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A B S T R A C T

Flood type classification is an optimal tool to cluster floods with similar meteorological triggering conditions.
Under climate change these flood types may change differently as well as new flood types develop. This paper
presents a new methodology to classify flood types, particularly for use in climate change impact studies. A
weather generator is coupled with a conceptual rainfall-runoff model to create long synthetic records of
discharge to efficiently build an inventory with high number of flood events. Significant discharge days are
classified into causal types using k-means clustering of temperature and precipitation indicators capturing
differences in rainfall amount, antecedent rainfall and snow-cover and day of year. From climate projections of
bias-corrected temperature and precipitation, future discharge and associated change in flood types are
assessed. The approach is applied to two different Alpine catchments: the Ubaye region, a small catchment in
France, dominated by rain-on-snow flood events during spring, and the larger Salzach catchment in Austria,
affected more by rainfall summer/autumn flood events. The results show that the approach is able to reproduce
the observed flood types in both catchments. Under future climate scenarios, the methodology identifies
changes in the distribution of flood types and characteristics of the flood types in both study areas. The
developed methodology has potential to be used flood impact assessment and disaster risk management as
future changes in flood types will have implications for both the local social and ecological systems in the future.

1. Introduction

Climate change will alter flooding around the globe, and therefore
an increasing number of studies are modelling the impact of climate
change on floods, with the focus generally on changing magnitude and
frequency of the flood events (Booij, 2005; Gain et al., 2013; Raff et al.,
2009). However, future projections of the meteorological triggers,
including heavy precipitation and snowmelt, may change differently
and alter the characteristics of the flood events (Hall et al., 2014). As a
result, factors associated with the causal type of flood such as
seasonality and triggering conditions should be addressed next to the
change in frequency or magnitude of floods. Classifying flood events
into different types can place flooding into a wider climate context and
help with exploring changes in future flood events. Changes in flood
types will have implications on both the local social and ecological
systems and are therefore important to consider when assessing future
changes in flooding (Gain et al., 2013; Garner et al., 2015).

Flood types can be distinguished based on the meteorological
conditions of a flood event, such as amount and distribution of
precipitation, as well as antecedent conditions, such as snow depth

and soil moisture. Nied et al. (2014) identify three different approaches
to describe flood events: (1) based on the flood event description, (2)
linking the flood with atmospheric circulation patterns, and (3)
classification into flood types. The first category describing the specific
flood events covers studies with a detailed examination of a particular
event (e.g. the Danube flood in 2013 (Blöschl et al., 2013), the
Mississippi River flood in 1993 (Kunkel et al., 1994), and the
Himalayan flood in 2013 (Dube et al., 2014)). The second approach
uses large scale atmospheric circulation patterns to identify similar
atmospheric triggering conditions that are linked with the probability
of flood occurrence (e.g. Bárdossy and Filiz, 2005; Delgado et al., 2014;
Pattison and Lane, 2012; Prudhomme and Genevier, 2011). In the final
approach, individual flood events are clustered into different categories
based on generating processes of the events (e.g. Gaál et al., 2012; Merz
and Blöschl, 2008; Viglione et al., 2010).

Of the three approaches for identifying flood types, the applicability
of the method depends on the purpose. The description of flood events
allows for a singular flood event to be examined, without necessarily a
long record of events. However, the variables considered vary between
case studies, in part due to different data availability, making it difficult
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to compare between case studies (Nied et al., 2014). Widely applied
classification based on atmospheric conditions is hampered due to the
small number of actual flood events relative to the overall number of
days (Nied et al., 2014; Prudhomme and Genevier, 2011), particularly
on the local or regional scale where maybe only a handful of observed
flood events occurred over the past 100 years. Both the second and
third categories have the potential to be used in climate change impact
studies, provided there are sufficient flood events, and that climate
models are able to reproduce the necessary atmospheric variables.
Even with long complete records, a relationship between flood events
and large scale atmospheric circulations cannot be determined in many
cases. Therefore, the classification approach (approach three) will be
applied here, as the characteristics of the flood events are of concern in
assessing the impact of climate change on flood types.

The variety of approaches to cluster flood events leads to different
flood types. The approach to cluster flood events depends on the region
and triggering conditions as well as the data available. Merz and
Bloschl (2003) clustered flood types manually allowing a combination
of different sources of information to be used. They classified the flood
events into five types: flash floods, short rain, long rain, rain-on-snow,
and snowmelt floods. Nied et al. (2014) used the previous classification
of five flood types, and then compared the soil moisture and atmo-
spheric circulation patterns between flood types, highlighting the
importance of antecedent conditions for the different flood types.
Alila and Mtiraoui (2002) clustered flood events based on ENSO,
storms (monsoonal storms, frontal storms and dissipating tropical
cyclones), with either two or three clusters for each classification for
south-east and central Arizona in the USA. Viglione et al. (2010)
included catchment excess rainfall as part of the flood response for
different flood types in the Kamp catchment, Austria, while Gaál et al.
(2012) clustered different Austrian catchments including the month
when it occurred. In each of these studies, to obtain sufficient number
of flood events, either less severe flood events were included or a large
study area was defined, incorporating discharge measurements from
multiple locations a catchment or catchments. Therefore, we introduce
the use of a weather generator in combination with conceptual rainfall-
runoff model to generate long time series of discharge to classify flood
types.

Little research has been done on how causal flood types explicitly
will change in the future and recent literature provides evidence that
they will change along with potential indicators to use in classifications.
Arnell and Gosling (2014) found decreases in magnitude of spring
floods for central Europe as a result of smaller discharge peaks from
rainfall than the previously snowmelt-generated ones. Possible future
changes in flood seasonality have also been identified in Switzerland
due to changes in rainfall, snow accumulation, and snow melt (Köplin
et al., 2014). Current trends in rain-on-snow floods in the western
United States have a range of significant increasing and decreasing
trends (McCabe et al., 2007). In the future, parts of the same area are
expected to shift from snow dominated winters to rain dominated
winters (Nolin and Daly, 2006). An increase of high temperature and
heavy rainfall in Norway also indicates an increase in winter/spring
snowmelt floods (Benestad and Haugen, 2007; Vormoor et al., 2015).
While none of these studies considered changing flood types explicitly,
they demonstrate that changes in precipitation, both rainfall and
snowfall and melt have the potential to alter flood types in a catchment.

This paper presents a methodology developed to classify flood types
particularly for use in climate change impact studies as it creates and
analyzes long records (meteorological and flood events). To obtain
sufficiently long records of flood events for objective flood type
classification, a multi-site weather generator is coupled with the HBV
rainfall-runoff model. The flood events are extracted from the resulting
1200 years of simulated data, where a flood is defined as days with
discharge that could potentially lead to flood situations. In particular
the discharge levels corresponded to the 2 (bank full flow), 10, and 25
year return periods, with longer return periods were not considered in

order to limit spurious extrapolations. The flood events are separated
into different flood types based on extreme meteorological triggering
conditions and flood timing (Section 2). To illustrate the developed
methodology, two European catchments are used as test sites with
different sizes and dominant flood types (Sections 3 and 4). In this
paper we apply the methodology to future climate projections and on
the past climate (Section 5), allowing new flood types to be identified
that were absent in the past. Four different climate projections are
analyzed for each catchment for the period 2070–2099 to demonstrate
how changes in the future climate may alter flood types in the future.
Sections 6 and 7 discuss and conclude our findings.

2. Methods

In any classification method, a sufficient number of events is
required to allow for clustering. In the case of flood events within a
single catchment there are often only a handful of events. While other
studies work around this through the using multiple catchments, this
paper aims to classify the flood types within a catchment by producing
synthetic data based on observational records. Long time series of
meteorological and hydrological data is generated using a combination
of a weather generator (Section 2.1) and model of discharge (Section
2.2). Once this synthetic time series is generated for past and future
climate, clustering of different flood types can be done (Section 2.3). A
flow diagram of all steps of the methodology is contained in the
Supplementary material.

2.1. Weather generator

The semi-parametric daily-multisite weather generator from Breinl
et al. (2014) was utilized to generate long time series of daily 2 m
temperature and precipitation values to serve as input for the rainfall-
runoff model. The multi-site precipitation algorithm uses a univariate
Markov process to represent sequences of daily snapshot of precipita-
tion amounts for multiple point locations within the catchment. The
weather generator was used in a so-called Reduced State Space setup
(see Breinl (2015) and Breinl et al. (2014)) to reduce the duplication of
observed precipitation sequences. Precipitation amounts were simu-
lated by pure resampling of observations (‘bootstrap’), instead of using
parametric distribution functions for precipitation amounts as applied
in Breinl et al. (2014). Parametric distributions were not applied to do
the complexity of altering compound distributions under future climate
scenarios. For the temperature, mean daily temperature was simulated
with autoregressive-moving-average processes (ARMA). The weather
generator was set up monthly to account for seasonality of precipitation
and temperature. In total 1200 years of daily temperature and
precipitation were generated to drive the conceptual rainfall-runoff
model (see Section 2.2) for the observed period, as well as for each of
the selected future climate projections.

The multi-site weather generator has been successfully applied for
the historical period in Alpine catchments by Breinl (2015). It was
found that the weather generator handles the spatial variability of
precipitation between rain gauges well, with a slight tendency to
underestimate extreme dry spells, which is a well-known issue of
Markov based weather generation algorithms. The mean number of dry
and wet days was well simulated.

To generate future projections of precipitation, the time series of
the resampled observational period values were first generated by the
weather generator and then the values replaced with the projected
precipitation amounts by reshuffling to maintain temporal and inter-
site statistics. Future temperature projections were generated by
adding the projected monthly mean temperature shift to the observa-
tions, a common technique in climate impact studies (e.g.
Steinschneider and Brown, 2013; Tao and Zhang, 2011). These
generated time series are fed to the HBV model to simulate future
discharge.
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2.2. HBV model

The conceptual HBV rainfall-runoff model was used to model
historical and future discharge based on observational records and
future climate data (Bergström, 1976). The HBV model was selected as
it represents the main runoff generating processes, and due to the low
computational costs, it can be used to generate discharge time series
longer than 1000 years. The model has also been used in numerous
previous studies (e.g. Booij, 2005; Das et al., 2008; Gao et al., 2012;
Steele-Dunne et al., 2008). For this study, the HBV-light model
(version 4.0.0.6) from Seibert and Vis (2012) was applied. The model
was used in a semi-distributed setup, with a single catchment sliced
into ten elevation zones for distributed snow modelling a well as three
groundwater boxes. The HBV-light model uses time series of daily
precipitation, daily mean temperature and daily discharge data for
calibration. For historical period, multi-site precipitation from the
weather generator in Section 2.1 was averaged through Thiessen
polygons, which turned out to be sufficient compared to other methods
such as Kriging with external drift (Breinl, 2015). The potential
monthly evaporation was calculated after Thornthwaite (1948), as
has been used in previous studies in combination with the HBV model
(e.g. Bergström et al., 2001; Akhtar et al., 2008; Timalsina et al., 2015).

The HBV model was calibrated and validated based on 20 years of
observed temperature, precipitation, and discharge as a 20 year period
has been assessed to be sufficient length for use in climate change
impact studies (Vaze et al., 2010). For the calibration, the ranges of 15
model parameters were taken from Seibert and Vis (2012), related to
snow, soil moisture, response, and routing. In total 100 different
parameter sets were calibrated to account for equifinality (Beven,
1999) using a genetic algorithm followed by Powell’s quadratically
convergent method for fine-tuning (Press et al., 2002). Further details
on the calibration and validation process as well as the model
performance in both catchments can be taken from Breinl (2015).
After model calibration, synthetic discharge (1200 years) was gener-
ated by feeding the temperature and precipitation time series from the
weather generator in Section 2.1 into the HBV model. This was done
for both the past and future periods. As different magnitude flood
events may have differences in flood type characteristics, three
discharge magnitudes were used. These were based on the 2 (bank
full), 10, and 25 year return period amounts (Q2, Q10, Q25) and were
calculated empirically based on the annual maximum daily discharge
values.

2.3. Classification: flood types

The two most important considerations in clustering flood types are
the selection of meteorological indices, and how to cluster the flood
events based on these indicators. Flood types in mountainous catch-
ments include different combinations of intense-short-duration rain-
fall, high antecedent rainfall decreasing catchment storage, and snow
cover and melt (Merz and Blöschl, 2008). The clusters should reflect
these types, and therefore indicators should be able to capture
differences.

The indicators representing four different components of flood
generation were: 1) short (1-day) duration precipitation, 2) antecedent
precipitation over two or more days preceding the flood event, 3) daily
and antecedent 2 m temperature, both absolute values and normalized
temperature values based on time of year, and 4) day of the year (DOY).
The precise antecedent precipitation and temperature indicators were
selected based on their correlation with daily discharge. The period of
antecedent precipitation that had the highest correlation with dis-
charge was selected, varying the period for two to 60 days before the
flood. Temperature in combination with precipitation may identify
rainfall as opposed to snowfall, while warm spring temperatures
indicate snowmelt, and high temperatures in summer and autumn
the possibility of convective precipitation. DOY could indicate possible

snow cover and snowmelt, or other seasonally varying phenomena. For
temperature, the period was allowed to vary from 1 to 60 days, using
both absolute and normalized values due to the strong seasonal signal.
Temperature was normalized (Tmn) on a daily basis using:

T T T
s

= −
mn

m m
(1)

where Tm is the daily mean temperature, Tm is the average daily mean
temperature for all values for the same day of the year, and s is the
standard deviation for all values for the same day of the year.

To cluster the flood events into different types the indicators were
analyzed by k-means clustering. K-means clustering is an unsupervised
clustering technique that separates events into different groups based
on one or more indicators. Previous uses include classification of
groups of catchments with similar precipitation and flood regimes
(Parajka et al., 2010), as well as classifying atmospheric circulation
patterns (Huth et al., 2008). The iterative process groups each event
into the cluster with the closest centroid, after which the centroid is
recalculated based on the mean values of all the events in the cluster.
When using multiple indicators for clustering, those with a larger
variance will have a larger influence on the center clusters, which can
be mitigated by standardizing the indicators. The flood types were
clustered for each return period (Q2, Q10 and Q25) using two to all
four indicators.

The silhouette index (SI, Rousseeuw, 1987) was used to evaluate
the quality of the flood type clusters and determine the final number of
clusters. The SI for each cluster can be calculated using:

∑SI
n

b a
a b

= 1 −
max ( , )c i

n
i i

i i=1

c

(2)

where nc is the number of flood events in cluster, bi is the average
Euclidean distance between an observation i and all observations in the
next closest cluster, and ai is the average Euclidean distance between i
and all other flood events in the same cluster. SI values vary between 1
and −1, with positive values when they are likely to be correctly
classified, negative when the likely belong in another cluster, or near
zero for no particular cluster.

The final flood type classification was selected based on the
classification with the highest average SI value from (2). It is possible
that particular flood types are not observed at all return periods, or
there may not be a clear distinction between the more frequent flood
types. Therefore, for each study area the final flood type cluster
indicators and number of clusters/types were allowed to vary between
return periods.

Two different approaches were applied to assess how the flood types
may change in the future. For both approaches, 1200 years of future
discharge were generated using weather generator enforced by the
future climate projections for temperature and precipitation and the
HBV model. The first approach was to detect changes in the distribu-
tion of historical flood types as a change in dominant flood type may
have an impact on the vulnerability or exposure of an area to flooding.
To assess the change in distribution, the flood events (Q2, Q10, Q25)
were identified based on the historical discharge amounts, allowing the
relative change in number of flood frequency to be calculated. The
future flood events were placed in the closest historical cluster. A
change in the distribution of flood events between the clusters indicates
possible changes in the dominant flood type or types in the future.

The second approach repeated the flood type classification using
future discharge to allow for new flood types to emerge. To maintain
the same number of flood events for clustering, the discharge return
periods are re-calculated based on future discharge. The clustering is
repeated, based on the four indicators and average SI value. Both the
number and the characteristics of the flood types can be compared to
the historical flood types to assess changes in future flood type
characteristics. The projected temperature values were normalized
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based on the historical time series, so as to be able to assess the
difference in temperature between the historical and new future flood
types.

3. Study area

Two study areas were selected to demonstrate the applicability of
the methodology under different conditions: the Ubaye catchment
(548 km2) in the southern French Alps and the Salzach catchment
(4637 km2) in Austria (Fig. 1). Both are located in the European Alps, a
region that has warmed twice as fast as the mean temperature for the
Northern Hemisphere (Auer et al., 2007). The Alps have also experi-
enced a general retreat of glaciers, an poor snow conditions for winter
tourism, with future changes in discharge predicted to increase in
winter and decrease in summer (Beniston et al., 2011). Currently, the
Ubaye catchment has a mountainous Mediterranean climate with snow
on the upper reaches of the catchment for approximately six months of
the year (Remaître et al., 2011). It has an observed average annual
precipitation between 730 mm and 985 mm with the average annual
daily maximum precipitation between 46 mm and 53 mm. As Salzach
is located on the north side of the Alps, it has a predominately Alpine
climate experiencing annual maximum precipitation and flood maxima
generally in summer (Parajka et al., 2010). The Salzach catchment has
an observed average annual precipitation varies between 1096 mm and
2035 mm, while the average annual daily maximum precipitation is
between 45 mm and 84 mm..

Salzach and Ubaye catchments differ in size and average annual
precipitation, they also differ in flood seasonality as shown in previous
flood hazard studies (Salzach: Stanzel et al., 2008, Ubaye: Ramesh,
2013). The Ubaye River generally experiences spring flood events,
where warm rain amplifies elevated river levels due to snow melt
(Ramesh, 2013). Summer flood events are more common for Salzach
catchment, which includes the August 2002 flood event where the
discharge was the highest in the previous 100 years (Ulbrich et al.,
2003). More recently in June 2013, the Salzach catchment recorded
high discharge after four days of high precipitation with high ante-
cedent soil moisture (Blöschl et al., 2013).

4. Data selection

The Ubaye and Salzach catchments are covered by a hydrological
network with more than 20 years of measurements. The Ubaye
catchment contains four rain gauges and measurements of mean daily
discharge covering the period 1971–2004. Observed gridded data from
the ENSEMBLES project was used for temperature (E-OBS -Haylock
et al., 2008), due to missing data and discontinuities in the temperature
record for the catchment. E_OBS data have been successfully used in
previous flood related studies (e.g. Freudiger et al., 2014; Ionita et al.,
2014). The Salzach catchment contains 18 rain gauges, three tempera-
ture gauges, and measurements of mean daily discharge for the period
1987–2010. For input into the HBV model the arithmetic mean of
multiple temperature station was used for Salzach as it resulted in
higher model efficiency coefficients compared to using a single,
centrally located, temperature gauge. To calibrate the HBV model, a
ten year period was selected (Salzach: 2001–2010, Ubaye: 1995–
2004). The validation period was for Salzach: 1988–1997, and for
Ubaye: 1971–1980. Both calibration periods contained significant
flood events, 2002 in Salzach and 2003 in Ubaye.

For future flood type analysis over the period 2070–2099, four
future projections were selected from a set of 15 future climate
projections. Four projections were selected to analyze future flood
types to maintain a manageable number of future projections, as well
as using many projections can tend to highlight the central tendency,
rather than extreme conditions (Raff et al., 2009). The full set of 15
originate from the EURO-CORDEX dataset (Jacob et al., 2014). Model
output from three RCMs (SMHI-RCA4, DMI_HIRHAM5, KNMI-
RACMO22E) driven by 4 different GCMs (ICHEC-EC_EARTH,
MOHC-HadGEM2_ES, IPSL-CM5a_MR, MPI-ESM_LR) and two re-
presentative concentration pathways, RCP4.5 and RCP 8.5, were
selected to cover a wide range of genealogy (Knutti et al., 2013).
Details on these 15 projections can be found in the Supplementary
material. From the set of 15, four projections were selected using the
method by Raff et al. (2009). This method is based on the mean
temperature and precipitation projected changes compared to the
historical period, averaged over the catchment. Mean changes in
temperature and precipitation were used so that the results are not
biased towards one particular flood type, for example through selecting

Fig. 1. Map of the two study areas with the location of the rain and river gauges, including location where temperature was also measured. The size and location of the EOBS grid cell is
also shown for Ubaye.
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changes in extreme precipitation or spring temperature. The selected
projections represent combinations of warmer, milder, drier and wetter
conditions for time period 2070–2099.

A bias correction method was utilized for the four selected projec-
tions for each catchments, as model biases may still remain in RCM
data even though they reasonably reproduce meso-scale atmospheric
features (Frei et al., 2006). For this work, an empirical-quantile
mapping technique (EQM) was chosen. The bias correction methodol-
ogy for precipitation was based on Themeßl et al. (2012), which has
been successfully applied in hydrological climate impact studies (e.g.
Dobler et al., 2012; Finger et al., 2012). EQM transforms the empirical
cumulative density distribution of the RCM data to match the observed
empirical distribution, requiring no assumption about underlying
distributions. The bias-correction method performed better than other
methods in a range of mid-latitude climates, although may be subject to
over-tuning (Lafon et al., 2013).

From Themeßl et al. (2012), the corrected precipitation amounts
(Xcorr) can be calculated using:

Xcorr =Xraw +CFt,i t,j i (3)

CF =ecdf (P )-ecdf (P )i i
obs,-1

m, j j
mod, -1

m, j (4)

P =ecdf (Xraw)m, j j
mod

j (5)

where Xrawt,j is the precipitation amount on day t at point j, Xcorrt,i is
the corrected RCM precipitation amount on day t for gauge i, CFi is the
correction factor at j with regards to i, and P is the probability of Xraw
based on the empirical cumulative distribution (ecdf) for daily pre-
cipitation values.

The correction factors were calculated monthly, as RCMs biases
may differ between seasons (Frei et al., 2006), as well as to align with
the weather generator (Section 2.1). Time periods should be longer
than 20 years, because for shorter periods results become sensitive to
the precise time period chosen (Wood et al., 2004), although results for
longer time periods are increasingly likely to contain non-stationeries
over the period. The average correction factor for the five most extreme
values was used for any unobserved extreme precipitation value.

5. Flood typing

The generated time series from the combination weather generator
and HBV model are described in Section 5.1, including the results for
the observational period as well as the future projections. These time
series form the base for the classification of flood types along with the
indicators selected using the historical data. As the catchments have
different flood characteristics, the applicability of the flood type
classification is shown per catchment (Ubaye in Section 5.2 and
Salzach in Section 5.3) for past and future climates.

5.1. Data input for classification

5.1.1. Historical period and indicators
The generated discharge, precipitation and temperature for the

historical period in both catchments are characterized in Fig. 2. The
discharge time series was generated after calibrating the HBV model.
The average Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) is
computed as performance indicator for the HBV model for was 0.87/
0.82 for Salzach and 0.82/0.74 for Ubaye for the calibration/validation
period. As the HBV model has been tested for both catchments, details
on comparison with observational records can be found in Breinl
(2015)..

In the Ubaye catchment, the average daily precipitation was stable
thought the year (1–2 mm) with a small peak in October/November
(3 mm). In the Salzach catchment there was a clear seasonal signal,
with the average daily precipitation lowest in December and January
(2 mm) and increasing to 6–7 mm in July and August. The tempera-
ture shows the same annual variation for the two regions, with a higher
maximum average temperature in the Salzach catchment. As a
representation of extreme precipitation for the two catchments, the
average annual maximum daily precipitation from the weather gen-
erator was 45.2 mm for Ubaye and 42.3 mm for Salzach.

The mean daily discharge for the Ubaye catchments peaks in the
spring, with a second smaller peak in the autumn. The second peak
aligns with the peak precipitation period, while the first discharge peak
may be associated with snowmelt. For the Salzach catchment, the mean
discharge and precipitation are highest from late spring to early
autumn. An increase in discharge around April/May, not matched in
the mean precipitation amounts, was likely caused in part by snowmelt.
Higher discharge values in the Salzach catchment could be explained
by the difference is size compared to the Ubaye catchment.

The selection of exact indicators was based on the correlation with
discharge using the generated time series of precipitation, temperature,
and discharge (Fig. 2). Different antecedent periods were tested as
indicators in both catchments. The 15-day total precipitation and 5-day
normalized temperature had the highest correlation with discharge for
the Salzach catchment (correlation coefficients of 0.61 and 0.60
respectively). For the Ubaye catchment, the antecedent period used
for precipitation was 35 days and 4 days for normalized temperature
(both with a correlation coefficient of 0.42). As the antecedent normal-
ized temperature had a higher correlation with discharge for both study
areas, it was used as a potential indicator instead of absolute
temperature values. Table 1 lists the potential indicators for the
classification of flood types.

5.1.2. Future period
The mean changes in precipitation and temperature in each

catchment for 15 different bias-corrected climate projections are shown

Fig. 2. Mean daily discharge (solid black) from the HBV model, with mean temperature (red dots) and precipitation (blue dash) from the weather generator. Left: Ubaye for the period
1988–2010. Right: Salzach for the period 1971–2004.
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in Fig. 3. All projections show an increase in the average annual
temperature for the future (2070–2099) compared to the historical
period (Ubaye: 1971–2004, Salzach: 1987–2010). The largest increase
in temperature for both study areas was more than 2.0% using the
MOHC-HadGEM2_ES- SMHI-RCA4 combination. For precipitation,
the Ubaye catchment shows most projections with drier conditions,
while for Salzach most projections show the area becoming wetter. To
reduce the number of future projections, four were selected for each
study area using the method proposed by Raff et al. (2009). The SMHI-
RCA4 runs with ICHEC-EC_EARTH as driving GCM were selected for
both catchment (red circle Fig. 3), with the DMI_HIRHAM5 and
ICHEC-EC_EARTH as the other model combination for Ubaye, and
SMHI-RCA4 and IPSL-EM5a_MR for Salzach..

The eight projection circled in red were then fed to the weather
generator and HBV model to produce four times 1200 years of
generated data for both the Ubaye and the Salzach catchments. Fig. 4
shows the mean daily precipitation, temperature and discharge per
projection for the period 2070–2099. For Ubaye, all projections had
the highest mean precipitation amounts in September and October,
extending into August under the Wd projection. Furthermore, besides
Wd, the other projections showed a clear seasonal variation in
precipitation with two peaks: one in September-October (3–6 mm/
day) and a second minor peak in March – May (2–3 mm/day). The
temperature had the same annual variation as in the historical period,
although warmer by 1–2 °C, except for the winter temperatures for the
two warmer projections (Wd and Ww). For the Wd and Ww projec-
tions, the temperature was 5–7° higher than in the historical period
elevating the mean temperature to above freezing. The changes in

temperature and precipitation led to a smaller spring discharge peak
than observed in the historical period, particularly for the Wd projec-
tion, and higher discharge amounts from October to November..

For Salzach, the seasonal variation of mean precipitation varied
between the four future projections in Fig. 4, with the Md projection
being most similar to the historical period. The Mw and Ww projec-
tions had an increase in the average daily precipitation of 7–8 mm for
July and August. For the Wd projection, there were two precipitation
peaks of 5–6 mm, one in February to March and the other in June to
September. The temperature showed a similar distribution as the
historical period with a 2–4 °C increase for the milder projections,
Md and Mw, and a 4–6 °C increase for the warmer projections, Wd and
Ww. For future discharge, the amount either stayed the same or
increased for March to April, with lower discharge between June and
October. There was a second discharge peak in three of the projections
occurring in July to August for Mw and Ww projections and September
to October for the Md projection.

5.2. Ubaye flood types

5.2.1. Historical period (1971–2004)
Per return period the dominant flood types in Ubaye catchment

were determined for the historical period 1971–2004. The indicators
that independently gave the highest correlation with discharge were: 1-
day precipitation (RR), antecedent 35-day precipitation (RRa), and
antecedent 4-day normalized temperature (Tna) in combination with
the day-of-year (DOY). Only the temperature indicator was normalized,
as it was found that normalization of all the indicators resulted in poor
separation of clusters (not shown). Fig. 5 shows the flood types where
DOY versus precipitation is plotted (a) as well as the silhouette value
per event (b). For Q2, flood events were classified into two groups: a
small cluster later in the year with higher 1-day rainfall amounts (Type
1) and a second larger cluster earlier in the year (Type 2; Fig. 5a). For
the Q2 floods, the combination of 1-day precipitation (RR), tempera-
ture and day of the year gave an average SI score of 0.94, indicating a
near perfect separation between the two groups. Using the same set of
indicators and number of clusters, the SI values for Q10 and Q25 were
0.85 and 0.85, respectively. However further analysis on Q10 and Q25
identified a third group that split the Type 1 floods into two smaller
clusters. The two clusters also add the antecedent 35-day precipitation
as an indicator and provided a more compact range of conditions under

Table 1
Potential indicators for classification of flood types for the Ubaye and Salzach
catchments.

Description Definition

Ubaye Salzach

RR Short precipitation 1-day total (mm) 1-day total (mm)
RRa Antecedent

precipitation
35-day total (mm) 15 day total (mm)

Tna Temperature 4 day mean temperature
(normalized)

5 day mean temperature
(normalized)

DOY Day of the year Days from 31st Dec Days from 31st Dec

Fig. 3. Projection temperature and precipitation ratio comparing the period 2070–2099 with observational period with Ubaye catchment (left) and the Salzach catchment (right). The
selected projections circled in red are for the following combinations: mild dry (Md), mild wet (Mw), warm dry (Wd) and warm wet (Ww). The colors represent the different driving
GCMs: black ICHEC-EC_EARTH, blue MOHC-HadGEM2_ES, green IPSL-EM5a_MR, orange MPI-ESM_LR, and the different RCMs are represented with different symbols: circle
SMHI-RCA4, star DMI_HIRHAM5, diamond KNMI-RACMO22E.
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which the flood events occurred. The average SI score changed to 0.68
for the Q10 floods and 0.73 for the Q25 floods. The majority of
individual SI values were above 0.5 in Fig. 5b, indicating that these
flood events were most similar to other flood events in their cluster.
However, when introducing three flood types some SI values dropped

to near zero, particularly for Q10 floods, indicating that there is no
preferred cluster for these flood events. The average SI value and
cluster center values per indicator are listed in Table 2 per return
period and flood type..

For all return periods Type 2 floods occurred between September

Fig. 4. Mean daily discharge (solid black) from the HBV model, with mean temperature (red dots) and precipitation (blue dash) from the weather generator. Left: Ubaye Right: Salzach.
Both for the period 2070–2099 and for each of the four projections Md, Mw, Wd, and Ww.
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and December with higher than normal temperatures. The warmer
temperatures indicated that the rainfall may come from warmer
convective events. The associated mean 1-day precipitation amounts
are 44.5 mm, 53.2 and 45.6 mm for Q2, Q10 and Q25, respectively
(Table 2); values close to the observed annual daily maximum
precipitation. The related antecedent precipitation mean values in-
creased with increasing return period indicating higher soil moisture
that may lead to more runoff during the short rain events.

Type 1 floods occurred between March and July. Compared to Type
2 floods, Type 1 floods had a lower Tna, but still generally higher than
normal (Table 2). The warmer temperatures in spring may have been
associated with increased snowmelt, rain on snow, or more rainfall
rather than snowfall. The 1-day precipitation amounts for this flood
type were lower than for Type 2 floods (Fig. 5a and Table 2), but higher
than the mean values in Fig. 2. Therefore it is unlikely that there were
snowmelt floods in the Ubaye catchment, a type outlined by Merz and
Blöschl (2008), rather, two groups of Rain-Snow floods (here labelled

Type 1a and Type 1b) separated by antecedent precipitation amounts.
Type 1b floods had higher antecedent precipitation with lower 1-day
precipitation compared to Type 1a, as can be seen in Fig. 5 and Table 2.
As the temperature indicator covered a shorter time period than the
antecedent precipitation, it is not possible to assess whether all the
precipitation is snow or rain using the indicators alone. Further
investigation of the HBV output data of a select number of the Q25
Type 1b floods showed lower temperatures the preceding weeks, only
warming to above normal temperatures in the days before the flood
event. In these instances, increased precipitation likely built up the
snowpack, especially at higher elevations, which eventually melted and
increased the discharge levels. Type 1 floods accounted for more than
90% of the flood events in the generated time series, with an equal split
between Type 1a and Type 1b for Q10 and Q25.

As a performance check, the characteristics of the above generated
flood types were compared with real floods documented in the
catchment. The highest measured discharge amount between 1970

Fig. 5. Clustering of flood types for the Ubaye catchment (A) with the individual silhouette values (B) for the historical period. Green stars indicate Type 2, blue circles Type 1/1a, and
light blue diamonds for Type 1b flood events. In each instance, only the antecedent and DOY indicators are shown.

Table 2
Cluster center values for the different flood types for Ubaye under the historical climate. RR is the 1-day precipitation amount, RRa is the 35-day antecedent precipitation and Tna is the
normalized 4-day antecedent temperature. The values in bold are used for the cluster centers.

Ubaye flood types

Q2 Q10 Q25

RR (mm) RRa (mm) Tna DOY Type RR (mm) RRa (mm) Tna DOY RR (mm) RRa (mm) Tna DOY

Type 1 15.6 87 1.0 146 1a 30.1 71 1.8 142 40.7 78 1.5 141
1b 23.3 152 0.7 150 21.7 165 1.3 149

Type 2 44.5 159 1.5 294 – 53.2 170 1.7 298 45.6 210 1.9 299
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and 2010 was in May 2008, and had similar values for the indicators as
the flood Type 1a for Q25. The recorded 1-day precipitation was more
than 40 mm at the rain gauges in Fig. 1, with above normal tempera-
ture. Considering high observed discharge events, most Q2 events
occurred during the March to July period, with only three events that
could be classed as Type 2 events. Based on the observed times series, it
was not possible to discern Type 1a and Type 1b floods, as there were
only four measured Q10 floods and one Q25; too few to cluster. The
comparison shows that types of floods captured by the flood classifica-
tion method appear to be similar to those observed in the Ubaye
catchment.

5.2.2. Future flood types (2070–2099)
The future flood types were first analyzed for changes in the flood

type frequency compared to the historical period (approach 1). Fig. 6
shows the relative change in number of flood events for each flood type
and return period with the historical period (H) as reference (the grey
band indicating the 99% random sampling range of historical time
series). For Ubaye, all four projections for Q2, Q10, and Q25 events had
in increase in overall flood frequency in 2070–2099, as the total length
of each bar is greater than the grey horizontal band in Fig. 6. The
overall increase was due to a strong increase in the number of Type 2
floods (green) for all projections: a flood type that accounted for less
than 10% of the events in the historical period. The increase in these
events primarily came from an increase in the 1-day precipitation
during autumn (see Fig. 4). There was no consistent change projected
in Type 1 for Q2 and Types 1a and 1b for Q10 and Q25. Overall, there
was a potential shift in flood types from Type 1 to Type 2 floods..

In the second approach, future flood type clusters were re-classified
to account for potential changes in the climate of the catchment that
alter the flood types themselves. The center values of the clusters are in
Table 3 for each projection (Wd, Ww, Md and Mw). Fig. 7 shows the
clustering of flood types based on the indicators DOY and 1-day rainfall
for each return period and climate scenario. The individual SI values
for Ubaye are in the Supplementary material..

The future flood types in Ubaye were similar to the historical
period, except for projection Wd (Fig. 7). Under Wd, Q2 events
occurred throughout the year, as opposed to the defined spring and
autumn periods observed historically. The three projections Mw, Ww,
and Md showed two distinct periods of the year with flood events, as
seen with the separation in the DOY between the Type 2 and Type 1
floods in Fig. 7. Under the Md projection, Type 2 could be split for Q10
and Q25 floods, where Type 2a experienced higher 1-day precipitation
amounts and lower antecedent precipitation than Type 2b flood events
(Fig. 7a and Table 3). All four future projections resulted in fewer Type

1 floods and a separation could no longer be made between Type 1a
and 1b floods as in the historical period. For the Q2 events, the average
SI value was similar to the historical period, while Q10 and Q25 had
higher average SI values than in the historical period, indicative of a
clearer separation between the future flood types.

Although similar clusters were detected in the future for the Ubaye
catchment, shifts in timing and cluster center values for indicators were
projected. The two warmer projections (Wd and Ww) had the Type 1
flood types occurring earlier in the year than historically (on average in
March, as opposed to May from the simulated flood events or the May
2008 flood event). Type 2 floods occurred on average at the same time
of the year as found in the historical data, although some of the Q2
floods occur in December in all projections (Fig. 7), which was not seen
in the historical period (Fig. 5a). For all projections, the cluster center
values for 1-day precipitation were higher (Table 3) than the historical
values (Table 2). The antecedent precipitation values were lower. All
temperature values were on average much warmer than in the
historical period, consistent with a warming climate.

5.3. Salzach flood types

5.3.1. Historical period (1987–2010)
For each return period the dominant flood types in the Salzach

catchment were determined for the historical period 1987–2010. The
indicators that gave the highest correlation with discharge were 1-day
precipitation (RR), antecedent 15-day precipitation (RRa), and ante-
cedent 5-day temperature (Tna). Fig. 8 shows the DOY and precipita-
tion per flood event (a) as well as the silhouette value for each event (b).
For the Q2 floods using all four indicators, there were two flood types
from the classification. The first type were flood events earlier in the
year with warmer than normal temperatures and moderate 1-day
precipitation (Type 1). A second type occurred later in the year with
higher 1-day precipitation and normal or colder than normal tempera-
tures (Type 2; Fig. 8a). The average SI value for this classification was
0.68. The separation between clusters became more distinct for the
Q10 and Q25 flood events, with average SI values of 0.84 and 0.74
respectively. Antecedent precipitation was also not used for the Q10
and Q25 events to classify the clusters, due to lower SI values (0.79 and
0.44 respectively if included). For the Q25 flood events, the Type 2
events could be split into two clusters, ones with lower 1-day
precipitation amounts and cooler temperatures that occurred earlier
in the year (Type 2a) and flood events with higher 1-day precipitation
amounts and temperatures near normal (Type 2b). Most of the
silhouette values imply a good fit with values above 0.5 in Fig. 8b,
however, especially for Q2 events, there are near zero values, demon-

Fig. 6. Approach 1: Number of high discharge events relative to the historical period, split into flood type (blue=Type 1/1a, light blue=Type 1b, green=Type 2, H=for the historical
period). The horizontal grey box indicates the 99% random sampling range from the historical period. Amounts above 1 indicate an increase in overall flood frequency and below 1
represents a decrease. The Q2, Q10, Q25 refer to the discharge amount in the historical period. Md, Mw, Wd, and Ww correspond to the projections selected in Fig. 3.
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strating that some flood events did not clearly fit in a particular flood
type. The average SI value and cluster center values for each of the
indicators are listed in Table 4..

For all return periods, the Type 2 flood events occurred between
July and October, with the Type 2a events occurring between July and
August and the Type 2b between August and October (Q25 only). All
Type 2 floods had on average 1-day precipitation amounts higher than
the average annual daily maximum, except for the Type 2a events that
were slightly lower (Table 4). The temperature was generally cooler
than normal for these events, indicating that the rainfall may have
originated from low pressure systems, rather than local convection.
However, for the Type 2b events, the temperatures were on average
near normal, possibly due a more balanced mixture of synoptically
driven rainfall triggered flood events and local convective rainfall
triggered flood events. Overall the Type 2 flood events were the
dominant flood type in the simulated time series for Salzach, account-
ing for more than 65% of the flood events.

Type 1 flood events occurred between March and July, with most of
the Q10 and Q25 floods occurring between March and May. The
average 1-day rainfall and antecedent precipitation were the same
between the three return periods for this type, with the 1-day rainfall
between 30 and 36 mm higher than normal for this time of year, but
lower than the average annual daily maximum. The 15-day antecedent
precipitation was on average 135–155 mm, double the average
amount. The temperature was warmer than normal for all Type 1
events (Table 4), indicating that warmer temperatures in spring may be
associated with increased snowmelt, or more rainfall rather than
snowfall, as in Ubaye. The cluster center values for the temperature
indicator also increased with increasing return period (Table 4),
indicating either more snowmelt, or more rapid snowmelt. Overall
the Type 1 flood events accounted for 10–35% of the total Q2, Q10, and
Q25 floods in the Salzach catchment.

The characteristics of the generated flood types was compared with
real flood events document in the Salzach catchment. For the August
2002 flood event, the 1-day rainfall amounts in some places exceeded
the 100-year return level period, with heavy precipitation also recorded
in the weeks before the event (Ulbrich et al., 2003). These are
characteristic of the Type 2 flood events described in Table 4 and
Fig. 8a, although slightly earlier in the year than average for the
simulated data. More recently the early June 2013 flood occurred after
three days of heavy precipitation combined with high antecedent
moisture conditions in part due to snow melt (Blöschl et al., 2013).
This flood bares resemblance to the Type 1 flood events, where
snowmelt appears to play a role, alongside heavy precipitation and
higher than normal antecedent precipitation. Overall, the flood types
captured through the classification of generated data appear to be
similar to the observed flood types.

5.3.2. Future flood types (2070–2099)
The change in frequency of each of the flood types was analyzed first

(approach 1). Fig. 9 shows the relative change in number of flood event
for each flood types and return period compared to the historical period
(H). For each return period, three projections of flood events show an
increase in overall frequency, with only the Md total bar length below
the grey horizontal band in Fig. 9. The Md projection was also unique
between projections for the individual flood types, where the milder,
drier projection had a decrease in Type 2 flood events and no change in
the Type 1 flood events. For the other three projections, Mw, Wd, Ww,
each flood type had an increase in frequency, although the increase was
small for Type 2a events for the Q25 Mw projection. For all return
periods, the Type 1 flood events had the greatest increase in frequency,
becoming the dominant flood type. For the two warmer projections,
Wd and Ww, there were still more Type 2 flood events than Type 1.
Overall the results for the Salzach catchment show that the distribution
of flood types may shift to more events earlier in the year, although
Type 2 flood types remained the dominant type, except in the Mw
projection..

In approach 2, the future flood types were re-classified to account
for possible changes in flood type characteristics by 2070–2099. The
center values for the indicators for each projection (Md, Mw, Wd, Ww)
and return period are in Table 5. Fig. 10 shows the clustering of flood
types based on the indicators DOY and 1-day rainfall, with the
individual SI values in the Supplementary material..

For Salzach there was a larger difference between the historical and
future flood types compared with Ubaye. The most similar flood types
from the Md projection retained the Type 1 and Type 2 events,
although they occurred over a larger portion of the year (Fig. 10a).
The Mw projection future flood type characteristics had the largest
contrast from the historical period (Fig. 10b). This was the only
projection that did not use DOY in all of the flood type classifications
(Table 5). Four flood types were identified for Q2 events based on only
temperature and 1-day precipitation, with the flood events that had the
highest 1-day precipitation and coldest normalized temperature occur-
ring in spring. Only two flood types were defined for the Q10 events,
one group only occurring in spring, with higher 1-day precipitation
values, and a second group that occurred throughout the year with
higher antecedent precipitation. For the Q25 flood events, three types
were identified with the inclusion of the DOY indicator. For the two
warmer projections, Wd and Ww, between two and four clusters were
found based on 1-day precipitation, temperature, and DOY with higher
1-day totals (Fig. 10c, d). Flood types 2a and 1 were similar to the flood
types 2 and 1 from the historical period. However, in both cases a third
type, Type 2b, was also observed, occurring in November and
December with abnormally high temperatures, much later in the year
than observed in the historical period. For the Wd projection, a fourth
type, Type 2c, was also observed and occurred in June. As with Ubaye,
all temperatures were higher than normal, as would be expected in a
warmer climate.

Table 3
New cluster centers for future flood types in the Ubaye catchment (2070–2099) for the four future projections. RR is the 1-day precipitation amount, RRa is the 35-day antecedent
precipitation and Tna is the normalized 4-day antecedent temperature. The values in bold are used for the cluster centers.

Q2 Q10 Q25

RR (mm) RRa (mm) Tna DOY Type RR (mm) RRa (mm) Tna DOY RR (mm) RRa (mm) Tna DOY

Mild, dry Type 1 32 105 1.9 122 62 110 2.2 114 77 123 3.0 108
Type 2 66 148 1.8 285 2a 137 98 1.7 261 140 146 2.0 264

2b 58 219 2.3 297 63 249 1.9 290
Mild, wet Type 1 36 84 2.9 115 56 90 2.9 105 60 102 3.1 97

Type 2 51 167 2.8 296 57 204 3.0 293 56 239 3.1 295
Warm, dry Type 1 43 101 4.1 90 51 95 4.4 47 50 153 4.5 11

Type 2 51 168 3.6 303 68 189 3.7 311 71 208 4.0 308
Warm, wet Type 1 51 99 4.1 67 63 121 4.6 45 69 143 4.7 47

Type 2 55 171 3.5 303 62 219 3.9 297 63 242 3.8 299
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6. Discussion

The developed flood type classification methodology was able to
define the main historical flood types for both tested catchments as
result of temporal data expansion by using weather generator com-
bined with the HBV rainfall-runoff model. Separation between flood
types based on the SI value depended on both the catchment
characteristics as well as the number of flood events in the cluster.

The separation was less clear for lower return period floods (Q2) in the
Salzach catchment than Ubaye, which could be linked to the two
distinct peaks in the precipitation distribution in Ubaye that were
absent in Salzach (Fig. 2). Generally, there was an increase in SI value
between the flood types with higher return period, for both catchments
and as well as for historical as future periods. A reason could be that
more frequent discharge events can occur in a wider range of
conditions, while the extreme flood event conditions only occur under

Fig. 7. Clustering of future flood types for the Ubaye catchment for the period 2070–2099 per selected projection. Green stars indicate Type 2 floods, blue circles Type 1 floods, red
diamonds for Type 3 floods with indicator 1-day rainfall on the x-axis and indicator DOY on the y-axis two. The average SI value is shown the in top right corner.
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specific combinations of indicator values, possibly linked to certain
atmospheric situations such as atmospheric blocking leading to persis-
tent rain over the catchment.

The developed methodology employs four types of indicators using
only time series of temperature, precipitation data from the weather
generator and the DOY. The selected indicators have strongest
correlation with generated discharge, but could limit the number of
flood types. Other flood types, such as snowmelt, may be difficult to
capture with only temperature and precipitation indicators (Gelfan,
2010). It is possible that new indicators should be used for clustering
future flood events or other catchments. Using other indicators as well
as antecedent periods for the temperature, precipitation, and DOY may
alter the mean indicator values per flood type, and possibly the flood
types themselves. Furthermore, the decision not to standardize all the
indicators would have affected the cluster centers as those with smaller
variance had a smaller influence on the cluster centers, particularly in
this case temperature. During preliminary analysis, standardizing the

indicators decreased the performance of the clustering and therefore
was not included. For other regions or indicators, however, weighting
and standardization of variables may be a viable option where the
separation between clusters is less clear. Overall, for both test catch-
ments most of the silhouette values were greater than 0.5, indicating
that these two, frequently measured meteorological variables, tempera-
ture and precipitation, along with day of the year can be used to
distinguish two or three clearly different flood types.

Previous work shows that hydrologic future projections are poten-
tially sensitive to the GCM, RCM, rainfall-runoff model and down-
scaling method used (e.g. Dobler et al. (2012); Wood et al. (2004)).
Here climate model projections were selected based on mean changes
in temperature and precipitation (Section 4), although Figs. 6 and 9 do
not show consistent changes in flood types between the selections
beyond the milder, drier projections showing the least number of flood
events. These differences suggest that selecting projections based on
mean changes in temperature and precipitation may not directly relate

Fig. 8. Clustering of flood types for the Salzach catchment (A), with the individual silhouette values (B). Green stars indicate Type 2/2a, blue circles Type 1, with red diamonds for Type
2b flood events. Only the RR and DOY indicators are shown.

Table 4
Cluster center values for the different discharge magnitudes for Salzach under the historical climate. RR is the 1-day precipitation amount, RRa is the 15-day antecedent precipitation
and Tna is the normalized 5-day antecedent temperature. The values in bold are used for the cluster centers.

Salzach flood types

Q2, SI=0.68 Q10, SI=0.84 Q25, SI=0.74

RR (mm) RRa (mm) Tna DOY RR (mm) RRa (mm) Tna DOY RR (mm) RRa (mm) Tna DOY

Type 1 31 153 0.95 125 35 137 1.4 94 36 146 2.0 84
Type 2 43 232 −0.27 220 48 246 −0.5 215 2a 41 284 −0.5 192

2b 53 272 −0.1 240
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to the changes in flood types, although selecting the mean values
reduces the assumptions on the governing factors for flood events. The
selected indicators assume that the GCMs and RCMs were able to
project future changes in precipitation, while GCMs are known to have
limited skill in capturing factors driving regional precipitation, which
would affect future projections of precipitation, and therefore flood
types in this study (Asadieh and Krakauer, 2015; Merz et al., 2014).
Furthermore, the weather generator assumed no change in autocorre-
lation, or inter-site correlation, rather focusing on changes in pre-
cipitation amounts as well as temperature. Spatial changes in pre-
cipitation can in some instances cause greater changes in discharge
amounts than temporal changes (Perdigão and Blöschl, 2014). Not
changing the autocorrelation might partly explain why the Type 2b
floods saw a larger increase in frequency compared to those with larger
antecedent precipitation (Type 2a). However, future projections in
temperature and precipitation amounts still led to changes in the
dominant flood types in a catchment as well as the flood frequency,
although the range of future flood frequencies and flood types for the
study areas may actually be greater than presented here. A more
detailed study in changing flood types for a particular area should
possibly consider more projections, as well as changes in land use and
other catchment characteristics, as this may also influence future
flooding.

Two approaches were provided to assess changes in the flood types
under four future climate scenarios. These approaches were comple-

mentary to each other as one estimates changes in frequency of the
historical flood types, where the second assesses whether future
precipitation and temperature would lead to (dis)similar flood types
compared to the historical period. Changes in the dominant flood type
can have implications for local land use practices. For example, in the
Ubaye catchment during summer the flood plains are used for farming
and camping, as the historical flood events have occurred during
spring. However, if summer and autumn floods become the dominant
flood type, as projected in Section 5.2.2, this will have implications for
exposure in the area. Changes in the characteristics, as in approach
two, are also important, such as the decrease in the temperature
indicator for the Type 1 floods in the Mw projection, even under a
warmer climate.

Flood types for the historical period may be inherent to the
combination of weather generator and specific rainfall-runoff model,
enforced by historical observational records of precipitation and
temperature. Two flood types were found, Type 1 and 2, which are
similar to Rain-Snow and Short Rain floods respectively as classified in
Merz and Blöschl (2008). Other flood types listed in the previous work,
Snowmelt and Long Rain, were not distinguished through the flood
type classification. Instead, in cases where there were three or more
flood types, the types generally split one of the main clusters, based on
which was the dominant flood type in the catchment. Even when
considering the new flood types for 2070–2099 the Rain-Snow and
Short Rain floods remained the two clear flood types from Merz and

Fig. 9. Approach 1: Number of high discharge events relative to the historical period, split into flood type (blue=Type 1, green=Type 2/2a, red=Type 2b, H=for the historical period).
The horizontal grey box indicates the 99% random sampling range from the historical period. Amounts above 1 indicate an increase in overall flood frequency and below 1 represents a
decrease. The Q2, Q10, Q25 refer to the discharge amount in the historical period. Md, Mw, Wd, and Ww correspond to the projections selected in Fig. 3.

Table 5
Cluster center values for the different discharge magnitudes for Salzach under the historical climate. RR is the 1-day precipitation amount, RRa is the 15-day antecedent precipitation
and Tna is the normalized 5-day antecedent temperature. The values in bold are used for the cluster centers.

Salzach flood types
Q2 Q10 Q25

RR mm RRa mm Tna DOY New Type RR mm RRa mm Tna DOY New Type RR mm RRa mm Tna DOY

(A) Mild, dry Type 1 32 74 1.6 115 40 82 2.1 96 44 95 2.0 92
Type 2 42 94 1.1 265 44 114 1.4 275 47 123 1.9 281

(B) Mild, wet Type 1 109 52 0.6 74 1 113 58 1.2 78 1 101 164 4.4 80
Type 3a 24 115 1.6 160 60 132 1.1 164 2a 65 177 4.5 179
Type 3b 66 87 1.3 167 2
Type 3c 45 113 1.3 193 2b 55 217 4.4 306

(C) Warm, dry Type 1 48 85 2.7 78 58 114 2.7 75 1 62 141 2.8 77
Type 2 2b 57 116 4.6 364

69 103 2.2 237 2c 86 138 1.6 167 2c 80 149 1.7 171
2a 79 132 2.3 256 2a 74 173 2.2 256

(D) Warm, wet Type 1 51 75 2.3 84 56 105 2.7 78 59 135 3.3 79
Type 2a 65 122 2.7 203 74 151 2.8 208 75 186 2.8 212
Type 2b 77 92 3.5 342 118 102 3.7 352 132 92 4.0 352
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Blöschl (2008), even if the characteristics of the flood type were
different. It is possible that a flood type, such as Snowmelt, could
trigger only discharge with shorter return periods in the catchments,
and not generate high discharge levels. The ability of the method to
capture snowmelt floods could be confirmed through future work in a
catchment where these flood types occurred.

While to the authors knowledge there has been little coverage of
changes in future flood types for Alpine catchments, the results found
here are similar to other studies for the two catchments. Hall et al.
(2014) concluded that an increase in future extreme precipitation

events with mean precipitation increases over northern Europe and
decrease in southern areas will results in different changes in flood
frequency between catchments in the future. For the Ubaye catchment,
Saez et al. (2013) hypothesize that future warming could enhance
snowmelt during the spring, although from the results in Section 5.2
this appears to be offset by the decrease in antecedent precipitation.
The increase in temperature in both Fig. 4 and Table 3 is consistent
with future warming in the area (Malet et al., 2007; Rousselot et al.,
2012). For the Salzach, previous work found no clear trend in flood
frequency (Dobler et al., 2011), although the authors commented that

Fig. 10. Clustering of future flood types for the Salzach catchment for the period 2070–2099 per selected projection. In the case of two flood types, green stars indicate Type 2 floods,
blue circles Type 1 floods. In other cases, red diamond and orange squares indicate Type 3 floods, and purple stars indicate a subset of Type 2 floods. In each plot shows the indicator 1-
day rainfall on the x-axis and indicator DOY on the y-axis two. The average SI value is shown the in top right corner.
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higher spring temperatures could lead to more frequency flooding
events in this season. The similarities between this work and previous
studies implies that the even with the limitations of method outlined
above the method produces reasonable results using relatively straight-
forward method.

7. Conclusion

This paper demonstrated a methodology developed for detecting
present and future flood types. Long time series of discharge were
generated using a weather generator coupled with a rainfall-runoff
model to provide sufficient flood events for classification into different
causal types. The types were determined to be sufficiently different
based on the silhouette index. Future climate scenarios were assessed
using bias correction of different RCM climate projections and to train
the weather generator. The methodology was applied in two European
Alpine catchments, Ubaye and Salzach, for both the historical period,
and the future period (2070–2099).

The flood type classification was based on a set of temperature and
precipitation indicators as well as day of the year. In this work, the
selection of indicators was based on correlation with historical
discharge. Our findings showed that the methodology was able to
reliably reproduce the observed flood types for the two catchments.
Care is needed in the selection of the indicator values however, as the
variables used will affect the final flood types.

When looking at the future projections, both study areas showed
potential changes in the distribution of flood types, as well as the types
themselves. For the Ubaye catchment, flood events may shift from
Rain-Snow (Type 1) dominated floods to Short Rain (Type 2), a type
that currently accounts for less than 10% of flood events. Re-clustering
of flood types shows changes in the characteristics of the flood events,
with higher average daily precipitation values and flood events both
later and earlier in the year in the future. For the Salzach catchment,
Short Rain (Type 2) floods may remain the dominant flood type,
although it is possible there is an increase in Rain-Snow floods (Type
1), and overall flood frequency. Re-classifying of the future flood events
for this catchment also found changes in the flood type characteristics
with events occurring throughout the year, and in some instances
particularly higher daily precipitation in spring. Although only a
limited number of climate projections were considered, the results
showed the potential of the methodology developed to assess the full
range of possible future changes in flood types for the catchments.

Therefore, this methodology identifies realistic flood types, and can
be used to assess future changes in flood types. The methodology has
potential to be applied to higher return periods and other catchments
as long as the observational records of precipitation, temperature and
flood events are of good quality and length. Changes in flood types are
an important consideration for future research as the changes will have
an impact on the local social and ecological systems and have
implications for future flood management.
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