo-)random schedules be-
cause scheduling nondeterminism is fully controlled. No in-
formation is saved by the random scheduler for subsequent
executions, so it is possible that the same schedule will be
explored multiple times over many runs. This could be rec-
tified by modifying Maple to record a history of schedules
during random scheduling, but such a change would not be
straightforward due to the way in which the tool is designed.
As a result, with random scheduling the search cannot “com-
plete”, even for programs with a small number of schedules.

We include random scheduling as a baseline for non-
systematic approaches, and to provide further insight on the
complexity of the benchmarks.

Maple algorithm The default concurrency testing used by
Maple (which we refer to as the Maple algorithm) is not
systematic: it performs several profiling runs, recording pat-
terns of inter-thread dependencies through shared-memory
accesses [36]. From the recorded patterns, it predicts pos-
sible alternative interleavings that may be feasible, which
are referred to as interleaving idioms. It then performs ac-
tive runs, influencing thread scheduling to attempt to force
untested interleaving idioms, until none remain or they are
all deemed infeasible (using heuristics). Although the focus
of our study is on SCT techniques, we also compare with the
Maple algorithm since it is readily available in the tool.

4. Benchmark Collection
We have collected a wide range of pthread benchmarks
from previous work and other sources. Table 1 summarises
the benchmark suites (with duplicates removed), indicating
where it was necessary to skip benchmarks due to the dif-
ficulty of applying SCT, or otherwise. “Non-buggy” means
there were no existing bugs documented and we did not find
any during our examination of the benchmark. We now pro-
vide details of the benchmark suites (§4.1) and barriers to
the application of SCT identified through our benchmark
gathering exercise (§4.2).

Concurrency Testing Using Schedule Bounding: an Empirical Study 5

http://social.msdn.microsoft.com/Forums/en-us/home?forum=chess
http://social.msdn.microsoft.com/Forums/en-us/home?forum=chess

Benchmark set Benchmark types # used # skipped
CB Test cases for real applications 3 17 networked applications.
CHESS Test cases for several versions of a work stealing queue 4 0
CS Small test cases and some small programs 29 24 were non-buggy.
Inspect Small test cases and some small programs 1 28 were non-buggy.
Miscellaneous Test case for lock-free stack and a debugging library test case 2 0
PARSEC Parallel workloads 4 29 were non-buggy.
RADBenchmark Tests cases for real applications 6 5 Chromium browser; 4 networking.
SPLASH-2 Parallel workloads 3 9 (see text)

Table 1: An overview of the benchmark suites used in the study.

4.1 Details of benchmark suites
Concurrency Bugs (CB) Benchmarks [35] Includes buggy
versions of programs such as aget (a file downloader) and
pbzip2 (a file compressions tool). We modified aget, mod-
elling certain network functions to return data from a file and
to call its interrupt handler asynchronously. Many bench-
marks were skipped due to the use of networking, multiple
processes and signals (apache, memcached, MySQL).

CHESS [26] A set of test cases for a work stealing queue,
originally implemented for the Cilk multithreaded program-
ming system [10] under Windows. The WorkStealQueue

(WSQ) benchmark has been used frequently to evaluate con-
currency testing tools [4, 23–27]. After manually translat-
ing the benchmarks to use pthreads and C++11 atomics, we
found a bug in two of the tests that caused heap corruption,
which always occurred when we ran the tests natively (with-
out Maple). We fixed this bug and SCT revealed another bug
that is much rarer, which we use in the study.

Concurrency Software (CS) Benchmarks [6] Examples
used to evaluate the ESBMC tool [6], including small mul-
tithreaded algorithm test cases (e.g. bank account transfer,
circular buffer, dining philosophers, queue, stack), a file sys-
tem benchmark and a test case for a Bluetooth driver. These
tests included unconstrained inputs. None of the bugs are in-
put dependent, so we selected reasonable concrete values.
We had to remove or define various ESBMC-specific func-
tions to get the benchmarks to compile.

Inspect Benchmarks [34] Used to evaluate the INSPECT
concurrency testing tool. We skipped swarm isort64 that
did not terminate after five minutes when performing data
race detection (see §5). There were no documented bugs,
and testing all benchmarks revealed a bug in only one bench-
mark, qsort mt, which we include in the study.

Miscellaneous We encountered two individual test cases,
which we include in the study. The safestack test case,
which was posted to the CHESS forums3 by Dmitry Vyukov,
is a lock-free stack designed to work on weak-memory mod-
els. The bug exposed by the test case also manifests under
sequential consistency, so it should be detectable by existing

3See “Bug with a context switch bound 5” at http://social.msdn.
microsoft.com/Forums/en-US/home?forum=chess

SCT tools. Vyukov states that the bug requires at least three
threads and at least five preemptions. Previous work reported
a bug that requires three preemptions [7], which was the first
bug found by CHESS that required that many preemptions.

The ctrace test case, obtained from the authors of [18],
exposes a bug in the ctrace multithreaded debugging library.

PARSEC 2.0 Benchmarks [2] A collection of multi-
threaded programs from many different areas. We used
ferret (content similarity search) and streamcluster

(online clustering of an input stream), both of which contain
known bugs. We created three versions of streamcluster,
each containing a distinct bug. One of these is from an older
version of the benchmark and another was a previously un-
known bug which we discovered during our study (see §4.2).
We configured the streamcluster benchmarks to use non-
spinning synchronisation and added a check for incorrect
output. All benchmarks use the “test” input values (the
smallest) with two threads, except for streamcluster2,
where the bug requires three threads.

RADBenchmark [17] Consists of 15 tests that expose
bugs in several applications. The 6 benchmarks we use test
parts of Mozilla SpiderMonkey (the Firefox JavaScript en-
gine) and the Mozilla Netscape Portable Runtime Thread
Package, which are suitable for SCT. The others were
skipped due to use of networking and multiple processes.
Several tested the Chromium browser; the use of a GUI leads
to nondeterminism that cannot be controlled or modelled by
any SCT tools we know of. Some of the benchmarks were
stress tests; we reduced the number of threads and other
parameters as much as possible.

SPLASH-2 [33] Three of these benchmarks have been
used in previous work [4, 29]. SPLASH-2 requires a set of
macros to be provided; the bugs are caused by a set that fail
to include the “wait for threads to terminate” macro. Thus,
all the bugs are similar. For this reason, we just use the three
benchmarks from previous work, even though the macros
are likely to cause issues in the other benchmarks. We added
assertions to check that all threads have terminated as ex-
pected. We reduce the values of input parameters, such as
the number of particles in barnes and the size of the matrix
in lu, so the tests complete quickly on our implementation,
without exhausting memory. We discuss this further in §6.

Concurrency Testing Using Schedule Bounding: an Empirical Study 6

http://social.msdn.microsoft.com/Forums/en-US/home?forum=chess
http://social.msdn.microsoft.com/Forums/en-US/home?forum=chess

4.2 Effort Required For SCT
We encountered a range of issues when trying to apply
systematic concurrency testing to the benchmarks. These are
general limitations of SCT, not of our method specifically,
and all SCT tools that we know of would have similar issues.

Environment modelling System calls that interact with the
environment, and hence can give nondeterministic results,
must be modelled or fixed to return deterministic values.
Similarly, functions that can cause threads to become en-
abled or disabled must be handled specially, as they af-
fect scheduling decisions. This includes the forking of ad-
ditional processes, which requires both modelling and en-
gineering effort to make the testing tool work across dif-
ferent processes. For the above reasons, a large number of
benchmarks in the CB and RADBenchmark suites had to be
skipped because they involve testing servers, using several
processes and network communication. Modelling network
communication and testing multiple processes are both non-
trivial tasks. We believe the difficultly of controlling various
sources of nondeterminism is a key issue in applying SCT to
existing code bases. In contrast, non-systematic techniques
(discussed in §7) are able to handle such nondeterminism.

Isolated concurrency testing An alternative approach to
modelling nondeterminism is to create isolated tests, simi-
lar to unit testing, but with multiple threads. Unfortunately,
we found that many programs are not designed in a way that
makes this easy. An example is the Apache httpd webserver;
the server module that we inspected had many dependen-
cies on other parts of the server and directly called system
functions, making it difficult to create an isolated test case.
Developers test the server as a whole; network packets are
sent to the server by a script running in a separate process.

Many applications in the CB benchmarks use global vari-
ables and function-static variables that are scattered through-
out several source files. These would need to be handled
carefully with some SCT tools like CHESS, that require a
repeatable function to test, in which the state must be reset
when the function returns. This is not a problem for Maple,
which restarts the test program for every schedule explored.

Memory safety We found that certain concurrency bugs
manifest as out-of-bounds memory accesses, which do not
always cause a crash. We implemented an out-of-bounds
memory access detector on top of Maple, which allowed us
to detect a previously unknown bug in the PARSEC suite,
which is tested in the streamcluster3 benchmark. Detect-
ing certain types of out-of-bound memory accesses, such as
accesses to the stack or data segments, is difficult, as in-
formation about the bounds of these regions is lost during
compilation. Thus, our implementation had many false pos-
itives. However, a more serious issue was that the extra in-
strumentation code caused a slow-down of up to 8x; Maple’s
existing information on allocated memory was not designed
to be speed-efficient. We disabled the out-of-bound access

detector in our experiments, but we note that a production
quality SCT tool would require an efficient method for de-
tecting out-of-bound accesses to automatically identify this
important class of bug. We manually added assertions to de-
tect out-of-bound accesses in the streamcluster3 bench-
mark and in fsbench bad in the CS benchmarks. Out-of-
bound accesses to synchronisation objects, such as mutexes,
are still detected. This proved to be useful in pbzip2 from
the CS benchmarks.

Data races We found that 33 of the 52 benchmarks con-
tained data races. There are many compelling arguments
against the tolerance of data races [3], and technically, ac-
cording to the C++11 standard, the existence of a data race
in a C++ program means that the behaviour of the entire pro-
gram is undefined. Nevertheless, in practice, programs that
exhibit races are often compiled in predictable ways by stan-
dard compilers so that many data races are not regarded as
bugs by software developers. A particular pattern we noticed
was that data races often occur on flags used in ad-hoc busy-
wait synchronisation, where one thread keeps reading a vari-
able until the value changes. In principle the “benign” races
could be rectified through the use of C++11 relaxed atomics,
the “busy wait” use of data races could be formalised using
C++11 acquire/release atomics, and synchronisation opera-
tions could be added to eliminate the buggy cases. However,
telling the difference between benign and buggy data races
is non-trivial in practice [18, 28]. We explain how we treat
data races in our study in §5.

Output checking The bugs in the benchmarks CB.aget

and parsec.streamcluster2, lead to incorrect output.
Thus, we added extra code to read the output file and trig-
ger an assertion failure when incorrect; the output checking
code for the CB.aget was provided as a separate program,
which we added to the benchmark. Several of the PARSEC
and SPLASH benchmarks do not verify their output, greatly
limiting their usefulness as test cases.

5. Experimental Method
Our experimental evaluation aims to compare a straightfor-
ward depth-first search (DFS), iterative preemption bound-
ing (IPB), iterative delay bounding (IDB) and the use of
a naive random scheduler (Rand). We also test the default
Maple algorithm (MapleAlg). Bugs are deadlocks, crashes
or assertion failures (including those that identify incorrect
output). Each benchmark contains a concurrency bug and
goes through the following phases:

Data Race Detection Phase When checking safety prop-
erties, it is sound to only consider scheduling points before
each synchronisation operation, such as locking a mutex, as
long as execution aborts with an error as soon as a data race
is detected [26]. This greatly reduces the number of sched-
ules that need to be considered. However, treating data races
as errors is not practical for this study due to the large num-

Concurrency Testing Using Schedule Bounding: an Empirical Study 7

ber of data races in the benchmarks (see §4.2), which would
make bug-finding trivial and arguably not meaningful.

As in previous work [36], we circumvent this issue by
performing dynamic data race detection to identify a rea-
sonable subset of load and store instructions that participate
in data races. We treat these instructions as visible opera-
tions during SCT. For each benchmark, we execute Maple in
its data race detection mode ten times, without controlling
the schedule. Each racy instruction (stored as an offset in
the binary) is treated as a visible operation in the IPB, IDB,
DFS and Rand phases. We also tried detecting races during
SCT, but this caused an additional slow-down of up to 8x, as
Maple’s race detector is not optimised for this scenario.

Thus SCT explores nondeterminism arising due to se-
quentially consistent outcomes of a subset of the possible
data races for a concurrent program. Bugs found by this
method are real (there are no false-positives), but bugs that
depend on relaxed memory effects or data races not iden-
tified dynamically will be missed. We do not believe these
missed bugs threaten the validity of our comparison of IPB,
IDB, DFS and Rand, since the same information about data
races is used by all of these techniques; the set of racy in-
structions could be considered as part of the benchmark.

An alternative to under-approximation would be to use
static analysis to over-approximate the set of racy instruc-
tions. We did not try this, but speculate that imprecision of
static analysis would lead to many instructions being pro-
moted to visible operations, causing schedule explosion.

Iterative Preemption Bounding (IPB) Phase We next per-
form SCT on the benchmark using iterative preemption
bounding, with a schedule limit. By repeatedly executing
the program, restarting after each execution, we first explore
all terminal schedules that have zero preemptions, followed
by all schedules that have one preemption, etc. until either
the schedule limit is reached, all schedules have been ex-
plored or a bug is found. If a bug is found, the search does
not terminate immediately; the remaining schedules within
the current preemption bound are explored (for our set of
benchmarks, it was always possible to complete this explo-
ration without exceeding the schedule limit). As explained
in §3, this allows us to check whether non-buggy schedules
could exceed the schedule limit when an underlying search
strategy other than depth-first search is used.

We use a limit of 10,000 terminal schedules to enable a
full experimental run over our large set of benchmarks to
complete on a cluster within 24 hours. We chose to use a
schedule limit instead of a time limit because there are many
factors and potential optimisation opportunities that can af-
fect the time needed for a benchmark to complete, and the
cluster we have access to shares its machines with other jobs,
making accurate time measurement difficult. On the other
hand, the number of terminal schedules explored cannot be
improved upon, without changing key aspects of the search
algorithms themselves. By measuring the number of sched-

ules, our results can potentially be compared with other al-
gorithms and future work that use different implementations
with different overheads.

Iterative Delay Bounding (IDB) Phase This phase is iden-
tical to the previous, except delay bounding is used instead
of preemption bounding.

Depth-First Search (DFS) Phase We perform a depth-
first search, with no schedule bounding and a limit of 10,000
terminal schedules. This provides a point of comparison for
schedule bounding.

Random scheduler (Rand) Phase We run each benchmark
10,000 times using Maple’s naive random scheduler mode.
This allows us to compare the systematic techniques against
a straightforward non-systematic technique.

Maple Algorithm (MapleAlg) Phase We test each bench-
mark using the Maple algorithm. This algorithm terminates
based on its own heuristics; we enforced a time limit of 24
hours per benchmark.

Notes on depth-first search and partial order reduction
As discussed in §3, the SCT methods we evaluate are built on
top of Maple’s default depth-first search strategy. Although
depth-first search is just one possible search strategy, and
different strategies could give different results, we argue
that this is not important in our study. First, if the depth-
first search biases the search for certain benchmarks, then
both schedule bounding algorithms are likely to benefit or
suffer equally from this. Second, iterative schedule bounding
explores all schedules with c preemptions/delays before any
schedule with c + 1 preemptions/delays. This means that
when the first schedule with c + 1 preemptions/delays is
considered, exactly the same set of schedules, regardless of
search strategy, will have been explored so far. If a bug is
revealed at bound c then, by enumerating all schedules with
bound c (as described above), we can determine the worst
case number of schedules that might have to be explored to
find a bug, accounting for an adversarial search strategy.

Partial-order reduction (POR) [11] is a commonly used
technique in concurrency testing [9, 11, 24, 26]. We do not
attempt to study the various POR techniques, to avoid an
explosion of combinations of methods and because the re-
lationship between POR and schedule bounding is complex
and the topic of recent and ongoing work [5, 14, 24].

6. Experimental Results
Experimental platform We conducted our experiments on
a Linux cluster, with Red Hat Enterprise Linux Server re-
lease 6.4, an x86 64 architecture and gcc 4.7.2. Our modi-
fied version of Maple is based on the latest commit 4. The
benchmarks, scripts and the modified version of Maple used
in our experiments can be obtained from http://sites.

google.com/site/sctbenchmarks.

4http://github.com/jieyu/maple commit at Sept 24, 2012

Concurrency Testing Using Schedule Bounding: an Empirical Study 8

http://sites.google.com/site/sctbenchmarks
http://sites.google.com/site/sctbenchmarks
http://github.com/jieyu/maple

0 7
5

0

0 0

33

IPB IDB

DFS

7

(a) Systematic techniques.

0 0
15

1

1 1

29

IDB Rand

MapleAlg

5

(b) IDB vs. others.

Figure 2: Venn diagram showing number of benchmarks in
which the bugs were found with the various techniques.

Overview of results The Venn diagrams in Figure 2 give
a concise summary of the bug-finding ability of the tech-
niques. When we say that a technique found x bugs, we
mean that the technique found each bug in x benchmarks.

Figure 2a summarises the bugs found by the systematic
techniques. IPB was superior to DFS, finding all 33 bugs
found by DFS, plus an additional 5. IDB beat both DFS and
IPB, finding all 38 bugs found by these techniques, plus an
additional 7. The bugs in 7 benchmarks were missed by all
systematic techniques, which we discuss below.

Figure 2b shows the bugs found by schedule bounding
(IDB), a naive random scheduler (Rand) and the default
Maple algorithm (MapleAlg). The bugs in 44 benchmarks
were found by both IDB and Rand. IDB and Rand each
found 1 additional, distinct, bug. Thus, these techniques per-
formed similarly in terms of number of bugs found. We dis-
cuss this surprising result in detail below. MapleAlg found
31 bugs that were found by the other techniques, plus 1 ad-
ditional bug. However, it missed 15 bugs that were found by
the other techniques. There were 5 bugs missed by all tech-
niques, but 3 of these are identical to benchmarks in which
we did find bugs, except that they run a larger number of
threads; the remaining 2 benchmarks, radbench.bug1 and
misc.safestack, are discussed below.

Detailed results The full set of experimental data gathered
for our benchmarks is shown in Table 3. We use schedules to
refer to terminal schedules, for brevity. As explained in §5,
we focus on the number of schedules explored rather than
time taken for analysis. The execution of a single benchmark
during SCT varied between 1-7 seconds depending on the
benchmark; there was negligible variance between runtimes
for multiple executions of the same benchmark. The longest
time taken to perform ten data race detection runs for a single
benchmark was five minutes, but race detection was signif-
icantly faster in most cases. Race detection could be made
more efficient using an optimised, state-of-the-art method.
Because race analysis results are shared between all system-
atic techniques and Rand, the time for race analysis is not
relevant when comparing these methods.

For each benchmark, # threads and # max enabled
threads show the total number of threads launched and the

Property # benchmarks
Bug found with DB = 0 14
Total terminal schedules < 10,000 16
> 50% of random schedules were buggy 19
Every random schedule was buggy 9

Table 2: Benchmarks where bug-finding is arguably trivial.

maximum number of threads simultaneously enabled at any
scheduling point, respectively, over all runs of the bench-
mark. The # max scheduling points column shows the maxi-
mum number of visible operations for which more than one
thread was enabled, over all systematic testing. The smallest
preemption or delay bound required to find the bug for a
benchmark, or the bound reached (but not fully explored) if
the schedule limit was hit, is indicated by bound; # sched-
ules to first bug shows the number of schedules that were
explored up to and including the detection of a bug for the
first time; # schedules shows the total number of schedules
that were explored; # new schedules shows how many of
these schedules have exactly bound preemptions (for IPB)
or delays (for IDB); # buggy schedules shows how many
of the total schedules explored exhibited the bug. As ex-
plained in §5, when a bug is found, we continue to explore
all buggy and non-buggy schedules within the preemption or
delay bound; the schedule limit was never exceeded while
doing this. An L entry denotes 10,000 (the schedule limit
discussed in §5). When no bugs were found, the bug-related
columns contain 7. We indicate by % buggy, the percent-
age of schedules that were buggy out of the total number of
schedules explored during DFS. We prefix the percentage
with a ‘*’ when the schedule limit was reached, in which
case the percentage does not apply to all schedules.

For the Rand results, the # schedules column is omitted,
as it is always 10,000. Note that # schedules to first bug and
buggy schedules may contain duplicate schedules.

For the Maple algorithm, we report whether the bug was
found (found?), the total number of (not necessarily distinct)
schedules explored, as chosen by the algorithm’s heuristics,
and the total time in seconds for the algorithm to complete.
Benchmarks 32, 33 and 34 caused Maple to livelock, so the
24 hour time limit was exceeded. We indicate this with ‘-’.

Benchmark Properties The # max enabled threads and #
max scheduling points columns from Table 3 can be used
to estimate the total number of schedules and, perhaps,
the complexity of the benchmark. With at most n enabled
threads and at most k scheduling points, there are at most nk

terminal schedules. On the other hand, if most of the sched-
ules are buggy (see the % buggy column in Table 3) then
the number of schedules is not necessarily a good indication
of bug complexity. For example, CS.din phil3 sat has a
relatively high number of schedules, but since 87% of them
are buggy, this bug is trivial to find. Of course, the majority
of benchmarks cannot be explored exhaustively, and esti-
mating the percentage of buggy schedules from the partial

Concurrency Testing Using Schedule Bounding: an Empirical Study 9

1 100 1000 10000
terminal schedules (IDB)

1

100

1000

10000

#
te

rm
in

al
sc

he
du

le
s

(IP
B

)

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
21

22

23

24

2526

27

29

30

31 32333435

36

37

3940 41

42

44

45

48

49

50
51

Figure 3: Shows # schedules to the first bug (cross) connected
to the total # schedules (square), up to the bound that found
the bug. Squares are labelled with the benchmark id.

1 100 1000 10000
terminal schedules (IDB)

1

100

1000

10000

#
te

rm
in

al
sc

he
du

le
s

(IP
B

)

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

21

22

23

24

2526

27

29

30

31 323334
35

36

37

3940 41

42

44

45

48

49

50
51

Figure 4: Shows total # non-buggy schedules (cross) con-
nected to the total # schedules (square), up to the bound that
found the bug. Squares are labelled with the benchmark id.

DFS results is problematic because DFS is biased towards
exploring deep context switches.

Table 2 provides some further insight into the complex-
ity of the benchmarks, using properties derived from Ta-
ble 3. Bugs found with a delay bound of zero will always
be found on the initial schedule for IPB, IDB and DFS, as
they all initially execute the same schedule. Any technique
based on this same depth-first schedule will also find the bug
immediately. It could be argued that this schedule is effec-
tive at finding bugs, or that the bugs in question are triv-
ial, since the schedule includes minimal interleaving (there
are no preemptions). Benchmarks with fewer than 10,000
terminal schedules (for DFS) will always be exhaustively
explored by all systematic techniques, so the bug will al-
ways be found. Techniques can still be compared on how
quickly they find the bugs. Bugs that were exposed more
than 50% of the time when using the random scheduler could
arguably be classified as “easy-to-find”. Bugs that were ex-
posed 100% of the time when using the random scheduler
are almost certainly trivial to detect; indeed, Table 3 shows
that all of these benchmarks were buggy for all schedules
over all techniques, suggesting that these bugs are not even
schedule-dependent.

In our view the relatively trivial nature of some of the
bugs exhibited by our benchmarks has not been made clear
in prior works that study these examples. We regard these
easy-to-find bugs as having value only in providing a mini-
mum baseline for any respectable concurrency testing tech-
nique. Failure to detect these bugs would constitute a major
flaw in a technique; detecting them does not constitute a ma-
jor achievement.

IPB vs. IDB Figure 3 compares IPB and IDB by plotting
data from the following columns in Table 3: # schedules to

first bug (as a cross) and # schedules (as a square). Each
benchmark, for which at least one technique found a bug, is
depicted as a line connecting a cross and a square. Where
the bug was not found by one of the techniques, this is in-
dicated with a cross at 10,000 (the schedule limit discussed
in §5). Each square is labelled with its benchmark id from
Table 3. The cross indicates which technique was faster at
finding the bug (with depth-first search as the underlying
search strategy); crosses below/above the diagonal indicate
that IPB/IDB was faster. The square indicates how many
schedules exist with a bound less than or equal to the bound
that found the bug. For example, when exploring bench-
mark 30 with IPB, the first buggy schedule was found after
243 schedules. The search continues until all 856 schedules
with at most one preemption have been explored (bound at
which the bug was found). Since the search terminated be-
fore reaching the schedule limit, we know that the bug would
be found even if we were using an underlying search strat-
egy other than depth-first search. Notice that a number of
benchmarks appear at (x, 10, 000), with x < 10, 000: this is
where IPB failed to find a bug and IDB succeeded.

The bug-finding ability of the techniques in Figure 3 is
tied to the underlying depth-first search. It is possible that
this might cause one of the techniques to “get lucky” and find
a bug quickly, while another search order could lead to many
additional non-buggy schedules being considered before a
bug is found. To avoid this implementation-dependent bias,
in Figure 4 we consider the worst-case bug-finding ability.
Each cross plots, for IDB and IPB, the total number of sched-
ules within the bound exposing the bug that are not buggy.
This corresponds to the difference between the # schedules
and # buggy schedules columns presented in Table 3, and
represents the worst-case number of schedules that might

Concurrency Testing Using Schedule Bounding: an Empirical Study 10

have to be explored to find a bug, given an unlucky choice
of search ordering. The squares are the same as in Figure 3.

Overall, IDB finds all bugs found by IPB, plus seven that
were missed. In Figure 3, most crosses fall on or above the
diagonal, showing that IDB was as fast or faster than IPB
in terms of number of schedules to the first bug. The same is
mostly true for the squares, showing that IDB generally leads
to a smaller total number of schedules than IPB. In the worst
case (Figure 4), some crosses fall under the line, but most
are still very close, or represent a small number of schedules
(less than 100) where the difference between the techniques
is negligible. An outlier is benchmark 42 where, in the worst
case, IPB requires 3 schedules to find the bug, while IDB
requires 1366 schedules. Table 3 shows that the bug does
not require any preemptions, but requires at least one delay;
this difference greatly increases the number of schedules for
IDB. We believe this can be explained as follows. First, there
must be a small number of blocking operations, leading to a
very small number of schedules with a preemption bound
of zero. Second, the bug in question requires that when two
particular threads are started and reach a particular barrier,
the “master” thread (the thread that was created before the
other) does not leave the barrier first. With zero preemptions,
the non-master thread can be chosen at the first blocking
operation (as any enabled thread can be chosen). With zero
delays, only the master thread can be chosen, as one delay
is required to skip over the master thread. Thus, this is an
example where IDB performs worse than IPB. Nevertheless,
IDB is still able to find the bug within the schedule limit.

The CS.reorder X bad benchmark (where X is the
number of threads launched – see Table 3) is the adversar-
ial delay bounding example given in §2; the smallest delay
bound required for the bug to manifest is incremented as the
thread count is incremented. However, IDB still performs
better than IPB, as the number of schedules in IPB increases
exponentially with the thread count. Furthermore, this is a
synthetic benchmark for which the bug is found quickly by
both techniques with a low thread count.

Effectiveness of random scheduling Rand performed sim-
ilarly to IDB in terms of bugs found (Figure 2b). Over all
the benchmarks, it can be seen in Table 3 that Rand was
nearly always similar to or much faster than IDB in terms of
schedules to first bug. This said, for any particular bench-
mark the # schedules to first bug value for Rand should be
treated with caution due to the role of randomness in select-
ing the bug-inducing schedule.

We had not anticipated that a random scheduler would be
so effective at finding bugs. A possible intuition for this is
as follows. If a bug can be exposed with just one delay, say,
then there is a single key preemption that exposes the bug.
Any schedule where (a) the key preemption occurs, and (b)
additional preemptions are irrelevant to the bug, will also
expose the bug. There may be many such schedules and
thus a good chance of exposing the bug through random

scheduling. More generally, if a bug can be exposed with
a small delay or preemption count, there may be a high
probability that a randomly selected schedule will expose the
bug. On the other hand, radbench.bug2 (discussed below)
requires three preemptions but was still found by Rand.

The CHESS benchmarks, used for evaluation in the in-
troduction of preemption bounding [23], test several ver-
sions of a work stealing queue. Depth-first search fails for
chess.WSQ, while IPB succeeds (as in prior work). How-
ever, Rand is also able to find the bug; prior work did not
compare against a random scheduler in terms of bug finding
ability. The remaining CHESS benchmarks are more com-
plex (lock-free) versions of chess.WSQ, which were also
used in prior work. IPB and DFS fail on these, while IDB
and Rand are, again, both successful in finding the bugs.
Rand found the bugs in fewer terminal schedules than IDB
and IPB for all the CHESS benchmarks.

The bug in the parsec.ferret benchmark is missed by
Rand, but found by IDB. The bug requires a thread to be
preempted early in the execution and not rescheduled until
other threads have completed their tasks. Since Rand is very
likely to reschedule the thread, it is not effective at finding
this bug. For IDB, only one delay is required, but, as seen in
Table 3, only one buggy schedule was found; thus, the delay
must occur at a specific visible operation.

The bug in radbench.bug4 is missed by IDB, but found
by Rand. The bug is caused by a shared mutex being lazily
initialised by two threads at once, without synchronisation.
This can lead to a double-unlock or similar error. From
Table 3, it can be seen that this bug requires more than
one delay. The benchmark has a relatively large number of
scheduling points, such that the number of schedules with at
most two delays exceeds the schedule limit.

There are several benchmarks for which the percent-
age of buggy schedules encountered during DFS (see %
buggy in Table 3) is very similar to the percentage of
buggy schedules observed for Rand. For example, 4% vs.
5% in CB.stringbuffer-jdk1.4, and 14% vs. 10% in
CS.account bad: However, there are counter-examples:
CS.carter01 bad: 2% vs. 48%; CS.deadlock01 bad: 6%
vs. 40%. Since the majority of benchmarks cannot be ex-
plored exhaustively and DFS is biased towards exploring
deep context switches, it is impossible to estimate the per-
centage of buggy schedules for most of the benchmarks.

Comparison with the default Maple algorithm As shown
in Figure 2b, MapleAlg missed 15 bugs that were found by
the other techniques, and found 32 bugs, including 1 that
was missed by the others. MapleAlg is impressive consider-
ing the low number of schedules it explores. For example,
all other techniques missed the bug in radbench.bug5 af-
ter 10,000 terminal schedules. In contrast, MapleAlg found
it after just 14 schedules. MapleAlg attempts to force cer-
tain patterns of inter-thread accesses (or interleaving idioms)
that might lead to concurrency bugs. This allows it to expose

Concurrency Testing Using Schedule Bounding: an Empirical Study 11

many bugs quickly. It is possible that the bugs it misses re-
quire interleaving idioms that are not included in MapleAlg.

Discussion No technique found the bugs in 19, 20 and 28.
However, these bugs can be exposed using a lower number
of threads (as shown by the other versions of these bench-
marks), so these results are arguably less useful.

The schedule bounding results reveal that the bug in
radbench.bug2 requires at least three delays or preemp-
tions. The benchmark was modified to use just two threads
in total and IPB and IDB explored the same schedules.
This matches largest number of preemptions required to
expose a bug found in previous work [7]. However, the
misc.safestack benchmark reportedly requires five pre-
emptions and three threads in order for the bug to mani-
fest. We reproduced the bug using Relacy5, a weak memory
data race detector that performs either systematic or random
search for C++ programs that use C++ atomics.

The bug in radbench.bug1 requires a thread to be pre-
empted after destroying a hash table and a second thread to
access the hash table, causing a crash. From the description,
the bug may only require one delay, but it is likely that the
large number of scheduling points is what pushes this bug
out of reach of all the techniques tested.

As explained in §4.1, we reduced the input values in the
SPLASH-2 benchmarks; this resulted in fewer scheduling
points and allowed our data race detector to complete, with-
out exhausting memory. Due to these changes, the results are
not directly comparable with other experiments that use the
SPLASH-2 benchmarks (unless parameters are similarly re-
duced). However, the bugs are found by all systematic tech-
niques after just two schedules; this would be the same, re-
gardless of parameter values. Therefore, the # schedules to
first bug data are accurate.

7. Related Work
To our knowledge, ours is the first independent empiri-
cal study to compare schedule bounding techniques. Back-
ground and related work on systematic schedule bounding
was discussed in §2. We now discuss other relevant ap-
proaches to reducing thread schedules in order to find bugs.

Partial-order reduction (POR) [11] reduces the number of
schedules that need to be explored without missing errors. It
relies on the fact that executions are a partial-order of oper-
ations, and explores only one schedule of each partial-order.
Dynamic POR [9] computes persistent sets [11] during sys-
tematic search; as dependencies between operations are de-
tected, additional schedules are considered. Happens-before
graph caching [24, 26] is similar to state-hashing [13], ex-
cept the partial-order of synchronisation operations is used
as an approximation of the state, resulting in a reduction sim-
ilar to sleep-sets [11]. The combination of dynamic POR and
schedule bounding is the topic of recent research [5, 14, 24].

5http://www.1024cores.net/home/relacy-race-detector

The PCT algorithm [4] executes programs using a ran-
domised priority-based scheduler. A bounded number of pri-
ority change points are inserted at random depths during the
execution, forcing certain thread interleavings. Crucially, the
depths of the change points are chosen uniformly over the
length of the execution, unlike a traditional random sched-
uler that makes a random choice at every execution step.
This allows bugs to be detected with a probability that is
inverse exponential in the number of change points c. It al-
lows bugs with c + 1 ordering constraints to be found; this
number is shown empirically to be small for many interest-
ing concurrency bugs. The parallel PCT algorithm [27] im-
proves on this work by allowing parallel execution of many
threads, as opposed to always serialising execution.

In addition to PCT, there has been a wide-range of work
on other non-systematic approaches, including [29, 30, 32,
36]. Like parallel PCT, these approaches are appealing as
they allow parallel execution of many threads and can handle
complex synchronisation and nondeterminism.

Our study has briefly touched on dynamic race detection
issues. A discussion of this wide area is out of scope here,
but we refer to [8] for the state-of-the-art.

8. Conclusions and Future Work
We have presented the first independent empirical study on
schedule bounding techniques for systematic concurrency
testing. Our most surprising finding is that a naive random
scheduler performs at least as well the more sophisticated
iterative schedule bounding approach, when trying to expose
bugs within 10,000 terminal schedules. This may indicate
that the benchmarks typically used to evaluate concurrency
testing tools are not adequate, as they contain bugs that can
be found fairly easily through random search. On the other
hand, we have proposed an intuition for why bugs that can
be exposed with few preemptions may be exposed by a high
percentage of schedules, and thus are amenable to exposure
through randomisation.

Our findings confirm results in previous work: that sched-
ule bounding is superior to depth-first search; many, but not
all, bugs can be found using a small schedule bound; and
delay bounding beats preemption bounding.

In future work we plan to expand SCTBench to conduct
larger studies, and to study additional methods, such as var-
ious partial-order reduction techniques that reduce the num-
ber of schedules explored during systematic testing, as well
as non-systematic approaches to concurrency testing.

Acknowledgements We are grateful to the PPoPP review-
ers for their useful comments, and especially to reviewer #1
who suggested that we try random scheduling, which led
to interesting results. We are also grateful for feedback on
this work from Ethel Bardsley, Nathan Chong, Pantazis Deli-
giannis, Tony Field, Jeroen Ketema and Shaz Qadeer.

Concurrency Testing Using Schedule Bounding: an Empirical Study 12

http://www.1024cores.net/home/relacy-race-detector

id name IPB IDB DFS Rand MapleAlg

#
th

re
ad

s

#
m

ax
en

ab
le

d
th

re
ad

s

#
m

ax
sc

he
du

lin
g

po
in

ts

bo
un

d

#
sc

he
du

le
s

to
fir

st
bu

g

#
sc

he
du

le
s

#
ne

w
sc

he
du

le
s

#
bu

gg
y

sc
he

du
le

s

bo
un

d

#
sc

he
du

le
s

to
fir

st
bu

g

#
sc

he
du

le
s

#
ne

w
sc

he
du

le
s

#
bu

gg
y

sc
he

du
le

s

#
sc

he
du

le
s

to
fir

st
bu

g

#
sc

he
du

le
s

#
bu

gg
y

sc
he

du
le

s

%
bu

gg
y

#
sc

he
du

le
s

to
fir

st
bu

g

#
bu

gg
y

sc
he

du
le

s

fo
un

d?

#
sc

he
du

le
s

to
ta

lt
im

e
(s

ec
on

ds
)

0 CB.aget-bug2 4 3 23 0 1 10 10 4 0 1 1 1 1 1 L 6698 *66% 2 4874 3 17 37
1 CB.pbzip2-0.9.4 4 4 38 0 2 12 12 4 1 2 31 30 13 2 L 6245 *62% 1 4263 3 4 20
2 CB.stringbuffer-jdk1.4 2 2 6 2 9 13 8 1 2 9 13 8 1 7 24 1 4% 5 577 3 9 7
3 CS.account bad 4 3 5 0 3 6 6 2 1 3 5 4 1 3 28 4 14% 3 1089 3 20 12
4 CS.arithmetic prog bad 3 2 20 0 1 4 4 4 0 1 1 1 1 1 L L *100% 1 L 3 1 1
5 CS.bluetooth driver bad 2 2 9 1 6 7 6 1 1 6 7 6 1 36 177 10 5% 45 562 7 11 7
6 CS.carter01 bad 5 3 14 1 9 19 16 2 1 8 12 11 1 8 1708 49 2% 3 4898 3 6 5
7 CS.circular buffer bad 3 2 26 1 23 35 32 12 2 25 79 56 36 20 3991 2043 51% 3 9013 7 17 12
8 CS.deadlock01 bad 3 2 8 1 9 12 9 2 1 7 9 8 1 10 46 3 6% 1 4095 7 7 5
9 CS.din phil2 sat 3 2 17 0 1 3 3 3 0 1 1 1 1 1 5336 4686 87% 1 9700 3 1 1

10 CS.din phil3 sat 4 3 25 0 1 13 13 13 0 1 1 1 1 1 L 8710 *87% 1 9270 3 1 1
11 CS.din phil4 sat 5 4 36 0 1 73 73 73 0 1 1 1 1 1 L 9353 *93% 1 8756 3 1 1
12 CS.din phil5 sat 6 5 39 0 1 501 501 501 0 1 1 1 1 1 L L *100% 1 L 3 1 1
13 CS.din phil6 sat 7 6 49 0 1 4051 4051 4051 0 1 1 1 1 1 L L *100% 1 L 3 1 1
14 CS.din phil7 sat 8 7 10 0 1 7 7 7 0 1 1 1 1 1 924 924 100% 1 L 3 1 1
15 CS.fsbench bad 28 27 155 0 1 1 1 1 0 1 1 1 1 1 L L *100% 1 L 3 1 1
16 CS.lazy01 bad 4 3 7 0 1 13 13 6 0 1 1 1 1 1 118 81 68% 1 6018 3 1 1
17 CS.phase01 bad 3 2 6 0 1 2 2 2 0 1 1 1 1 1 17 17 100% 1 L 3 1 1
18 CS.queue bad 3 2 61 1 98 100 97 2 2 63 482 420 326 43 L 6405 *64% 1 9996 3 2 1
19 CS.reorder 10 bad 11 10 38 0 7 L L 0 4 7 L 3217 0 7 L 0 *0% 7 0 7 11 7
20 CS.reorder 20 bad 21 20 87 0 7 L L 0 3 7 L 6916 0 7 L 0 *0% 7 0 7 11 7
21 CS.reorder 3 bad 4 3 10 1 43 74 61 2 2 25 45 35 3 126 2494 23 <1% 25 270 7 10 7
22 CS.reorder 4 bad 5 4 14 1 359 774 701 3 3 205 417 330 7 6409 L 4 *<1% 9 63 7 11 8
23 CS.reorder 5 bad 6 5 18 1 3378 8483 7982 4 4 1513 3681 2843 15 7 L 0 *0% 123 22 7 11 7
24 CS.stack bad 3 2 31 1 23 50 47 9 1 22 32 31 9 22 L 512 *5% 1 5877 7 10 8
25 CS.sync01 bad 3 2 2 0 1 2 2 2 0 1 1 1 1 1 6 6 100% 1 L 3 1 1
26 CS.sync02 bad 3 2 9 0 1 2 2 2 0 1 1 1 1 1 88 88 100% 1 L 3 1 1
27 CS.token ring bad 5 4 8 0 8 24 24 4 2 10 29 22 3 8 280 57 20% 6 1103 3 5 4
28 CS.twostage 100 bad 101 100 792 0 7 L L 0 2 7 L 9304 0 7 L 0 *0% 7 0 7 11 9
29 CS.twostage bad 3 2 8 1 9 10 7 1 1 7 9 8 1 13 87 3 3% 5 837 3 8 5
30 CS.wronglock 3 bad 5 4 22 1 243 856 783 66 1 15 22 21 2 3233 L 94 *<1% 8 3010 3 6 4
31 CS.wronglock bad 9 8 46 0 7 L L 0 1 31 42 41 2 7 L 0 *0% 5 3065 3 6 4
32 chess.IWSQ 3 3 120 1 7 L 9997 0 2 3077 4466 4351 192 7 L 0 *0% 1496 15 7 7 -
33 chess.IWSQWS 3 3 1497 1 7 L 9997 0 1 773 1498 1497 1 7 L 0 *0% 2 646 7 9 -
34 chess.SWSQ 3 3 1697 1 7 L 9997 0 1 773 1698 1697 1 7 L 0 *0% 140 85 7 7 -
35 chess.WSQ 3 3 90 2 2814 8852 8626 640 2 801 2048 1974 192 7 L 0 *0% 355 8 7 12 12
36 inspect.qsort mt 3 3 33 1 31 88 84 2 1 19 28 27 1 7 L 0 *0% 132 108 7 142 102
37 misc.ctrace-test 3 2 19 1 4 20 19 12 1 4 20 19 12 4 20 12 60% 2 2641 3 1 1
38 misc.safestack 4 3 114 1 7 L 9987 0 3 7 L 5958 0 7 L 0 *0% 7 0 7 23 16
39 parsec.ferret 11 11 24453 0 7 L L 0 1 51 4575 4574 1 7 L 0 *0% 7 0 3 27 205
40 parsec.streamcluster 5 2 1373 1 7 L 9994 0 1 1336 1372 1371 10 7 L 0 *0% 2 7122 3 1 2
41 parsec.streamcluster2 7 3 4177 0 7 L L 0 1 4155 4177 4176 20 7 L 0 *0% 31 347 7 24 149
42 parsec.streamcluster3 5 2 1373 0 2 6 6 4 1 2 1369 1368 4 2 L 6078 *60% 4 3435 3 1 1
43 radbench.bug1 4 3 14214 1 7 L 9962 0 1 7 L 9999 0 7 L 0 *0% 7 0 7 629 8797
44 radbench.bug2 2 2 41 3 2647 3154 2808 8 3 2647 3154 2808 8 7 L 0 *0% 2267 5 7 220 804
45 radbench.bug3 3 2 239 0 1 3 3 3 0 1 1 1 1 1 L L *100% 1 L 3 32 96
46 radbench.bug4 3 3 209 2 7 L 9658 0 2 7 L 9852 0 7 L 0 *0% 377 9 3 16 23
47 radbench.bug5 7 3 856 1 7 L 9936 0 2 7 L 9210 0 7 L 0 *0% 7 0 3 14 18
48 radbench.bug6 3 3 29 1 27 58 55 1 1 19 30 29 1 7 L 0 *0% 12 1306 7 34 39
49 splash2.barnes 2 2 4408 1 2 4378 4377 326 1 2 4378 4377 326 2 L 2484 *24% 3 4982 3 1 1
50 splash2.fft 2 2 136 1 2 134 133 61 1 2 134 133 61 2 L 7429 *74% 2 6214 3 2 2
51 splash2.lu 2 2 114 1 2 105 104 49 1 2 105 104 49 2 L 4993 *49% 1 9741 3 2 3

Table 3: Experimental results for systematic concurrency testing using iterative preemption bounding (IPB), iterative delay
bounding (IDB) and unbounded depth-first search (DFS), and non-systematic testing with a naive random scheduler (Rand)
and using the Maple algorithm (MapleAlg). Entries marked ‘L’ indicate 10,000, our schedule limit. A ‘7’ indicates that no bug
was found. In the MapleAlg results, ‘-’ indicates that the Maple tool timed out after 24 hours. A percentage prefixed with ‘*’
does not apply to all schedules, only those that were explored via DFS before the schedule limit was reached.

Concurrency Testing Using Schedule Bounding: an Empirical Study 13

References
[1] A. Bessey et al. A few billion lines of code later: using static

analysis to find bugs in the real world. Commun. ACM, 53(2):
66–75, 2010.

[2] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, 2011.

[3] H.-J. Boehm. How to miscompile programs with “benign”
data races. In HotPar, pages 1–6, 2011.

[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte.
A randomized scheduler with probabilistic guarantees of find-
ing bugs. In ASPLOS, pages 167–178, 2010.

[5] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded
partial-order reduction. In OOPSLA, pages 833–848, 2013.

[6] L. Cordeiro and B. Fischer. Verifying multi-threaded software
using SMT-based context-bounded model checking. In ICSE,
pages 331–340, 2011.

[7] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded
scheduling. In POPL, pages 411–422, 2011.

[8] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In PLDI, pages 121–133, 2009.

[9] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-
tion for model checking software. In POPL, pages 110–121,
2005.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[11] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems. Springer, 1996.

[12] P. Godefroid. Model checking for programming languages
using VeriSoft. In POPL, pages 174–186, 1997.

[13] G. J. Holzmann. On limits and possibilities of automated
protocol analysis. In PSTV, pages 339–344, 1987.

[14] G. J. Holzmann and M. Florian. Model checking with
bounded context switching. Formal Asp. Comput., 23(3):365–
389, 2011.

[15] J. Huang and C. Zhang. An efficient static trace simplification
technique for debugging concurrent programs. In SAS, pages
163–179, 2011.

[16] N. Jalbert and K. Sen. A trace simplification technique for
effective debugging of concurrent programs. In FSE, FSE ’10,
pages 57–66, 2010.

[17] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench:
a concurrency bug benchmark suite. In HotPar, pages 1–6,
2011.

[18] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race
bugs: telling the difference with Portend. In ASPLOS, pages
185–198, 2012.

[19] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform for
search-based testing of concurrent software. In PADTAD,
pages 48–58, 2010.

[20] A. Lal and T. W. Reps. Reducing concurrent analysis under
a context bound to sequential analysis. Formal Methods in
System Design, 35(1):73–97, 2009.

[21] B. Lewis and D. J. Berg. Multithreaded programming with
Pthreads. Prentice-Hall, 1998.

[22] C.-K. Luk et al. Pin: building customized program analysis
tools with dynamic instrumentation. In PLDI, pages 190–200,
2005.

[23] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In PLDI, pages
446–455, 2007.

[24] M. Musuvathi and S. Qadeer. Partial-order reduction for
context-bounded state exploration. Technical Report MSR-
TR-2007-12, Microsoft Research, 2007.

[25] M. Musuvathi and S. Qadeer. Fair stateless model checking.
In PLDI, pages 362–371, 2008.

[26] M. Musuvathi et al. Finding and reproducing Heisenbugs in
concurrent programs. In OSDI, pages 267–280, 2008.

[27] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musu-
vathi. Multicore acceleration of priority-based schedulers for
concurrency bug detection. In PLDI, pages 543–554, 2012.

[28] S. Narayanasamy et al. Automatically classifying benign and
harmful data races using replay analysis. In PLDI, pages 22–
31, 2007.

[29] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. In ASPLOS, pages
25–36, 2009.

[30] K. Sen. Race directed random testing of concurrent programs.
In PLDI, pages 11–21, 2008.

[31] H. Sutter and J. Larus. Software and the concurrency revolu-
tion. ACM Queue, 3(7):54–62, 2005.

[32] C. Wang, M. Said, and A. Gupta. Coverage guided systematic
concurrency testing. In ICSE, pages 221–230, 2011.

[33] S. C. Woo et al. The SPLASH-2 programs: characterization
and methodological considerations. In ISCA, pages 24–36,
1995.

[34] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A run-
time model checker for multithreaded C programs. Technical
Report UUCS-08-004, University of Utah, 2008.

[35] J. Yu and S. Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. In ISCA, pages 325–
336, 2009.

[36] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple:
a coverage-driven testing tool for multithreaded programs. In
OOPSLA, pages 485–502, 2012.

Concurrency Testing Using Schedule Bounding: an Empirical Study 14

	Introduction
	Main findings and contribution
	SCTBench and reproducibility of our study

	Systematic Concurrency Testing
	Modifications to Maple
	Benchmark Collection
	Details of benchmark suites
	Effort Required For SCT

	Experimental Method
	Experimental Results
	Related Work
	Conclusions and Future Work

