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Abstract: The Dynamic Interactive Vulnerability Assessment Wetland Change 

Model (DIVA_WCM) comprises a dataset of contemporary global coastal 

wetland stocks (estimated at 756 x103 km2 (in 2011)), mapped to a one-

dimensional global database, and a model of the macro-scale controls on 

wetland response to sea-level rise. Three key drivers of wetland response 

to sea-level rise are considered: 1) rate of sea-level rise relative to 

tidal range; 2) lateral accommodation space; and 3) sediment supply. The 

model is tuned by expert knowledge, parameterised with quantitative data 

where possible, and validated against mapping associated with two large-

scale mangrove and saltmarsh vulnerability studies. It is applied across 

12,148 coastal segments (mean length 85 km) to the year 2100. The model 

provides better-informed macro-scale projections of likely patterns of 

future coastal wetland losses across a range of sea-level rise scenarios 

and varying assumptions about the construction of coastal dikes to 

prevent sea flooding (as dikes limit lateral accommodation space and 

cause coastal squeeze). With 50 cm of sea-level rise by 2100, the model 

predicts a loss of 46 - 59% of global coastal wetland stocks. A global 

coastal wetland loss of 78% is estimated under high sea-level rise (110 

cm by 2100) accompanied by maximum dike construction. The primary driver 

for high vulnerability of coastal wetlands to sea-level rise is coastal 

squeeze, a consequence of long-term coastal protection strategies. Under 

low sea-level rise (29 cm by 2100) losses do not exceed ca. 50% of the 

total stock, even for the same adverse dike construction assumptions.  

The model results confirm that the widespread paradigm that wetlands 

subject to a micro-tidal regime are likely to be more vulnerable to loss 

than macro-tidal environments. Countering these potential losses will 

require both climate mitigation (a global response) to minimise sea-level 

rise and maximisation of accommodation space and sediment supply (a 

regional response) on low-lying coasts. 
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21 December 2015 
 
To Whom It May Concern 
 
We have extensively revised the manuscript ‘Global coastal wetland change under sea-
level rise and related stresses: the DIVA Wetland Change Model’ by Spencer and co-
authors, for further consideration for publication in Global and Planetary Change. We 
believe that we have addressed all the comments and queries raised by the reviewers in 
detail and in full. Our ‘response to referees’ indicates where on a manuscript the responses 
have been made. We believe that these responses have resulted in a significantly improved 
paper and we thank the referees and the editorial team for the opportunity to respond to 
the criticism of the original submission.  We maintain the separation of the general narrative 
from a more specific set of technical issues raised in the supplementary material; we believe 
that this decision helps meet the journal’s concern to present problems and results in a way 
that is suitable for a broad readership.  However, for ease of review we include the 
Supplementary Material at the end of the revised manuscript. 
  
The manuscript has been prepared to conform to the instructions for contributors. This material 
has not been previously published elsewhere, nor is it under consideration for publication 
elsewhere. All the authors have approved this submission. There are no closely related 
manuscripts that have been submitted or are in press. As far as I am aware, there are no actual or 
potential conflicts of interest, of a financial, personal or other kind, with other people or 
organizations that could inappropriately influence, or be perceived to influence, this work. No 
funding source has had any involvement in the study design, collection, analysis and 
interpretation of the data, in the writing of the manuscript and in the decision to submit the 
paper for publication. 
 
Yours sincerely, 
 
 
 
 
Dr Tom Spencer 
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GLOPLACHA –S –15 00299 
 
Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland 
Change Model 
 
Spencer et al. 
 
Response to Referees 
 
 
 
Reviewer #1: This manuscript describes the results of a model that was calibrated and 
applied to the global distribution of wetlands. Its primary drivers include the rate of sea-
level rise versus tidal range, the presence of lateral accommodation space, and sediment 
supply. As these drivers are altered over time, and applied to different coastal wetland 
areas, the authors conclude that there is basically little future for coastal wetlands beyond 
the year 2100. This is truly depressing.  
 
Authors’ response: we provide a range of estimates of future wetland loss which show that 
whilst wetland loss is potentially significant under all scenarios (combinations of sea level 
rise, sediment supply and availability of lateral accommodation space), it is only under the 
more extreme combinations that coastal wetlands have ‘little future’. Further we have 
emphasised the policy responses that would help to avoid these worst-case losses. 
 
Indeed, I think that there is value to these assessments, and I believe strongly that these 
authors are among the best in the world at framing these results appropriately. They have 
certainly nailed down the important drivers lauded widely in the literature.  
 
Authors’ response: these comments noted, with thanks. 
 
This paper can provide important context for policy experts and scientists alike; however, I 
wonder how accurate these types of "doom and gloom" predictions will be in actuality. This 
is not the first model to report such findings, but the scale is certainly unique. It is just very 
difficult to accept these outcomes given the Holocene record of what wetlands have done in 
the past. This model is basically predicting the collapse of most wetlands globally within the 
next 85 years. Will scientists be chastised at the end of this century because we were 
wrong? I fear so, specifically because the recognized need among the scientific community 
for more complexity in these models (e.g., biological feedbacks) is dismissed (as the authors 
do on lines 110-119), even though we know that revised simulations will give different, and 
more conservative predictions of loss. 
 
Authors’ response:  

i)    the Holocene record indicates that coastal wetlands have shown high levels of 
persistence when rates of sea level rise have been low to moderate, but 
significant wetland loss at high rates of sea level rise. There are locations where 
mangroves have persisted even under high rates of sea level rise, but these have 
been in settings of high sediment supply. Thus the Holocene record does in fact 

*Detailed Response to Reviewers



support the modelling approach adopted here of identifying sea level rise, 
sediment supply and accommodation space as the primary determinants of 
wetland vulnerability. But the Holocene record is not a good analogue for the 
future because, as we show, human influence has made wetlands more 
vulnerable. This view is supported by recent assessments of historical and recent 
losses of natural coastal wetlands; Davidson (2014) estimates that natural coastal 
wetlands have declined by 46–50% since the beginning of the 18th century and by 62–
63% over the course of the 20th century and Leadley et al.’s (2014) Wetland Global 

Extent Index estimates an almost 50% decline between 1970 and 2008.  In addition to 
human influence on sea level rise, human agency has caused reductions in 
sediment supply and, critically, the reduction of future accommodation space 
through the building of sea defences. This has significantly changed the reference 
frame of wetland response, both vertical and lateral, to sea level change. We 
have modified both the abstract to the paper and the main text (revised 
manuscript lines 77-79, 705-715) to better reflect this argument.  

ii)   see our first response above on the ‘collapse of most wetlands globally within the 
next 85 years’;  

iii)    we accept that this global-scale model lacks a consideration of more complex 
internal feedbacks that influence rates and styles of wetland loss. We now 
explicitly add this caveat and referenced new text (lines 644-651 and lines 716-
718 in revised text). Our intention in this submission of a first global coastal 
wetland loos and change model is to encourage debate on the issue of large–
scale wetland loss within the scientific community to feed into future model 
development.  

 
I enjoyed reading this paper. The authors are very familiar with the literature, including the 
important drivers of surface elevation deficit and techniques used to assess deficit. Also, this 
is an incredibly well-written paper. I learned a lot from reading this! 
 
Authors’response: Comments noted, with thanks. 
 
 
Comments: 
 
(1) DIVA_WCM is a "doom and gloom" model having many, if not all, of the same 
assumptions used by SLAMM. I caution the author's validation procedures against SLAMM, 
which may be among the worst of all sea-level models in the world in terms of prediction. 
Whether SLAMM provides an appropriate hypothesis testing platform is a different matter.  
It seems that SLAMM is being used because it is an easy model with little complexity (e.g., 
no biological feedbacks), widely available, and useful for comparison at the scales that 
DIVA_WCM is being applied. I.e., all the reasons why SLAMM is not an accurate model. That 
is OK, but it is important that the authors also compare their model output from specific 
sections of coast against a suite a models (which can include SLAMM) so that the readers 
can at least know the predictive ability of DIVA_WCM against more than just that one 
model. I know it is not feasible to apply a suite approach to the entire world, but how about 
selecting four locations, partnering with people running different models, and give it a try? 
For example, you could select: (1) mesotidal, low sediment; (2) mesotidal, high sediment; (3) 



microtidal, low sediment; and (4) microtidal, high sediment locations. Why would you not 
want to know this yourself? 
 
Authors’ response: SLAMM is used for model calibration not validation. The calibration was 
largely undertaken against the SLAMM model for precisely the reasons that the reviewer 
notes – the SLAMM model is really the only landscape-scale wetland change model that has 
been applied widely enough over the timescale of interest to provide the necessary datasets 
for calibration. We do, however, provide one use of the WARMER model as part of the 
calibration exercise. This is a numerical model which does include biophysical feedbacks; we 
discuss the relations between DIVA, WARMER and SLAMM in response to comment (8) 
below. Other landscape-scale models have been calibrated, but against relatively short 
historical datasets of wetland loss. We now add to Table 2 information on the tidal range at 
each of the six calibration sites – and information on suspended sediment concentrations 
where available. These show that the calibration datasets do encompass the site types 
referred to above: (1) (San Francisco Bay); (2) (Georgia coast, USA); (3) (Gulf coast, Florida);  
(4) (some locations in SE Louisiana and during resuspension events, Moreton Bay, 
Queensland).  
 
(2) L. 98. I realize that the lead author has been using SETs for many years and is a world 
expert on its use, but note that it was re-named to "Surface-Elevation Table" over a decade 
ago to better reflect what the "table" actually measures.  
 
Authors’ response: terminology changed (line 105 in revised text) 
 
Also, (L. 98-103) the authors are correct about the limitations of this technique, but there 
are SET-MH data sets now available of sufficient length to verify model runs. The lead 
author has some of these data. The scale of DIVA_WCM may preclude comparisons with SET 
data from the large areas simulated in this assessment, but if you had side-by-side 
comparisons for specific locations on a smaller scale, those comparisons would translate up-
scale and would strengthen this paper considerably. 
 
Authors’ response: we have modified the text (lines 108-114 in revised text) to acknowledge 
that the network of SET sites is now becoming sufficiently geographically widespread to 
enable ideas of regional variations in coastal wetland vulnerability to be tested. We make 
reference to Lovelock et al. (2015) - which was not available when the paper was first 
submitted – which uses the Indo-Pacific SET network to assess the vulnerability of Indo-
Pacific mangroves to sea-level rise. We discuss in full a validation using the output of the 
Lovelock et al. model further below. Of the six calibration studies used to calibrate the 
DIVA_WCM model, two use SET outputs to directly calibrate surface accretion rates. So 
there is in fact incorporation of SET findings into the DIVA_WCM model to the maximum 
degree possible at the present time.     
 
(3) L. 110-115. These statements are problematic for me. So, in summary, you know that the 
simplified, open-access model is probably incorrect because there is a suite of papers saying 
that not incorporating complexity and feedbacks is bad, but the scale of application should 
overcome that issue? Can you please explain to the reader then what you are calibrating? 
Calibrating your output against the output of SLAMM applied to different locations? What is 



the benefit then to science? Calibrating your output against real scenarios or a suite of 
models using different assumptions would be much stronger.  
 
Authors’ response: we feel that this is an honest statement of the challenges faced by this 
type of analysis. We now qualitatively validate the DIVA model against a model with a 
different structure, that of Lovelock et al., in a new Figure 5. The Lovelock model is a binary 
model of wetland survival versus wetland loss at 2100 and it is, therefore, difficult to make a 
quantitative comparison to DIVA outputs arranged by coastal segment. Nevertheless, the 
comparison of the two models is encouraging and addresses the wider point of assessing 
DIVA_WCM outputs against other models. 
 

(4) The scale of DIVA_WCM model application is outstanding, and represents a real strength 
of this assessment. That is why I REALLY want it all to be correct, or at least know to what 
degree I can consider it correct. 
 
Authors’ response: we share the reviewer’s sentiments.  
 
(5) Line 228. Please delete this line. I think I know what you are saying, though maybe not, 
but this entire modeling exercise is not reconcilable against the Holocene record if humans 
are not included in the change to some degree. The IPCC SLR scenarios alone include human 
influences, but there are many other inherent influences that are part of this DIVA_WCM 
modeling, including the current distribution of wetlands, ability to migrate, sediment supply, 
etc.  
 
Authors’ response: This line now deleted. 
 
(6) I like the inclusion and discussion of "lateral accommodation space". 
 
Authors’ response: noted 
 
(7) Lines 533. I think this should read "…sea-level rise / tidal datum, rslr_d, (Table 6(b)) with 
higher loss rates where this term is high." Right? If not, I do not understand it. High SLR and 
low tidal range (high value) should equate to greater losses compared with Low SLR and 
high tidal range (low value). 
 
Authors’ response: the text as written is correct as is the reviewer’s interpretation 
  
(8) Table 1. Is the WARMER model a derivation of SLAMM? If not, how did this model 
compare for the overlaid areas with DIVA_WCM?   
 
Authors’ response: The comment refers to Table 2 not Table 1. WARMER is not a derivative 
of SLAMM.  It is a numerical saltmarsh model which does include biophysical feedbacks (the 
lack of which within SLAMM is commented upon above by the reviewer). Interestingly, the 
WARMER model (solid dots below) performs in a very similar manner to the SLAMM model 
(open dots) when it comes to comparisons with the DIVA model (see modified version of 
Figure 4 below) 
 



 
 
(9) Discussion. Line 576 - "higher sensitivity to sea-level rise". Maybe because there are no 
feedbacks in the model? So, perhaps remind the reader that this SLR sensitivity may be 
reduced significantly if appropriate feedbacks by hydrology and vegetation type are to be 
included in the future. 
 
Authors’ response: we revise the text (641-651 lines in revised text) as follows ‘In its current 
form the DIVA_WCM model shows higher sensitivity to sea-level rise than these earlier 
analyses, and losses two or more times higher than these earlier estimates appear possible. 
However, this sensitivity may be reduced in future iterations if appropriate feedbacks from 
changing plant physiology and tidal hydrodynamics can be included in the model structure. 
Thus, for example, increased atmospheric CO2 and warmer temperatures, allied to mid-
range rates of sea level rise, may lead to increases in the rates of plant productivity and 
wetland accretion (Langley et al., 2009; Cherry et al., 2009; Kirwan and Gutenspergen, 2012; 
Kirwan and Mudd, 2012), These dynamics might be further reinforced by increased 
sediment supply to wetland surfaces with greater tidal energetics under higher sea levels, 
albeit with limits to ‘ecogeomorphic’ adaptability at higher rates of sea level rise (Kirwan et 
al., 2010).’ 

 

(10) Line 580-581. Conservative rate of loss? This is a very bold statement given that up to 
78% of global wetlands have been killed in your simulations under what may actually 
become a reasonable SLR scenario by 2100? Do you really believe that? Even at 50%, it is a 
stretch. 
 
Authors’ response: We understand the reviewer’s comments at this point and remove the 
reference to ‘conservative losses’. We do think that these magnitude of losses are possible 
and important to raise for climate policy and coastal management. They are not unrealistic 



figures when compared against the historical and recent record: Davidson (2014) estimates 
that natural coastal wetlands have declined by 46–50% since the beginning of the 18th 
century and by 62–63% over the course of the 20th century and Leadley et al.’s (2014) 
Wetland Global Extent Index estimates an almost 50% decline between 1970 and 2008.   
 
(11) Lines 595-622. These are great paragraphs, although I do not understand Line 610. 
What does the "fertilizing effect of regional scale assessments" mean? 
 
Authors’ response: we amend the text here (lines 679-681 in revised text) to ‘calibration of 
these curves provides an important focus for the linking of regional scale assessments to 
global scale wetland modelling.’ 
 

(12) Lines 612-613. Except that your regional-scale models used for comparison are all the 
same model type, with wonderful potential to be incorrect. 
 
Authors’ response: please see response to comments (1) and (8) above. 
 
(13) Discussion. You need to add a well-thought-out, dedicated section to this discussion 
explaining the possibility that this model may over predict losses in comparison to other 
modeling assessments, and why. Consult Kirwin and/or Guntenspergen papers for insight on 
this. You have to provide all the potential caveats to the reader. Past SLAMM model 
applications have taken heat because they chose to ignore addressing or assessing these 
issues in the write-up. What is the error associated with these predictions? We need a 
measure of accuracy because some of these projected losses, even at 46-59%, are really 
high. 
 
Authors’ response: we add a new paragraph (lines 644-651 in revised text) to flag up the 

reviewer’s concerns ‘However, this sensitivity may be reduced in future iterations if 

appropriate feedbacks from changing plant physiology and tidal hydrodynamics can be 

included in the model structure. Thus, for example, increased atmospheric CO2 and warmer 

temperatures, allied to mid-range rates of sea level rise, may lead to increases in the rates 

of plant productivity and wetland accretion (Langley et al., 2009; Cherry et al., 2009; Kirwan 

and Gutenspergen, 2012; Kirwan and Mudd, 2012), These dynamics might be further 

reinforced by increased sediment supply to wetland surfaces with greater tidal energetics 

under higher sea levels, albeit with limits to ‘ecogeomorphic’ adaptability at higher rates of 

sea level rise (Kirwan et al., 2010). ‘  

 
In summary, I made a lot of comments that I hope are helpful. I like this paper. We just need 
to know something more about the potential inaccuracies of this application of DIVA_WCM 
as applied to global wetland losses. All models are inaccurate, but to different degrees. This 
paper will be impactful when published, and I think the authors should consider a 
reasonable defense of these predictions when it is published. You need to be able to stand 
behind these predictions.  
 



Authors’ response: We appreciate these comments. We now add a new qualifier (lines 716-
718 in revised text) to the final set of conclusions: ‘Further development of the model is 
now needed to better assess the role of ecogeomorphic feedbacks to see if the 
incorporation of these terms fundamentally affects model outcomes.’ 
 

 

 

Reviewer #3: This is an extensive and impressive study of the potential losses to coastal 
wetland stocks with sea level rise. It is global in scope, working with a revamped DIVA 
model. This paper will make a valuable contribution to the literature when published. 
The inclusion of the "dikes" modifier is very interesting. The attempt to reconcile models 
from smaller scales (e.g. SLAMM) to the larger scale of the DIVA model is important and 
points the way to new research paths to bridge gaps for management.  
The maps (Fig. 8) are very compelling. 
 
Authors’ response: comments noted, with thanks. 
 
 
Specific comments 
Line 68 - extend citation and statement to include mangroves  e.g.  "and aquaculture 
(Murdiyarso et al. 2015 Nature Climate Change)" 
 
Authors’ response: Murdiyarso et al. 2015 added (line 70 in revised text) – this was not 
available at time of submission.  
 
Line 69 - again, extend to beyond tidal marsh refs 
 
Authors’ response: reference to Alongi (2008) review paper added (lines 71-72 in revised 
text) 
 
Line 102-103 - I thought these authors say that RSETs are not focussed on areas with 
anticipated high rates of losses, but that they should be. 
 
Authors’ response: this text now revised (see response to reviewer #1 comment above) 
 
Line 179 - is there a web link to the model and the databases?  
 
Authors’ response: Not at present. However, we now provide a weblink which includes 
contact details for the head of model development (line 192 in revised text) 
 
Line 193 - from where is the elevation data derived? 
 
Authors’ response: derived from the ETOPO2 (NGDC, 2001) dataset. Previously this was only 
referenced, with weblink, in relation to slope calculation, in the Supplementary Material. 
We now add this information in the main text also (lines 206-207 in revised text)  
 
Line 205. I am not certain agree with slower response times for forests, particularly during 
loss phases, although I can see that above ground biomass takes longer than tidal marsh to 



re-establish. Please clarify statement of reduced sensitivity. Perhaps additional references to 
Allen are needed. 
 
Authors’ response: We remove the existing ambiguous reference to ‘ecological sensitivity’ 
and the general reference of Allen (1974) with a more specific argument, supported by a 
reference on the ecophysiology on mangroves. New text (lines 219-222 in revised text): 
‘Mangroves and coastal forests respond more robustly to environmental change than the 
other wetland types because slower growth rates across a wide range of environmental 
tolerance allows for survival under moderate levels of stress (Ball, 1988). ‘  
 
Line 206 - Is ecological sensitivity scored as response times in years? More information on 
this is needed. Perhaps provide range or typical response time for each veg type? 
 
Authors’ response: This comment is covered at lines 353-367 in substantially revised text. 
We have extensively revised the text at this point to cover the question on timescales. It 
should be noted, however, that whilst there is a considerable literature on the response of 
mangrove seedlings to changes in flooding regime there is almost no literature that we 
know of on the response of mature mangrove trees to these effects. 
 
Paragraph starting line 242. This is a confusing group of sentences. It considers sediment 
accretion, tidal range and tidal prism, but it is unclear how these are linked. There are 
studies that show that sediment accretion is proportional to inundation depth (i.e. greater 
volumes of water flooding a site give rise to higher rates of surface accretion), but it is not 
clear that this is the point of this early part of the paragraph.  Clarify the aims of this 
paragraph.  Perhaps it should be expanded to two paragraphs. 
 
Authors’ response: we adjust the preceding paragraph (lines 248-258 in revised text) to 
make the relationships between tidal flooding, sediment supply and wetland surface 
elevation clearer. ‘If sediment supply is sufficient, marsh surfaces will accrete vertically, 
rapidly at first but then slowing over time as fewer tides inundate the progressively higher 
surface (Allen, 1990).  Conversely, in sediment-poor wetlands, subject to a rise in relative 
sea level without equal increases in wetland surface elevation from sediment accretion, the 
duration and depth of tidal flooding will increase over time. In this situation, wetland 
vegetation may revert to a community composition more typical of lower elevations in the 
tidal frame (Huiskes, 1990; Mendelssohn and Morris, 2000).’  
 

 
Line 260 - where is the segment specific uplift rate derived from?  Provide link to data set. 
 
Authors’ response: we add the link in revised text (lines 277-278) ‘(obtained from 
http://www.atmosp.physics.utoronto.ca/~peltier/data.php),’ 
 
Line 315. Perhaps bring A4 into the main paper because of the complexity of this section 
and because it is important to understanding the outputs.   "Furthermore, each factor is 
multiplied by an internal weighting to reflect their relative significance within the sedsup 
parameter (Equation 3, Supplementary Material). The respective weights are based on 
expert judgement, derived from field experience and the published literature." 



 
Authors’ response: we are concerned about the length of the paper and so feel that it is 
acceptable to leave the detail in the Supplementary Material, with proper signposting in the 
main text.  
 

 

L366 - 368. I don't understand this sentence 

Authors’ response: we accept that the original text was not as clear as might have been the 
case. We now provide a shortened text which we believe makes the use of beta distribution 
curves clearer (revised text lines 389-391). 
 
 



 

 

Highlights: 

 

 database identifies estimated (in 2011) 756 x103 km2 global coastal wetland stock  

 

 with 50 cm of sea-level rise by 2100, losses of 46 – 59% of global coastal wetlands  

 

 under high sea-level rise (110 cm by 2100), global wetland losses may reach 78% 

 

 under low sea-level rise, micro-tidal wetlands more vulnerable to loss 

 

 wetland loss likely to be exacerbated by non-climate related, anthropogenic impacts  
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2  

34 Abstract 

35 
 

36 The Dynamic Interactive Vulnerability Assessment Wetland Change Model (DIVA_WCM) comprises 
 

37 a dataset of contemporary global coastal wetland stocks (estimated at 756 x103  km2  (in 2011)), 
 

38 mapped to a one-dimensional global database, and a model of the macro-scale controls on wetland 
 

39 response to sea-level rise. Three key drivers of wetland response to sea-level rise are considered: 1) 
 

40 rate of sea-level rise relative to tidal range; 2) lateral accommodation space; and 3) sediment 
 

41 supply. The model is tuned by expert knowledge, parameterised with quantitative data where 
 

42 possible, and validated against mapping associated with two large-scale mangrove and saltmarsh 
 

43 vulnerability studies. It is applied across 12,148 coastal segments (mean length 85 km) to the year 
 

44 2100. The model provides better-informed macro-scale projections of likely patterns of future 
 

45 coastal wetland losses across a range of sea-level rise scenarios and varying assumptions about the 
 

46 construction of coastal dikes to prevent sea flooding (as dikes limit lateral accommodation space 
 

47 and cause coastal squeeze). With 50 cm of sea-level rise by 2100, the model predicts a loss of 46 – 
 

48 59% of global coastal wetland stocks. A global coastal wetland loss of 78% is estimated under high 
 

49 sea-level rise (110 cm by 2100) accompanied by maximum dike construction. The primary driver for 
 

50 high vulnerability of coastal wetlands to sea-level rise is coastal squeeze, a consequence of long- 
 

51 term coastal protection strategies. Under low sea-level rise (29 cm by 2100) losses do not exceed 
 

52 ca. 50% of the total stock, even for the same adverse dike construction assumptions.  The model 
 

53 results confirm that the widespread paradigm that wetlands subject to a micro-tidal regime are 
 

54 likely to be more vulnerable to loss than macro-tidal environments. Countering these potential 
 

55 losses  will  require  both  climate  mitigation  (a  global  response)  to  minimise  sea-level  rise  and 
 

56 maximisation of accommodation space and sediment supply (a regional response) on low-lying 
 

57 coasts. 



3  

58 
 

59 Keywords: tidal wetlands, wetland vulnerability, wetland transitions, wetland loss, accommodation 

60 space, sea-level rise 

61 

62 

 
63 



4  

64 1. Introduction 
 

65 Millennial,  centennial  and  decadal  records  of  changing  patterns  of  coastal  wetlands, 
 

66 including mangrove forests, saltmarshes, mudflats and associated habitats, show that they are 
 

67 particularly sensitive to environmental change (e.g. Morris et al., 2002; French, 2006; Fitzgerald et 
 

68 al., 2008; Mudd et al., 2009). More recent system changes also reflect the impacts of human 
 

69 activities superimposed on these natural dynamics, such as drainage and conversion to agriculture 
 

70 (e.g. Gedan et al., 2009) and aquaculture (e.g. Murdiyarso et al., 2015). There is concern, therefore, 
 

71 as to how near-future global environmental change will further modify these systems (e.g. Alongi, 
 

72 2008; Kirwan et al., 2010; Fagherazzi et al., 2012). 
 

73 On contemporary timescales, tidal wetlands are biologically productive ecosystems of high 
 

74 biodiversity supplying multiple ecosystem services. At the same time they are subject to significant, 
 

75 and accelerating, rates of global coastal wetland loss due to natural and anthropogenic drivers (e.g. 
 

76 Adam, 2002; Millennium Ecosystem Assessment, 2005; Barbier et al., 2011; Nicholls et al., 2011). 
 

77 Davidson  (2014)  estimates  that  natural  coastal  wetlands  have  declined  by  46–50%  since  the 
 

78 beginning of the 18th century and by 62–63% over the course of  the 20th century and Leadley et 
 

79 al.’s (2014) Wetland Global Extent Index estimates an almost 50% decline between 1970 and 2008. 

 

80 Ecosystem  services  and  loss  rates  have  become  linked  over  the  last  decade  with  the 
 

81 recognition of the role of low-lying wetlands in natural coastal protection (e.g. Shepard et al., 2012), 
 

82 following the interactions between mangrove ecosystems and the wave fields of the 2004 Asian 
 

83 tsunami (e.g. McIvor et al., 2012) and between coastal marshes and 2005 Hurricanes Katrina and 
 

84 Rita on the Gulf coast, USA (e.g. Barbier et al., 2013) amongst others. Much remains to be done, 
 

85 however, on identifying the exact linkages between mosaics of coastal habitat area and habitat 
 

86 fragmentation and the maintenance of a coastal protection function (e.g. Barbier et al., 2008; Koch 
 

87 et al., 2009; Loder et al., 2009; Gedan et al., 2011). Furthermore, these debates are embedded in a 
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88 context where the knowledge of the general spatial distribution of coastal wetland ecosystems is 
 

89 currently poor, particularly for saltmarshes (e.g. Rebelo et al., 2009, Saintilan et al., 2009; Chmura, 
 

90 2011). There are serious gaps in the information base and much of the data that has been collected 
 

91 has come from different sources and different time periods and at a range of scales (Friess and 
 

92 Webb, 2014). Indeed, Friess et al. (2012) goes as far as to argue that the under-reporting of 
 

93 saltmarsh from the tropics underpins the presumption that mangrove replaces saltmarsh in the 
 

94 tropical intertidal zone. These shortcomings have hampered the assessment of the extent and 
 

95 condition of wetlands and proper estimations of the rate of loss. Thus one review concludes ‘a 
 

96 number of prognostications have been made regarding the future of the world’s mangrove forests 
 

97 in the face of climate change with local, regional, and global forecasts ranging from extinction to no 
 

98 or little change in areal coverage’ (Alongi, 2008, 8). 
 

99 Accelerated sea-level rise is a major threat to wetland futures at regional to global scales. 
 

100 However, most detailed studies on wetland vulnerability to accelerated sea-level rise have been 
 

101 over small spatial scales and short timescales and most concentrate on the likelihood of vertical 
 

102 drowning (Webb et al., 2013), when sediment accumulation on the platform cannot keep vertical 
 

103 pace with sea-level rise. There has been less emphasis on rates of horizontal retreat, associated 
 

104 with  wave-induced  marsh  boundary erosion (Mariotti and Carr, 2014). Thus, for example, the 
 

105 Surface Elevation Table – Marker Horizon (SET-MH) methodology has the necessary precision to 
 

106 allow annual surface elevation change to be related to annual rates of sea level change (Cahoon et 
 

107 al., 2002) although inter-site and inter-annual variations in surface response characteristics are high 
 

108 (Cahoon et al., 2006). Historically, the SET-MH global network of sites has been patchy and not 
 

109 focussed on those areas where wetland loss rates are thought to be particularly high (Webb et al., 
 

110 2013). However, there has been an expansion of sites globally in the last few years and it is 
 

111 becoming possible to use this network to model larger scale patterns in wetland vulnerability, as 
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112 has been shown for Indo-Pacific mangrove SET sites (Lovelock et al., 2015). Furthermore, SET 
 

113 datasets have been used as calibration datasets in other models of wetland change, most notably 
 

114 the SLAMM model; we return to this usage below. 
 

115 The  generic  problems  of  large-scale  analysis  have  been  addressed  in  part  by  the 
 

116 development of macro-scale landscape models. These models vary in structure, complexity and the 
 

117 ease with which they can be applied. The more sophisticated landscape models use geomorphic 
 

118 and hydrologic sub-models to distribute fluxes of water, sediments and nutrients across a raster 
 

119 grid  (e.g.  CELSS  model:  Sklar  et  al.,  1985)  to  calculate  likely  changes  in  wetland  type  extent. 
 

120 However,  the  data  and  computational  requirements  of  such  an  approach  largely  preclude  its 
 

121 application as a broad-scale tool for wetland analysis (Martin et al., 2002; Reyes, 2009; Couvillion 
 

122 and Beck, 2013). Simpler models, such as cellular automata (Ross et al., 2009), capture the key 
 

123 characteristics of wetland dynamics empirically, require fewer data, and are easily applied, but the 
 

124 ability to deal with low frequency, high magnitude impacts and the recognition of the interaction 
 

125 and feedback of geo-morphological   and ecological processes are missing   (Kirwan and 
 

126 Guntenspergen, 2009). Nevertheless, these approaches are useful for calibration purposes, as we 
 

127 demonstrate below. Of this suite of large-scale models, the one that has been most widely applied 
 

128 is the ‘Sea Level Affecting Marshes Model’ (SLAMM) (Clough et al., 2010). SLAMM is open source 
 

129 and has a user-friendly interface for implementation; is based on empirical calculations so that 
 

130 computation times are substantially less than those required for complex numerical models; and 
 

131 implementation has low data demands. 
 

132 The pioneering Global Vulnerability Assessment (GVA), and its subsequent revision, is a 
 

133 macro-scale model which provided the first worldwide estimates of the impacts of accelerated sea- 
 

134 level rise on coastal systems (Hoozemans et al., 1993; Nicholls et al., 1999). This included a first- 
 

135 order perspective on coastal wetland loss. Subsequently, the data on coastal wetland stocks has 
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136 improved (e.g. Vafeidis et al., 2008; Spalding et al., 2010; Giri et al., 2011), and the understanding of 
 

137 the main drivers of change, including sea-level rise, has increased (Nicholls, 2004; McFadden et al., 
 

138 2007;  Nicholls  et  al.,  2007).  Hence,  a  re-evaluation  of  these  earlier  assessments  of  wetland 
 

139 vulnerability is timely. This paper discusses the further development and application of a broad- 
 

140 scale wetland change model: the Dynamic Interactive Vulnerability Assessment Wetland Change 
 

141 Model (DIVA_WCM), originally developed within, and subsequently to, the European Community 
 

142 DINAS-COAST Project. In this paper we show how a newly constituted database of contemporary 
 

143 global coastal wetland extent can be linked to a revised conceptual model of the controls on 
 

144 wetland health and resilience. In comparison to its previous version (McFadden et al., 2007), the 
 

145 revised model has been parameterised with quantitative data where possible, calibrated by SLAMM 
 

146 and other model outputs and validated by expert knowledge, including map-based approaches. 
 

147 Thus, in its current form the model provides better-informed macro-scale projections of likely 
 

148 future wetland extents than have been available previously. 
 
 

149 2. Methods 
 
 

150 
 

2.1 The DIVA modelling framework 
 

151 DIVA  is  an  integrated,  global  modelling  framework  of  coastal  systems  that  assesses 
 

152 biophysical and socio-economic consequences of sea-level rise and socio-economic development, 
 

153 taking  into  account  coastal  erosion,  coastal  flooding,  wetland  change  and  salinity  intrusion 
 

154 (http://www.diva-model.net; Hinkel, 2005; Hinkel and Klein, 2009; Hinkel et al., 2010, 2013, 2014). 
 

155 The DIVA data modelling framework divides the world’s coast (excluding Antarctica) into 12,148 
 

156 variable length coastal segments (mean length: 85 km; range: 0.009 km to 5,213 km) and associates 
 

157 up  to  100  data  values with  each  segment  (Vafeidis  et  al.,  2008).  Each  segment  represents  a 
 

158 relatively  homogenous  unit  based  on  geomorphology,  population  density  and  administrative 
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159 boundaries; there are a greater number of segments in the more populated areas. Only the DIVA 
 

160 data associated with wetland change are considered in this paper. 
 

161 DIVA  is  driven  by  climate  and  socio-economic  scenarios.  Using  the  HadGEM2-ES  Earth 
 

162 System model from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), three sea-level 
 

163 rise scenarios have been investigated in this paper, representing a subset of the scenarios described 
 

164 by Hinkel et al. (2014). These scenarios consider three Representative Concentration Pathways (RCP) 
 

165 -  RCP2.6,  RCP4.5,  and  RCP8.5.  The  RCPs  correspond  to  different  levels  of  greenhouse  gas 
 

166 concentration trajectories, ranging from a world of strong climate mitigation to one of increasing 
 

167 emissions. A major uncertainty in projecting future sea-level rise is the contribution of land-based 
 

168 ice. In Hinkel et al. (2014), each RCP scenario is associated with three levels of ice melt (low, median 
 

169 and high) to create a ‘very likely’ range. The scenarios represent patterns of change (representing 
 

170 thermal expansion and changes in ocean circulation, plus gravitational changes from ice sheets (the 
 

171 contribution from ice caps is assumed to be uniform)) where some parts of the world have higher 
 

172 or lower sea-level rise compared with the global mean. Projected global mean sea-level rise to the 
 

173 year 2100 with respect to 1995 (mean sea level during 1985-2005 baseline period) for each of the 
 

174 scenarios is given in Table 1 (median values, with 5% and 95% quantiles in parentheses; after Hinkel 
 

175 et al., 2014). In this demonstration paper, we cover the widest range of sea-level rise scenarios, 
 

176 from the lowest (5%) quantile of RCP2.6 (29 cm by 2100), through the median rate of sea-level rise 
 

177 for RCP4.5 (50 cm), to the 95% quantile of RCP8.5 (110 cm). Finally, the sea-level rise scenarios are 
 

178 downscaled to each DIVA database segment, including local land level change, following Peltier 
 

179 (2000a, 2000b), and a 2 mm a-1 subsidence in deltas, reflecting natural sediment compaction. 
 

180 Hence relative sea-level change varies from DIVA segment to segment. 
 

181 For socio-economic scenarios, the Shared Socioeconomic Pathways (SSPs) are used. DIVA 
 

182 considers population and gross domestic product (GDP) growth from the SSP2 scenario which sees 
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183 the trends typical of recent decades continuing, with moderate global population growth, some 
 

184 progress toward achieving development goals and a slow decrease in the world’s dependency on 
 

185 fossil fuels (IIASA, 2012). The socio-economic scenarios can influence the construction of dikes, and 
 

186 

 
187 

hence the availability of accommodation space for wetlands, as explained below. 

 

188 

 

 

189 

Table 1 near here 

 
 

190 2.2. The Wetland Change Model (DIVA_WCM) 
 
 

191 
 

The   DIVA_WCM   is   one   module   in   the   DIVA   modelling   framework   (Version   5.1 
 

192 (http://www.diva-model.net/)). DIVA_WCM comprises i) a newly constituted global database of 
 

193 coastal wetlands built on the basis of the original DIVA database (Vafeidis et al., 2008) and ii) an 
 

194 impacts algorithm for coastal wetlands. It improves upon the existing DIVA-WCM (McFadden et al. 
 

195 2007) by extensive new parameterisation and calibration. 
 

196 The coastal wetland database employed in this paper was derived, under licence, from 
 

197 datasets held by the United Nations Environment Programme’s World Conservation Monitoring 
 

198 Centre  (UNEP-WCMC),  the  specialist  biodiversity  assessment  arm  of  UNEP.  A  global  layer  of 
 

199 mangrove forest data, revised after Giri et al. (2011), was augmented with a recently improved 
 

200 saltmarsh data layer; both  layers were imported  into the DIVA  database and  assigned to the 
 

201 appropriate coastal segment. Sub-sets of the data were checked to ensure that there was no 
 

202 corruption of data in the transfer from the original files to the database. In the database, six 
 

203 wetland types associated with coastline segments are considered: 1) coastal forest; 2) mangrove 
 

204 forest; 3) freshwater marsh (of limited extent); 4) saltmarsh; and unvegetated sediments, which are 
 

205 divided into 5) sabka and saline tidal flats (of very limited extent); and 6) mudflat/sand flat. The 

http://www.diva-model.net/))
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206 distinction between these latter two types is based on climatic setting and elevation (derived from 
 

207 the ETOPO2 (NGDC, 2001) dataset): type 5 is above (‘unvegetated high’) and type 6 is below 
 

208 (‘unvegetated  low’)  Mean  High  Water  Springs  (MHWS),  respectively.  Data  on  unvegetated 
 

209 sediments, freshwater marshes and coastal forested originate from the above mentioned GVA 
 

210 (Hoozeman et al., 1993). 
 

211 French (2006, 120) states that ‘… the existence and ecological function of tidally-dominated 
 

212 saltmarshes  are  ultimately  contingent  upon  the  operation  of  hydrodynamic  and  sedimentary 
 

213 processes within constraints imposed by the intertidal accommodation space and the sediment 
 

214 supply’. The DIVA_WCM algorithm considers three key drivers that control wetland response to 
 

215 sea-level rise: 1) local sea-level rise relative to tidal range; 2) lateral accommodation space; and 3) 
 

216 sediment supply, following McFadden et al. (2007). A score of one to five is adopted to represent 
 

217 present and future forcing levels for each of these drivers: one corresponds to the lowest forcing 
 

218 and vice versa. 
 

219 Wetlands respond to sea-level rise over different time horizons. Mangroves and coastal 
 

220 forests respond more robustly to environmental change than the other wetland types because 
 

221 slower growth rates across a wide range of environmental tolerance allows for survival under 
 

222 moderate levels of stress (Ball, 1988). This is represented in the model by different response times 
 

223 for these wetland types. Macro-scale landscape models, and specifically output derived from the 
 

224 WARMER and SLAMM model applications, were used to characterise wetland resilience to sea-level 
 

225 rise  and  other  stresses  where  possible.  Expert  judgment,  from  peer-reviewed  literature  and 
 

226 research project reports, was applied where necessary. 
 

227 Figure  1  outlines  the  primary  components  of  the  DIVA_WCM,  comprising  four  sets  of 
 

228 calculations: 
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229 (1) Assessment of the vulnerability of all wetlands to sea-level rise. This vulnerability score (VS) 
 

230 depends upon  sea-level  rise,  lateral accommodation  space  and  sediment  supply and  is 
 

231 universal. As the score is calculated segment-by-segment, it is described as the Coastal 
 

232 Segment Vulnerability Score (CSVS); 
 

233 (2) Conversion of the Coastal Segment Vulnerability Score into a wetland-specific Ecological 
 

234 Sensitivity Score (ESS); 
 

235 (3) Calculation of the proportion of wetland loss/change that is expected for each wetland type 
 

236 based on the ESS score; and 
 

237 (4) Calculation  of  wetland  habitat  successional  changes  and  wetland  loss  to  open  water, 
 

238 

 
239 

generating new wetland areas, through a habitat translation model. 

 

240 Figure 1 near here 
 

241 It  is  important  to  note  that  the  DIVA-WCM  is  a  wetland  loss  model  for  sea-level  rise;  we 
 

242 acknowledge that near-future environmental change may also produce new areas of wetland in 
 

243 particular landscape settings, but the generation of new wetland is not considered further in this 
 

244 paper. The following sections detail each of these methodological steps. Further information is 
 

245 

 
246 

given in the Supplementary Material. 

 

247 2.2.1. Relative sea-level rise / tidal range 
 

248 When relative sea-level rise is sudden and of high magnitude, as might result from tectonic 
 

249 activity, the wetland surface may be abruptly submerged (e.g. Atwater, 1987). More frequently, 
 

250 and the subject of concern here, coastal wetlands are subjected to slow, progressive relative sea- 
 

251 level rise caused by the combination of eustatic factors and regional to local subsidence. This 
 

252 process is reflected in the changing pattern of tidal submergence, or hydroperiod (Reed, 1995). If 
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253 sediment supply is sufficient, marsh surfaces will accrete vertically, rapidly at first but then slowing 
 

254 over time as fewer tides inundate the progressively higher surface (Allen, 1990).   Conversely, in 
 

255 sediment-poor wetlands, subject to a rise in relative sea level without equal increases in wetland 
 

256 surface elevation from sediment accretion, the duration and depth of tidal flooding will increase 
 

257 over time. In this situation, wetland vegetation may revert to a community composition more 
 

258 typical of lower elevations in the tidal frame (Huiskes, 1990; Mendelssohn and Morris, 2000). 
 

259 No clear relationships have been found at the large-scale between accretion rates and tidal 
 

260 range (Allen, 1990; French and Reed, 2001; Cahoon et al., 2006; Mossman et al., 2012). However, 
 

261 Stevenson et al. (1986) showed accretion deficits (rate of sea-level rise minus rate of near-surface 
 

262 accretion) to be greater in low tidal range saltmarshes than in higher tidal range marshes along the 
 

263 eastern seaboard of the USA. This has been attributed to the expanded intertidal range that can be 
 

264 occupied  by  vegetation  (e.g.  Day  et  al.,  1995)  and  the  increased  flood-dominance,  and  thus 
 

265 enhanced sediment supply (e.g. Friedrichs and Perry, 2001), of macrotidal (> 4 m spring tidal range) 
 

266 marsh  systems compared to  meso-tidal (2-4 m  tidal range) or  micro-tidal (< 2  m tidal range) 
 

267 systems (Kirwan et al., 2010; Fagherazzi et al., 2012). Furthermore, in micro-tidal settings the 
 

268 expansion of the tidal prism on sea-level rise is disproportionately large, with increases in tidal 
 

269 channel geometries leading to loss of wetland area (Kirwan and Guntenspergen, 2010). 
 

270 The first environmental forcing factor captures this process through the dimensionless relative 
 

271 sea-level rise term rslr_d, where the annual relative rise in sea level (RSLR) is scaled by the segment- 
 

272 specific tidal range (Equation 1 in Supplementary Material; and see Table A1 for details of the tidal 
 

273 range  parameter).  Unlike  earlier  applications  of  this  approach  (Nicholls  et  al.,  1999),  the 
 

274 dimensionless  RSLR  is  described  as  a  power  function  with  an  exponent  of  1.4,  based  on  the 
 

275 literature review described above and expert judgement. The scoring of rslr_d is based on fixed 
 

276 class boundaries that are initialized before simulation. Assuming a current 3 mm a-1  global mean 
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277 sea-level rise rate (after Church et al., 2013), we subtract the segment-specific uplift (obtained from 
 

278 http://www.atmosp.physics.utoronto.ca/~peltier/data.php), and calculate the 95th, 84th, 50th, and 
 

279 16th percentiles of the cumulative distribution of the resulting rslr_d parameter to derive the class 
 

280 boundaries of rslr_tidal_score, while only considering segments where wetlands are present (for 
 

281 exact values see Supplementary Material, Table A2). During simulation, the rslr_d forcing factor is 
 

282 updated  and  scored  at  every time  step  and, hence, is driven  by the associated  sea-level rise 
 

283 

 
284 

scenario (see section 2.1 above and Table 1). 

 

285 2.2.2. Lateral accommodation space 
 

286 The notion of ‘accommodation space’ comprises two components defined by sea-level rise, 
 

287 namely  vertical  wetland  surface  adjustment  upwards  and  lateral  habitat  migration  landwards 
 

288 (Phillips,  1986;  Allen,  1990).  The  characterisation  of  lateral  accommodation  space  within  the 
 

289 DIVA_WCM is built on an assessment of the impact of two controlling factors: i) coastal slope 
 

290 (Brinson et al., 1995); and ii) the presence or absence of dikes, which limits lateral accommodation 
 

291 space (Feagin et al., 2010). Lateral accommodation space, aspace, is calculated recursively in the 
 

292 model.  The  aspace  value  is  initialised  for  each  segment  using the  average  topographic  slope, 
 

293 derived  from  the  ETOPO2  (NGDC,  2001)  dataset.  Model  categorisation  of  coastal  slope,  and 
 

294 associated forcing scores, are given in the Supplementary Material Table A3. This initialized aspace 
 

295 score is then updated based on the estimated sea-dike height at each time-step. If appropriate, 
 

296 aspace is increased by 0.25 at each time step until the highest forcing score is obtained (Equation 2, 
 

297 Supplementary Material). Thus, the loss of lateral accommodation space is a progressive process in 
 

298 terms of stressing wetlands, being maintained at the highest vulnerability for the remainder of the 
 

299 model run once aspace reaches the maximum score of five. Importantly, the model does not 
 

300 simulate the impact of creating new lateral accommodation space. 

http://www.atmosp.physics.utoronto.ca/~peltier/data.php)
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301 The DIVA model considers dike construction, and dike upgrading, as an adaptation response 
 

302 to coastal flooding (Hinkel et al., 2014). Three scenarios for dike construction are evaluated in this 
 

303 paper.  Two  bounding  cases  of  ‘no  dikes’  (in  which  no  coastal  floodplains  are  protected)  and 
 

304 ‘maximum dikes’ (in which all coastal floodplains are protected) are considered. In addition, dikes 
 

305 built  according  to  a  ‘demand-for-safety’  function,  assuming  the  SSP2  socio-economic  scenario 
 

306 (Hinkel et al., 2014), are also evaluated and termed ‘widespread dikes’. The driver aspace is not 
 

307 influenced by dikes under ‘no dikes’; is most affected under ‘maximum dikes’; and is subject to an 
 

308 

 
309 

intermediate effect under ‘widespread dikes’. 

 
 

310 2.2.3. Sediment supply 
 
 

311 
 

It has been strongly argued that sediment starvation at the coast, associated with the human 
 

312 management of river courses, deltas and erodible coastal cliffs, has had profound consequences for 
 

313 the maintenance of coastal sediment systems (e.g. Syvitski et al., 2005, 2009; Stralberg et al., 2011). 
 

314 The DIVA_WCM also characterises the ability of a wetland to keep pace with relative sea-level rise 
 

315 through a third parameter, sediment supply sedsup. Following Stevenson et al. (1986), a widely 
 

316 adopted methodological approach has been to compare the rate of vertical accretion to relative 
 

317 sea-level rise and thus to calculate a wetland accretionary surplus or deficit. Such an approach 
 

318 assumes that accretion is equal to wetland surface elevation change. This is now known to be a 
 

319 simplification,  as  the  relative  balance  between  the  in  situ  accumulation  of  organic  sediments 
 

320 (Cahoon and Reed, 1995; Middleton and McKee, 2001; Rooth et al., 2003) or external, inorganic 
 

321 inputs (French and Spencer, 1993; Christiansen et al., 2000), or a combination of the two (Saintilan 
 

322 et al., 2013), can affect this balance, as can subsurface processes occurring within the soil column, 
 

323 including compaction, plant growth-decomposition and shrink-swell behaviour related to varying 
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324 water  storage  (Cahoon  et  al.,  2011;  Krauss  et  al.,  2014).  However,  given  the  scale  of  the 
 

325 DIVA_WCM, these relationships must be simplified for the purposes of modelling, with a distinction 
 

326 between those settings and environmental histories that promote high sediment supply and those 
 

327 that favour low sediment supply.  The model therefore considers a combination of six contextual 
 

328 physical and anthropogenic controlling factors – (1) tectonic context; (2) fluvial sediment inputs to 
 

329 the  coastal  zone;  (3)  sediment  availability  from  Quaternary  glacial  sediments;  (4)  coastal 
 

330 geomorphic setting; (5) degree of coastal protection structures; and (6) timing of sediment supply 
 

331 from historical land use practices – in assessing the impact of varying sediment supply on wetland 
 

332 vulnerability. Each of these factors exhibits a range of values identified by a range in ‘forcing score’ 
 

333 across different categories (see Supplementary Material, Table A4). Furthermore, each factor is 
 

334 multiplied by an internal weighting to reflect their relative significance within the sedsup parameter 
 

335 (Equation 3, Supplementary Material). The respective weights are based on expert judgement, 
 

336 derived from field experience and the published literature. It is recognised that sediment supply is 
 

337 the most difficult forcing factor to understand and parameterise in the model, due both to its 
 

338 localized and highly variable nature and to the lack of wetland datasets that specifically estimate 
 

339 
 

340 

this parameter. 

 

341 2.3. Coastal Segment Vulnerability Score (CSVS) 
 

342 The  Coastal  Segment  Vulnerability  Score  (CSVS)  reflects  the  integrated  response  of  a 
 

343 wetland to relative sea level rise / tidal range, lateral accommodation space and sediment supply. 
 

344 The influence of each of these parameters is reflected through the weighted sum of the forcing 
 

345 factors, with the following weights: 0.5 for rslr d;   0.2 for aspace;   and 0.3 for sedsup   (and see 
 

346 Equation 4, Supplementary Material). These relative weightings indicate the importance of each 
 

347 parameter at the macro-scale, the values being derived from expert judgement, in turn based on 
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348 field experience and published references. For gaining a better understanding of how these weights 
 

349 influence the model results, we performed a sensitivity analysis, comparing the model output of a 
 

350 

 
351 

series of different weight combinations. 

 
 

352 2.4. Ecological Sensitivity Score (ESS) 
 
 

353 
 

Ecological   systems   are   characterised   by   varying   reaction   and   relaxation   times   to 
 

354 environmental  perturbation.  Many  saltmarsh  herbs,  shrubs  and  grasses  are  very  sensitive  to 
 

355 landform  change.  Thus,  for  example,  manipulative  experiments  in  freshwater  marsh  systems, 
 

356 where inundation frequencies have been changed by transplanting marsh communities to lower (- 
 

357 10 cm) levels have shown responses in plant stem density and biomass over periods as short as a 
 

358 single growing season (McKee and Mendelssohn, 1989). By comparison, coastal forest trees show 
 

359 slower  responses  to  changing  environmental  conditions.  Thus,  cypress  forests  on  the  Gulf  of 
 

360 Mexico, USA have recorded 50% survival rates after 4 years of +120 cm and 18 years of + 60 – 300 
 

361 cm increases in water levels respectively. Modelling of bottomland forest succession is typically 
 

362 undertaken over 50 year timescales (summarised in Conner and Brody, 1989). However,  resilience 
 

363 characteristics   are   quite   different   from   herbs   and   shrubs,   showing   permanence   (if   not 
 

364 regeneration) until a threshold point is reached when the system collapses catastrophically, as in 
 

365 the case of hurricane-impacted mangrove forest (e.g. Cahoon et al., 2003). Once such a threshold 
 

366 has  been  crossed,  system  re-establishment  may  be  difficult  and  long-delayed  (for  review  see 
 

367 Spencer and Möller, 2013). Lag weights for current and previous 5-year time steps of a model run 
 

368 were applied to parameterize these habitat-specific response lags to changes in the environmental 
 

369 forcing   factors   (Table   A5,   Supplementary   Material).   For   ‘freshwater   marsh’,   ‘salt   marsh’, 
 

370 ‘unvegetated low’, and ‘unvegetated high’, a response time of 5 years was assumed and for ‘coastal 
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371 forest’ and ‘mangrove forest’, a response time of 10 years. The resulting modification of the Coastal 
 

372 

 
373 

Segment Vulnerability Score (CSVS) is termed the Ecological Sensitivity Score (ESS) (Fig. 1). 

 
 

374 2.5. Habitat successional changes and wetland loss to open water 
 
 

375 Most existing large-scale models of wetland response to accelerated sea-level rise (e.g. the 
 

376 GVA  and  its  subsequent  revisions  (Nicholls et al.,  1999))  assume  the conversion  of  vegetated 
 

377 surfaces to open water and thus simply generate statistics on total loss of wetland area. Such 
 

378 models  are  most  appropriate  where  local  rates  of  relative  sea-level  rise  are  high,  such  as  in 
 

379 subsiding, sediment-starved deltaic environments. However, under more moderate rates of sea- 
 

380 level  rise,  and  with  an  adequate  sediment  supply,  ecosystem  change  may  be  i)  slower  than 
 

381 predicted;  and  ii)  involve  change  stepped  across  wetland  types  rather  than  outright  loss,  as 
 

382 ecological tolerances of particular plant communities are exceeded in turn. DIVA_WCM assesses 
 

383 both conversion to open water and transitions to other wetland types due to environmental change 
 

384 through i) the construction of a series of wetland response curves, to define the proportion of 
 

385 wetland expected to be lost; and ii) a model of wetland transitions, where losses are distributed 
 

386 between different wetland types and open water. 
 
 

387 During the first stage in the development of the habitat transition algorithm, a series of 
 

388 habitat-specific response curves were estimated for total wetland loss as a function of Ecological 
 

389 Sensitivity Score (ESS) (Fig. 1). These curves were approximated using the beta distribution (Fig. 2; 
 

390 and see Equation 6, Supplementary Material) as this distribution can describe a wide range of 
 

391 shapes within a constrained distribution (0% to 100% total wetland loss and 0.0 to 5.0 ESS value). 
 

392 This  is  particularly  useful  for  constructing  habitat-specific  response  curves,  reflecting  different 
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393 resilience characteristics that were then calibrated using WARMER and SLAMM model outputs 
 

394 (described in more detail below). 
 
 

395 Figure 2 near here 
 
 

396 Where there is wetland change or loss, Figure 3 outlines the model of transition that was 
 

397 used  within  the  DIVA_WCM.  Except  in  the  case  of  coastal  forest,  with  low  to  moderate 
 

398 environmental forcing (CSVS value < 4) wetland types are transformed not only into open water 
 

399 (50%) but also into other wetland types which are found lower in the tidal frame (50%), created as 
 

400 a result of losses of wetland that occupy higher elevations. Thus, ‘low unvegetated’ wetland (i.e. 
 

401 mudflat-sandflat) can be created where it did not previously exist within a geographical location. 
 

402 Under high levels of environmental forcing (CSVS value >= 4) the model converts all wetland types 
 

403 to open water. 
 
 

404 

 
405 

 

Figure 3 near here 

 

406 

 
407 

2.6. Model calibration 

 

408 In previous explorations of the DIVA_WCM model structure (McFadden et al., 2007), the 
 

409 model was calibrated qualitatively against model predictions of large-scale wetland type transitions 
 

410 in the Barataria and Terrebonne sub-basins of the Mississippi Delta Plain (Reyes et al., 2000). 
 

411 However, such calibration is problematic because these simulations begin in the period well before 
 

412 the 1985 – 2005 baseline used in this study. More recent scenario modelling in the same region, 
 

413 associated with Louisiana’s 2012 Coastal Master Plan (Couvillion et al., 2013) does provide detailed 
 

414 forecasting of wetland loss on a sub-basin by sub-basin basis, but only until 2060. As an alternative 
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415 way forward in this study, therefore, DIVA_WCM was calibrated against a set of six recent studies 
 

416 of wetland change undertaken using the WARMER, and particularly, the SLAMM model (Table 2). 
 
 

417 Table 2 near here 
 
 

418 A number of difficulties were encountered in the inter-comparison of the DIVA_WCM with 
 

419 WARMER and SLAMM model outputs. Firstly, in many of the SLAMM studies it was difficult to 
 

420 extract the necessary comparative information required on the sea-level rise scenario that had 
 

421 been applied (i.e. starting year, end year, sea-level rise function used (such as SRES, RCP, linear 
 

422 models), total sea-level rise within the simulation period (with reference to starting year)). Where 
 

423 scenarios referred to a SRES-scenario (IPCC SRES, 2000), but with user-defined amplitude, these 
 

424 were calculated, on a globally uniform basis, with the SRES-scenarios supplied with DIVA. Other 
 

425 scenarios  were  identified  as  being  driven  by  a  linear  rate  of  sea-level  rise  and  constructed 
 

426 accordingly. Secondly, the definition of wetland habitat types differed between the six calibration 
 

427 studies and introduced some additional wetland types not present in the DIVA typology. It was thus 
 

428 necessary to re-classify the wetland descriptions into their equivalent DIVA categories. Thirdly, the 
 

429 effect of sea-dikes were included in SLAMM – DIVA_WCM model comparisons where the SLAMM 
 

430 studies made explicit reference that wetland loss had been affected by the presence of a dike. 
 

431 However, it was not always very clear as to whether or not this had actually been the case. For 
 

432 calibration, the DIVA_WCM  model was run against the relevant  WARMER and SLAMM model 
 

433 output for each of the sea-level rise scenarios reported in the respective study, including dikes 
 

434 where  applicable.  The  results  were  aggregated  to  allow  inter-model  comparison,  the  form  of 
 

435 aggregation depending on whether the WARMER / SLAMM study area integrated several DIVA 
 

436 coastal segments or, alternatively, the one DIVA segment integrated several WARMER / SLAMM 
 

437 sites. All loss rates are reported as percent total wetland loss per 5 years. The error measure used 
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438 to evaluate the model performance with reference to the reported data is the relative mean 
 

439 difference (RMD). The ‘Nelder-Mead simplex direct search’ algorithm (Lagarias et al., 1998) was 
 

440 applied to search for the RMD closest to zero by varying the habitat-specific beta values (Fig. 2, 
 

441 Equation 6 in Supplementary Material). This exercise was conducted without constraints regarding 
 

442 the  relationships  between  the  different  beta  values.  The resilience/sensitivity  estimation  of  a 
 

443 specific habitat (Fig. 2) thus usefully emerged as a result of the calibration exercise. Running the 
 

444 DIVA_WCM with the optimized beta values (Equation 6, Supplementary Material) against the six 
 

445 calibration studies produced a RMD value of 0.000227 with a mean difference of 0.00002% (loss per 
 

446 5 years), indicating a close fit of model values with reported loss rates. 
 
 

447 
 

Fig.  4  shows  the  DIVA_WCM  model  outputs  against  the  SLAMM  and  WARMER  calibration 
 

448 studies. Interestingly, the WARMER model, which is not a derivative of SLAMM but a numerical 
 

449 saltmarsh model that includes biophysical feedbacks, performed in a very similar manner to the 
 

450 SLAMM models when it came to comparisons with the DIVA_WCM model. Outliers relate to a small 
 

451 number of particular DIVA segment comparisons across two SLAMM studies (Craft et al., 2009; 
 

452 Geselbracht et al., 2011). It is clear that these examples of poor model fit are not related to 
 

453 vegetated wetland habitats but rather to problems with estimating changes in ‘unvegetated low’ 
 

454 habitat  (i.e. mudflat/sandflat). This raises the need for an  improvement  in  model formulation 
 

455 regarding the mechanisms in place when vegetated wetlands are drowning. Not considering the 
 

456 site  exposure  to  wave  activity  may  partly  explain  the  poor  model  representation  of  the 
 

457 ‘unvegetated  low’  at  these  sites.  While this  comparison  illustrates  the  difficulty  of  model 
 

458 calibration, these results are calibrated to these more detailed simulations, improving on the earlier 
 

459 methods of Hoozemans et al. (1983), Nicholls et al. (1999) and McFadden et al. (2007). Further 
 

460 efforts at improved model calibration should receive high priority in future research efforts. 



21  

461 
 

462 

 
463 

Figure 4 near here 

 

464 
 

465 

466 

2.7. Model validation 
 

 
In order to undertake independent validation at a scale appropriate to the DIVA scale of 

 

467 analysis, model outputs of the calibrated DIVA_WCM were compared with two broad-scale coastal 
 

468 wetland  vulnerability  studies,  one  concerned  with  the  modelled  vulnerability  of  Indo-Pacific 
 

469 mangrove forests to sea-level rise and one a qualitative assessment of wetland stability along the 
 

470 US mid-Atlantic coast. 
 

471 Lovelock et al. (2015) developed a model (hereafter referred to as the ‘Lovelock model’) to 
 

472 predict the time to submergence of mangrove ecosystems subject to accelerated sea level rise 
 

473 based on the concept of the loss of ‘elevation capital’, the potential of a mangrove ecosystem to 
 

474 remain within a suitable inundation regime (between Highest Astronomical Tide (HAT) and Mean 
 

475 Sea Level (MSL)).  The key controlling parameters are the rate of sea level rise, the tidal range and 
 

476 suspended sediment supply. Sites with a tidal range of 10 m need to lose 5m of elevation capital to 
 

477 bring them to the critical survival threshold of MSL whereas sites with a tidal range of 1 m only have 
 

478 to lose 0.5 m of elevation to bring them to this threshold. Thus the Lovelock model predicts that 
 

479 sites with low tidal range are significantly more vulnerable to loss than those experiencing a high 
 

480 tidal range. Loss of elevation capital can be offset by elevation gains from vertical accretion as sea 
 

481 level rises. Thus mangrove forest sites with high sediment supply are less vulnerable to conversion 
 

482 to open water than sites with low sediment supply. Total suspended matter in coastal waters was 
 

483 acquired  from  remotely  sensed  imagery  and  converted  to  elevation  gain  through  established 
 

484 relationships between sea-level rise, suspended sediment concentrations and measured changes in 
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485 surface elevation from SET sites. The Lovelock model excludes consideration of an accommodation 
 

486 space term but it does identify the importance of the relations between rates of sea level rise, tidal 
 

487 range and sediment supply in determining mangrove forest vulnerability to sea-level rise in a similar 
 

488 manner to the DIVA_WCM.   The difference in model structure makes Lovelock et al. (2015) an 
 

489 appropriate validation case for the DIVA_WCM. The two models cannot be compared directly 
 

490 because i) the Lovelock model provides a binary survival or loss indicator whereas the DIVA_WCM 
 

491 estimates percentage loss of mangrove forest over time; and ii) the Lovelock outputs are reported 
 

492 on a 4 km resolution grid defined by the remotely sensed TSM data whereas the DIVA_WCM results 
 

493 are mapped onto the variable length DIVA coastal segments. However, a qualitative assessment is 
 

494 possible,  for  comparable  sea  level  rise  scenarios  to  2100  (Fig.  5).  The  areas  of  mangrove 
 

495 submergence predicted by the Lovelock model (Fig. 5b) map well onto the areas of highest coastal 
 

496 wetland loss predicted by the DIVA_WCM (Fig. 5a). Apart from Australia and Brunei, of the top ten 
 

497 areas of expected mangrove loss identified by the DIVA_WCM in the region shown in Figure 5, eight 
 

498 areas are also highlighted by the Lovelock model: Cambodia (55% coastal wetland loss at country 
 

499 level by 2100 in the DIVA_WCM); Philippines (50%); Sri Lanka (48%); Thailand (46%); Indonesia 
 

500 

 

501 

(40%); Federated States of Micronesia (40%); Papua New Guinea (39%); and Solomon Islands (39%). 

 
502 

 

503 

Figure 5 near here 

 

504 A qualitative  assessment  of  wetland  stability on  the  eastern  seaboard of  the USA  was 
 

505 performed on behalf of the US Environmental Protection Agency (EPA) (Reed et al., 2008). As with 
 

506 the first validation exercise, a direct comparison between the EPA assessment and the DIVA_WCM 
 

507 output is not possible.  This is partly because the DIVA_WCM segments along the eastern seaboard 
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508 do not allow the level of disaggregation seen in the EPA assessment and partly because Reed et al. 
 

509 (2008) rely on a more qualitative, expert judgement approach. Nevertheless, validation at the level 
 

510 of aggregation associated with the DIVA_WCM model was possible. Reed et al. (2008) assume a 
 

511 current rate of sea-level rise of 3 mm a-1 and provide estimates for future wetland development for 
 

512 three linear SLR scenarios: a continuation of the current rate of sea-level rise; the current rate plus 
 

513 2 mm a-1 (i.e. 5 mm a-1); and the current rate plus 7 mm a-1 (i.e. 10 mm a-1) (Fig. 6a). The calibrated 
 

514 DIVA_WCM was run for each of these three scenarios for each DIVA_WCM segment that falls 
 

515 within this study area; it assumed that no dikes are present, since the primary driver analysed by 
 

516 Reed et al. (2008) was wetland drowning due to insufficient vertical wetland growth. Percentage 
 

517 wetland losses as predicted by the DIVA_WCM, and mapped into groups suggested by the Reed et 
 

518 al. (2008) categories, are shown in Fig. 6b-6d for each of the three sea-level rise scenarios. The 
 

519 categorical comparison shows that the DIVA_WCM reproduces the general patterns of increasing 
 

520 wetland vulnerability with increasing rates of SLR. While Reed et al. (2008) conclude that most parts 
 

521 along the US mid-Atlantic marshes are unlikely to be converted to open water under current rates 
 

522 of SLR, modelled loss rates with DIVA_WCM for the linear 3 mm a-1  SLR are <50% in most coastal 
 

523 segments of the study area. Following Reed et al. (2008), with 5 and 10 mm a-1 SLR rates wetlands 
 

524 are expected to survive to a marginal extent only or completely disappear respectively. Equivalent 
 

525 conclusions can be drawn from the model validation runs, indicating wetland loss rates between 50 
 

526 and 75% and >90%, respectively. 
 

527 While  the  general  trend  of  modelled  wetland  loss  rates  compares  well  with  the  EPA 
 

528 assessment,  the  spatial  patterns  in  the  area,  as  suggested  by  Reed  et  al.  (2008),  are  poorly 
 

529 represented in the model results. The most important reason for this is the relatively large length of 
 

530 coastal segments in estuarine environments, smoothing estuarine gradient and neglecting local 
 

531 variations in tidal range and sediment supply. This in turn highlights the spatial scale at which the 
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532 DIVA_WCM results have to be interpreted and the conclusions that can be drawn from them. The 
 

533 model is suitable for identifying hotspot regions (~200 km coastline length) of coastal wetland loss 
 

534 

 

535 

but is not applicable for sub-regional (< 100 km) scale analysis. 

 

536 

 
537 

Figure 6 near here 

 
 

538 

 

539 

3. Results 

 

540 The DIVA database indicates a mapped total global coastal wetland stock (in 2011) of 756 
 

541 x103 km2. This figure compares to the 302 x103 km2 reported by Hoozemans et al. (1993), for data 
 

542 collected in the 1980s. Absolute and relative rates of global wetland loss between 1995 and 2100 
 

543 are shown in Figure 6 for the high, medium and low scenarios of global sea-level rise and the three 
 

544 dike  scenarios,  as  outlined  earlier  (sections  2.1,  2.2.2.  respectively).  These  combinations  give 
 

545 wetland loss by 2100 in the range from 281 to 592 x103 km2, or between 37 and 78 % of the total 
 

546 stock of global coastal wetlands (Table 3). Total wetland loss from 1995 (mean sea level during 
 

547 1985-2005 baseline period) to 2100 strongly varies with sea-level rise, with wetland losses being 27 
 

548 - 31% lower for the lowest SLR scenario in comparison to the highest SLR scenario, independent of 
 

549 

 
550 

the dike scenario (‘no dikes’, ‘widespread dikes’, ‘maximum dikes’) applied (Fig. 7, Table 3). 

 

551 

 
552 

Figure 7 near here 

 

553 

 
554 

Table 3 near here 
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555 In  order  to  obtain  a  better  understanding  of  which  of  the  applied  forcing  factors  are 
 

556 primarily responsible for these wetland losses, we report the results of a sensitivity analysis for the 
 

557 

 
558 

weights of the different forcing factors (see Supplementary Material Equation 4). 

 

559 3.1. Global coastal wetland loss rates by weighting of environmental forcing factors under high sea- 
 

560 

 
561 

level rise 

 

562 Under the high sea-level rise scenario of 110 cm by 2100 (95% quantile, RCP8.5; Table 1) 
 

563 and with no dike building, the DIVA_WCM model predicts a loss of between 392 and 578 x103 km2
 

 

564 of coastal wetlands worldwide by 2100 (Fig. 8a), or 52 - 76% of the total global stock, depending 
 

565 upon the comparative weighting of the three environmental forcing factors (Table 4). The loss of 
 

566 total global stock is 11 – 18% by the 2020s, 27 - 43% by the 2050s and 42 - 65% by the 2080s (Fig. 
 

567 

 
568 

8a). 

 

569 

 
570 

Figure 8 near here 

 

571 A sensitivity analysis shows that, in the absence of dikes, the variation in loss rate is strongly 
 

572 controlled by the influence of the accommodation space term. Where accommodation space has a 
 

573 relatively high weighting (and wetlands can migrate inland over low coastal slopes), loss rates are at 
 

574 the lower bound (Fig. 8a, Table 4(a)); where the influence of accommodation space is neglected by 
 

575 the model, all combinatorial weightings of sea-level rise and sediment supply give rise to high rates 
 

576 

 
577 

of total wetland loss by 2100 (Table 4(b)). 

 

578 Table 4 near here 
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579 
 

580 The  importance  of  accommodation  space  points  to  the  critical  importance  of  dike 
 

581 construction under the high sea-level  rise scenario. Under the  most extreme scenario of dike 
 

582 building  tested,  ‘maximum  dikes’,  the  DIVA_WCM  is  largely  insensitive  to  any  of  the  model 
 

583 parameters (Fig. 8b, Table 5), as the benefit of accommodation space is lost (cf. Table 4(a)). Global 
 

584 

 
585 

wetland loss rates are very high, at 574 – 619 x103 km2 of the total stock of 760 x103 km2 (Fig. 8b). 

 

586 

 
587 

Table 5 near here 

 

588 3.2. Global coastal wetland loss rates by weighting of environmental forcing factors under low sea- 
 

589 

 
590 

level rise 

 

591 Wetland loss rates are significantly less (Table 3) under the low sea-level rise scenario (5% 
 

592 quantile, RCP2.6, Table 1) and there is less acceleration in the wetland loss rate towards 2100 (Fig. 
 

593 7). With no dike building, the DIVA_WCM model predicts a loss of between 222 – 356 x103 km2 of 
 

594 coastal wetlands worldwide by 2100, or 29 – 47% of the total global stock, depending upon the 
 

595 comparative weighting of the three environmental forcing factors (Fig. 8c). The accommodation 
 

596 space term remains an important discriminator within this range but the overall range in loss rate is 
 

597 a third less than under the high sea level scenario (Fig. 8c, Table 6(a)). When the accommodation 
 

598 space term is removed, it is clear that the main control on wetland loss is the sea-level rise / tidal 
 

599 range term, rslr_d, (Table 6(b)) with lower loss rates where this term is high. Under the highest level 
 

600 of  dike construction  (‘maximum  dikes’), the  envelope of loss rates narrows and  rises but not 
 

601 greatly, to between 312 – 418 x103 km2 of coastal wetlands worldwide by 2100, or 41 – 55% of the 
 

602 total global stock (Fig. 8d). Similar to the results when accommodation space is neglected, the loss 
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603 rates are controlled by the slr / tidal weight, with lower loss rates when the slr / tidal weight is high 
 

604 

 
605 

(Table 7). 

 

606 

 
607 

Table 6 near here 

 

608 

 
609 

Table 7 near here 

 

610 

 
611 

3.3. Global patterns in predicted wetland loss rates 

 

612 As well as the global estimates of wetland loss, the results can be disaggregated down to 
 

613 individual segment level where wetlands have been recorded. It is thus possible to view both the 
 

614 global pattern of potential absolute wetland loss (Fig. 9a) and relative wetland loss (Fig.  9b). These 
 

615 plots assume ‘widespread dikes’ and the medium sea-level rise scenario (median, RCP4.5; Table 1). 
 

616 In these contexts, the wetlands that appear most at risk are those characterised by micro-tidal 
 

617 

 
618 

settings. Regional hotspots include the Mediterranean Sea, the Caribbean Sea and the Baltic Sea. 

 

619 Figure 9a near here 
 

620 
 

621 

Figure 9b near here 

 
 

622 

 

623 

 

4. Discussion 

 

624 These results show that  coastal  wetlands are sensitive to sea  level  rise  and,  based on 
 

625 credible scenarios for the 21st  century, there is a potential for considerable wetland loss at the 
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626 global scale. This will be exacerbated by coastal squeeze caused by the construction, and upgrading, 
 

627 of dikes which, whilst providing flood defence to coastal populations and infrastructure, prevent 
 

628 the onshore and upslope migration of wetlands.   This model-based conclusion is consistent with 
 

629 other assessments in the scientific literature (e.g. Nicholls et al., 2007; Wong et al., 2014). It is also 
 

630 consistent  with  earlier  global  assessments.  While  considering  a  smaller  global  wetland  stock, 
 

631 Hoozemans et al. (1993) concluded that a 1 m sea-level rise might cause coastal wetland loss of 154 
 

632 – 180 x103 km2, or 51 – 60% of total global stock, depending upon assumptions about development 
 

633 and dike construction. For a similar sea-level rise scenario, Nicholls et al. (1999) estimated wetland 
 

634 losses of up to 46% of global coverage. The losses associated with a 38 cm rise in sea level by the 
 

635 2080s were estimated at 0 – 2% by the 2020s, 2 – 11% by the 2050s and 6 – 22% by the 2080s. In 
 

636 this analysis, evaluating the contribution of lateral accommodation space and sediment supply 
 

637 controls as well as sea-level rise, the most comparable sea-level rise scenario, the 5% quantile of 
 

638 RCP2.6 (29 cm by 2100), gives loss rates of 10-11% by the 2020s, 23-28% by the 2050s and 32-40% 
 

639 by the 2080s. However, under the 95% quantile of the RCP8.5 sea-level rise scenario (110 cm by 
 

640 2100), the wetland loss rates rise to 14-15% in 2020s, 33-40% in the 2050s and 53-66% in the 
 

641 2080s. Hence, in its current form the DIVA_WCM model shows higher sensitivity to sea-level rise 
 

642 than these earlier analyses, and losses two or more times higher than these earlier estimates 
 

643 appear possible. 
 

644 However, this sensitivity may be reduced in future iterations if appropriate feedbacks from 
 

645 changing plant physiology and tidal hydrodynamics can be included in the model structure. Thus, 
 

646 for example, increased atmospheric CO2 and warmer temperatures, allied to mid-range rates of sea 
 

647 level rise, may lead to increases in the rates of plant productivity and wetland accretion (Langley et 
 

648 al., 2009; Cherry et al., 2009; Kirwan and Gutenspergen, 2012; Kirwan and Mudd, 2012), These 
 

649 dynamics  might  be  further  reinforced  by  increased  sediment  supply to  wetland  surfaces  with 
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650 greater tidal energetics under higher sea levels, albeit with limits to ‘ecogeomorphic’ adaptability at 
 

651 higher rates of sea level rise (Kirwan et al., 2010). 
 

652 These  rates  also  need  to  be  seen  in  the  context  of  wetland  losses  resulting  from 
 

653 anthropogenic impacts. Thus, for example, Dodd and Ong (2008) have estimated that the coastal 
 

654 populations of nation states with mangroves will rise by 50%, from 1.8 billion to 2.7 billion, in the 
 

655 period between 2000 and 2025. Human pressures on mangroves include direct conversion to urban 
 

656 use  for  industry,  port  development,  and  housing;  conversion  for  aquaculture  and  agriculture; 
 

657 timber extraction; and modification of hydrology and pollution, particularly oil pollution, nutrients 
 

658 associated with agricultural intensification, and heavy metals contamination. These pressures will 
 

659 be imposed upon mangrove systems (plus other wetlands) already suffering significant long-term 
 

660 declines in extent (Spencer and Möller, 2013). Whilst the exact figure for loss may be debateable, 
 

661 the general sentiment of Nicholls et al.’s (1999, S82) statement that ‘when combined with the 
 

662 direct loss scenarios due to direct human destruction, in the worst case 36 % to 70 % of the world’s 
 

663 wetlands (up to 210,000 km2) could be lost by the 2080s’ surely remains true (and with the total 
 

664 global wetland area reported here the 70% would equate to 529 x103 km2). 
 

665 This paper emphasises the importance of lateral accommodation space in mitigating high 
 

666 rates of wetland loss under high rates of sea-level rise. Such a finding gives support to those 
 

667 management strategies that aim to create or re-create space into which coastal wetlands can 
 

668 retreat landwards under sea level forcing (e.g. UK: Rupp, 2010; Dawson et al., 2011; Canada: Djeza 
 

669 et al., 2011; Australia: Abel et al., 2011). However, it is also clear that in many localities such set- 
 

670 back is not possible, either because of existing human occupation and development (e.g. McLeod et 
 

671 al., 2011) or because natural topographic settings are often not conducive to such migration. Thus, 
 

672 for example, the rapid onshore steepening of coastal profiles inland from wetland fringes along 
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673 most of the Californian coast severely limits migration sites along this coast (Committee on Sea 
 

674 Level Rise in California, Oregon and Washington, 2012). 
 

675 The broad-scale nature of the model presents a major challenge to model calibration and 
 

676 validation and this in turn depends on the development of more systematic national to regional 
 

677 scale assessments of wetland behaviour. A key model output has been the derivation of a series of 
 

678 habitat-specific wetland response curves describing the transition between different wetland types. 
 

679 Based on recently published estimates for habitat-specific regional wetland change, the calibration 
 

680 of these curves provides an important focus for the linking of regional scale assessments to global 
 

681 scale wetland modelling. Similarly, such regional scale assessments, either empirical or modelled, 
 

682 are necessary for model validation and, within this study, have been shown to give important 
 

683 information on the temporal and spatial accuracy of the DIVA_WCM. An appropriate choice of 
 

684 calibration  and  validation  data  smooths over  the  fine  scale  variability  in  wetland  response to 
 

685 environmental forcing which characterises the vegetation ‘mosaic’ of many wetlands and of which 
 

686 there are many studies. Model validation should be taken over long timescales so as not to give 
 

687 undue weight to the impacts of individual high-magnitude events or even long-term cycles in tidal 
 

688 flooding regimes. However, this remains a considerable challenge because of the lack of suitable 
 

689 large-scale data that explicitly address this question in a truly quantitative manner. Progress in 
 

690 better understanding wetland response to sea-level rise requires continued improvement of the 
 

691 underlying  datasets,  and  studies  across  scales  from  local  to  global,  with  bridging  regional 
 

692 

 
693 

694 

695 

696 

assessments as utilised in this study. 
 
 
 
 

5. Conclusions 
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697 The DIVA_WCM has been developed to better identify the vulnerability of coastal wetlands 
 

698 at the macro-scale, over a timescale of up to 100 years and at global, continental and national 
 

699 scales spatial scales. The utility of the model is therefore directed towards decision-makers and 
 

700 analysts interpreting and evaluating wetland vulnerability to climate change on these scales. It gives 
 

701 a new and important perspective on coastal wetland behaviour at a spatial scale where existing 
 

702 models are limited and data is surprisingly poor. Here we focus on the global results as a diagnostic 
 

703 output. 
 

704 The  modelling  approach  described  in  this  paper,  which  considers  three  environmental 
 

705 factors, suggests that the potential rates of global coastal wetland loss over the coming decades to 
 

706 2100 are substantial. Countering these potential losses will require both climate mitigation (a global 
 

707 response) to minimise sea-level rise, and promotion of accommodation space and sediment supply 
 

708 (a  regional  response)  to  promote  wetland  survival.  Collectively,  these  measures  could  greatly 
 

709 reduce losses if applied at a sufficient scale but some net loss appears inevitable given current 
 

710 trends and lock-in to some sea-level rise. Given the now clear ecosystem service value of coastal 
 

711 wetlands, and the magnitude of these long-term predicted losses, wetland management should 
 

712 become an environmental policy priority, even in areas where the existing threat from sea-level rise 
 

713 appears   currently   minimal.   Results   from   DIVA_WCM   suggest   that   developing   a   greater 
 

714 understanding of the specific geomorphic natural slope settings which result in greatest levels of 
 

715 forcing on wetland loss would be useful in developing coastal wetland protection policy. 
 

716 Further   development   of   the   model   is   now   needed   to   better   assess   the   role   of 
 

717 ecogeomorphic feedbacks to see if the incorporation of these terms fundamentally affects model 
 

718 outcomes (e.g. Kirwan et al., 2010; Shile et al., 2014). In addition, independent validation of the 
 

719 results  predicted  by  the  DIVA_WCM,  particularly  across  different  geographical  regions  and 
 

720 timeframes, remains an important but difficult task. It is hoped that this broad-scale modelling of 
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721 coastal wetlands will stimulate both the quantity and approach of field measurements, such that 
 

722 the data required to validate this type of model become more widely available. Changes to coastal 
 

723 
 

724 

725 

wetlands need to be evaluated at multiple scales, including the macro-scale considered here. 
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Supplementary Material 
 

Background tables and equations used in the DIVA_WCM algorithm 
 
 

1. Relative sea-level rise and tidal range forcing 

 

We first compute rslr_tidal as: 

 

rslr_d = rslr_annual^1.4 / htidal Eq.1 

 

where rslr_annual is the annual rise in relative sea level in metres, htidal is the tidal range in metres 

derived from the LOICZ typology (Maxwell and Buddemeier, 2002) as shown in Table A1. 

 

Tidal Range classes from 
LOICZ typology 

Tidal Range (metres), LOICZ 
typology 

htidal (Tidal forcing score within 
the DIVA Wetland Change Model) 

<2 0-2.5 0.25 

2 2.5-3.5 1.25 

3 3.5-5.0 3 

4 5.0-6.5 6 

5 >6.5 9 
1338 
1339 

1340 

1341 
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1343 

1344 

Table A1 Derivation of tidal forcing scores (representing tidal range) based on the tidal range classes 

from the LOICZ typology. 

 

Then we convert rsrl_d into an rslr_tidal_score between 1 and 5 based on the 95, 84, 50, 16 

percentiles of all rslr_d values where wetlands are reported (assuming a current global SLR of 3 mm 

a
-1

). Resulting class values are reported in the following table: 

rslr_d rslr_tidal_score 

>=0.001121 5 

>=0.000402 4 

>=0.000178 3 

>=0.000044 2 

>0 1 
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1351 
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1353 
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Table A2: Assigning a forcing value to the impact of relative sea-level rise and tidal range on 

wetland vulnerability. 

 

 

 

2. Lateral accommodation space 

 

We initialize the forcing score for lateral accommodation space based on the coastal slope (degrees) 

using Table A3. 



1398 
1399 
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Average slope (slopecst, degrees) Forcing score for lateral accommodation 

space (aspace) 

>4.5 5 

>1.5 < 4.5 4 

> 0.5 < 1.5 3 

> 0.25 < 0.5 2 

<0.25 1 
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Table A3: Forcing score used to represent the impact of coastal slope on wetland vulnerability. 

slopecst is the average topographic slope (in degrees) along the segments. 

 

aspace value is initialised using the average topographic slope, derived from the ETOPO2 (NGDC, 

2001) dataset. This initialized aspace score is then updated based on the actual computed dike height 

within each time-step using Equation 2. DIVA_WCM builds sea dikes along the entire coastal 

segment given sea level and socio-economic forcing following the demand function of safety given 

in Hinkel et al. (2014). 

 

if (sdikehght > htidal/2 and aspace < 5): aspace = aspace + 0.25 Eq. 2 

 

Where htidal/2 is a critical value of sdikehght defining its functioning as barrier to landward 

movement of wetland and to flooding. This threshold value is based on expert judgement. 

 

 

3. Sediment supply 

 

External of DIVA we calculate a constant sediment supply factor sedsup based on a variety of 

biophysical coastal properties. 

 

sedsup = (t * tw) + ((dis + d_dis)/2) * fw) + (gl * glw) + (geo * gew) + (man * mw) + (his *hw) 

Eq. 3 

 

where: 

t = Tectonic control parameter 

tw = Tectonic control weighting 

dis = Annual river discharge parameter 

d_dis = Distance from point of discharge parameter 

fw = Fluvial weighting 

gl = Glacial limit parameter 

glw = Glacial limit weighting 

geo = Geomorphic setting parameter 

gew = Geomorphic setting weighting 

man = Management parameter (presence or absence of sea dikes) 

mw = Management weighting 

his = History of resource exploitation parameter 

hw = History of resource exploitation weighting 

 

In the DIVA database we have values of sedsup between 1.7 and 4.9. 
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1401 

1402 

Sediment 

Supply Factor 

Description Key data 

reference/source 

Category Forcing 

Score 

Weighting 

Factor 

Tectonic 

Context 

Global tectonic 

setting 

Inman and 

Nordstrom (1971) 

Passive Margins 1 0.07 

Marginal Seas 3 

Active Margins 5 

Fluvial Context Annual river 

discharge 

Ludwig and Probst 

(1998) 
>500 FTSS (10

12 
g/yr) 1 0.2 

100-500 FTSS (10
12 

g/yr) 2 

50-100 FTSS (10
12 

g/yr) 3 

5-10 FTSS (10
12 

g/yr) 4 

<5 FTSS (10
12 

g/yr) 5 

Distance to the 

point of fluvial 

discharge 

Calculated by GIS 0-30km 1 

30-70km 2 

70-120km 3 

120-180km 4 

>180km 5 

Glacial Context Location 

relevant to 

maximum 

extent of last 

glaciation 

Williams et al. 

(1991) 
100km-300km 1 0.1 

>300km 3 

<100km 5 

Geomorphic 

Context 
Coastal 

geomorphic 

setting 

McGill (1958) Sheltered coast 

(Inlet/delta/estuary) 

1 0.03 

Open coast 5 

Management 

Context 

Degree of 

coastal 

protection 

DIVA adaptation 

algorithm or user 

inputs (Tol et al., 

2005) 

Sea dike absent 

(< 0.5 m high) 

1 0.3 

Sea dike present 

(> 0.5 m high) 

5 

Historical 

Context 

Timing of 

peak resource 

exploitation 

Expert judgment Classical 1 0.3 

Medieval 2 

Colonial 3 

20
th 

Century 5 

1403 
1404 

1405 

1406 

1407 

1408 
1409 

1410 

1411 

1412 

1413 

1414 

1415 

1416 

Table A4 Factors influencing sediment supply and their incorporation into the DIVA_WCM via 

forcing scores and weighting factors. 

 

 

4. Coastal segment vulnerability score (csvs) 

 

The above calculated three forcing scores are then combined into the coastal segment vulnerability 

score (csvs) following Equation (4) 

 

csvs = rslr_tidal_score * 0.5 + aspace * 0.2 + sedsup * 0.3 Eq. 4 

 

where rslr_tidal score is the relative sea-level rise and tidal range forcing (Equation 1), aspace the 

lateral accommodation space forcing score (Equation 2) and sedsup the sediment supply forcing 

score (Equation 3). 
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1433 

1434 
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5. Ecological Sensitivity Score (ESS) by wetland type 

 
 

Finally, we compute the ecological sensitivity score (ess) by combining the csvs values of the current 

and last time step. 

 
Eq. 5 

 
where ESStype is the ecological sensitivity score for the given wetland type, csvscurrent is the coastal 
segment vulnerability score and csvslast is the value of this variable calculated within the previous 
time step, weight_currenttype is the lag weight associated to the current time step and weight_lasttype is 
the lag weight associated to the csvs value from the previous time step. The weights used are given in 
Table 4. 

Wetland Type (type) Previous 5 year lag 

weight (weight_lasttype) 

Current 5 year lag weight 

(weight_currenttype) 

Response 

time (yrs) 
Coastal forest 1 0 10 

Freshwater marsh 0 1 <5 

Saltmarsh 0 1 <5 

Mangrove forest 1 0 10 

Unvegetated wetland 0 1 <5 

Mudflat and sand flat 0 1 <5 

1437 
1438 

1439 

1440 

1441 

1442 
1443 

1444 

1445 

1446 

1447 

1448 

Table A5: Response to environmental change by wetland type as modelled by relative importance of 

previous and current ecological state. Response time = 5 / Current 5 year lag weight. 

 

 

6. Wetland response (Annual wetland loss rate) 

 

The ess values are then translated into relative 5-years wetland loss rates (RLR5), which is the 

proportion of wetlands lost for a specific wetland type during a 5-year time step. 
 

RLR5 = 1- (β +1) * (1 – ESStype/5) ^ β + β * (1 – ESStype/5) ^ (β + 1) Eq. 6 
 

Values of beta: 
 

1449 1. Unvegetated high and low: 0.093 
1450 2. Freshwater Marsh: 0.188 

1451 3. Saltmarsh: 0.137 
1452 4. Coastal Forest and Mangrove Forest: 0.074. 
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Scenario Model Steric (cm) Land-ice (cm) Total (cm) Acronym 

RCP2.6 HadGEM2-ES 14 21 (16, 39) 35 (29,52) LOW 

RCP4.5 HadGEM2-ES 18 32 (23, 56) 50 (41,75) MED 

RCP8.5 HadGEM2-ES 29 44 (31, 81) 72 (60,110) HIG 

 

 

Table 1. Global mean sea-level rise in 2100 with respect to 1985-2005. Median values, with 5% and 

95% quantiles in parentheses. After Hinkel et al. (2014). The DIVA_WCM uses low sea-level rise = 

RCP2.6 (5% quantile; 29 cm by 2100); medium sea-level rise = RCP4.5 (median; 50 cm); high sea-level 

rise = RCP8.5 (95% quantile; 110 cm).  

 

Table 1



Study Study area Tidal range (m) Suspended sediment concentration (mg/l) Model Wetland types SLR scenarios 

Akumu et 
al., 2011 

NE New South 
Wales, 
Australia 

1.20 153 (1) SLAMM 
6.0 

coastalforest, 
freshwater, saltmarsh, 
mangrove, 
unvegetated low 

SRES A1B, 2009-2100: 1m 

Craft et al., 
2009 

Georgia coast, 
USA 

2.20 - 3.40 (1)  230 (2) SLAMM 5 coastalforest, 
freshwater, saltmarsh, 
unvegetated low 

SRES A1B, 1999-2100: 
0.52m, SRES A1B, 1999-
2100: 0.82m 

Geselbracht 
et al., 2011 

Waccasassa 
Bay, USA 

1.13 15 - 25 SLAMM 
6.0.1 

coastalforest, 
freshwater, saltmarsh, 
mangrove, 
unvegetated low 

SRES A1B, 2004-2100: 
0.64m, SRES A1B, 2004-
2100: 1m, SRES A1B, 2004-
2100: 2m 

Glick et al., 
2013 

SE Louisiana, 
USA 

0.28  - 0.60 289 (lower Mississippi River, post-1967); 
334 (Atchafalaya River) (median, flow-

weighted; (3)) 

SLAMM 
6.0 

coastalforest, 
freshwater, saltmarsh, 
unvegetated low 

Linear, 2007-2100: 0.34m, 
SRES A1B, 2007-2100: 
0.75m, SRES A1B, 2007-
2100: 1.22m, SRES A1B, 
2007: 1.9m 

Takekawa 
et al., 2013 

San Francisco 
Bay, USA 

1.50 - 2.75 52 - 149 (4) WARMER saltmarsh SRES A2, 2000-2100: 1.24m 

Traill et al., 
2011 

SE 
Queensland, 
Australia 

1.81 0 - 70 (150 during resuspension events) at 
1.0m; 0 - 130 (625) at 0.2m (5) 

SLAMM 5 coastalforest, 
freshwater, saltmarsh, 
mangrove 

SRES A1FI, 2010-2100: 
0.64m, SRES A1FI, 2010-
2100: 1.8m 

Table 2. Location, habitat, sea-level rise scenario and model characteristics for the six calibration studies used to calibrate the behavioural curves used in 
DIVA_WCM. Tidal range data: reference or for USA sites from NOAA Tides and Currents (https://tidesandcurrents.noaa.gov/stations.html?type=Datums).  
Suspended sediment concentrations: (1) 2011 annual mean of MERIS geophysical product Total Suspended Matter (TSM) in 0.017 degree resolution, 
northern NSW, Australia (http://hermes.acri.fr/); (2)   Howard and Frey (1985); (3) Himann et al., (2011);  (4) Buchanan and Morgan 92014); (5) You (2005). 

Table 2

https://tidesandcurrents.noaa.gov/stations.html?type=Datums


 



 

 

Table 3. Absolute global wetland loss (x103 km2) and relative loss of total global wetland stock (%) by 

2100 under the diking and sea-level rise scenarios (see Table 1 and text for details on the scenarios 

employed). 
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Table 4. Percentage of total wetland area loss at 2100 under different weighting combinations of (a) 

three environmental forcing factors and (b) sea-level rise / tidal range and sediment supply only, 

given high sea-level rise scenario of 110 cm by 2100 (95% quantile, RCP8.5; Table 1) and ‘no dikes’. 

Shaded area = ‘standard’ DIVA_WCM output (see Equation 4, Supplementary Material for details). 

 

Table 4



 

 

Table 5. Percentage of total wetland area loss at 2100 under different weighting combinations of the 

three environmental forcing factors given high sea-level rise scenario of 110 cm by 2100 (95% 

quantile, RCP8.5; Table 1) and ‘maximum dikes’. Shaded area = ‘standard’ DIVA_WCM output (see 

Equation 4, Supplementary Material for details). 
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Table 6. Percentage of total wetland area loss at 2100 under different weighting combinations of (a) 

three environmental forcing factors and (b) sea-level rise / tidal range and sediment supply only, 

given low sea-level rise scenario of 29 cm by 2100 (5% quantile, RCP2.6; Table 1) and ‘no dikes’. 

Shaded area = ‘standard’ DIVA_WCM output (see Equation 4, Supplementary Material for details). 
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Table 7. Percentage of total wetland area loss at 2100 under different weighting combinations of the 

three environmental forcing factors given low sea-level rise scenario of 29 cm by 2100 (5% quantile, 

RCP2.6; Table 1) and ‘maximum dikes’. 

 

Table 7
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