
J. Symbolic Computation (1996) 22, 649–664

A Non-standard Temporal Deductive Database
System

JEAN-RAYMOND GAGNÉ† AND JOHN PLAICE†

Département d’informatique, Université Laval,
Ste-Foy (Québec) Canada G1K 7P4

(Received 31 October 1995)

A new temporal deductive database system supporting a non-standard model of time
is introduced. It consists of Non-standard Temporal Datalog (nstl) and Non-standard
Temporal Relational Algebra (nstra). The time line consists of non-standard reals that
are of the form 〈r, z〉, where r ∈ R and z ∈ Z , using the natural order. Each real r
determines a macro-instant, and each pair 〈r, z〉 defines a micro-instant. The set of
macro-instants forms a dense order, thereby allowing different relations to be valid at
different moments, with independent rates of evolution. The micro-instants ensure that
all intervals are closed, thereby simplifying the semantics. At the same time, it becomes
possible to define a discrete memory operator.

The nstl language is an extension of Datalog in which the fact base is augmented
with interval timestamps and in which rules are an extension of generalized Horn clauses
that allow a memory operator “;” and allow timestamped atoms in the body.

The nstra language is a pointwise extension of the relational algebra over the time
line. To do this, three temporal operators are added to the relational algebra.

c© 1996 Academic Press Limited

1. Introduction

One of the key problems in temporal database design has to do with the choice of domains
for time. This problem, commonly referred to as the granularity of time, defines the kind
of temporal information that can be stored in a database and the kinds of operations
that can be applied to this information.

.Wiederhold et al. (1991) showed that a temporal database can easily contain data
based on different granularities (e.g., days, hours, picoseconds, etc.). As a result, they
conclude that these different granularities can only be resolved by using a finest granu-
larity, probably the real number line. Since the real numbers form a dense set, one can
always define a finer granularity if such is needed.

However, databases are not just used for storing information, rather computations
are effected on data therein. The order in which these computations takes place can be
significant, which means that the time line must be able to take them into account.

A question therefore arises: What is the granularity for computation? If we take some

† E-mail: gagne@ift.ulaval.ca, plaice@acm.org

0747–7171/96/110649 + 16 $25.00/0 c© 1996 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82110642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

650 J.-R. Gagné and J. Plaice

positive real-numbered value, then our model is no longer capable of dealing with arbi-
trary granularity. So it would appear that the other possibility is zero. However, it then
becomes difficult to distinguish different states within the same computation.

The solution to this problem comes from non-standard analysis, invented by Newton
and Leibniz in the seventeenth century and formalized by .Robinson (1974). What we need
are positive infinitesimal values that are strictly smaller than any positive real number,
while still strictly greater than 0.

This paper presents a non-standard temporal database system, in which the time line
consists of non-standard reals (.Nelson, 1977; .McLaughlin and Miller, 1992; .Robinson,

.1974), which are, in this case, pairs 〈r, z〉, where r ∈ R and z ∈ Z.
This approach is compatible with that taken in synchronous languages, such as Es-

terel (.Boussinot and De Simone, 1991), lustre (.Halbwachs et al., 1991) and signal

(.Le Borgne et al., 1991), used for the programming of reactive systems. These languages
assume that reactions to input events are instantaneous. Nevertheless, the ordering of
computations within a single instant is of utmost importance.

Similarly, work in hybrid systems, which combine continously changing variables with
variables that change at discrete instants, makes similar suppositions. In fact, the non-
standard approach that we first took in the preliminary version of this paper (.Gagné and

.Plaice, 1995) has been independently developed by .Iwasaki et al. (1995) for the analysis
of hybrid systems.

Choosing our non-standard time line has many advantages. First, we get a dense set of
macro-instants, which allows for the use of any granularity of time. Second, within each
macro-instant, we have available a discrete set of micro-instants. In a certain sense, we
have “discretized” the reals explicitly: the result is that all intervals are both open and
closed, so we can refer to the “previous instant” and the “following instant”, without any
ambiguity.

Any other approach, using some positive real value as an approximation of infinitesimal
values, would truly create a discrete set, losing the dense property of the reals.

The remaining question is how to combine or synchronize data based on unsynchro-
nized granularities. It turns out that this problem has already been studied in the domain
of synchronous languages. In particular, the authors are developing a language called
Blizzard, using non-standard analysis, to furnish the semantics of reactive systems.

Blizzard is a dataflow language, where operators apply to operands in a pointwise
manner, along with an additional memory operator, called before. These operators are
used below to extend the temporal algebra into the nstra.

To develop a deductive database system, we use Orgun and Wadge’s technique of
combining an extension of Datalog (.Orgun and Wadge, 1992), nstl, with an extension
of the temporal algebra, nstra. The basic extension in both formalisms is the addition
of a memory operator, before in nstra and “;” in nstl.

It should be understood that none of the Blizzard operators can refer to the future,
nor can they change the past. So, this approach is well suited to simulating real time,
even though we are working with valid time databases.

This paper presents nstl and nstra, along with their interaction. Section 2 describes
the underlying time domain and Section 3 specifies the syntax of nstl formulae, Horn
rules and programs. Their semantics are given in Section 4, using an appropriate adap-
tation of the perfect-model approach (.Przymusinski, 1988). Section 5 shows that nstl

programs are computable, by defining a revised version of the TP operator, used to com-
pute a non-standard temporal Herbrand model of an nstl program. This model is proven

A Non-standard Temporal Deductive Database System 651

in Section 6 to be the least one. Section 7 presents the Blizzard language, which is used
in Section 8 to extend the relational algebra to nstra. The interaction between nstra

and nstl is also given in this section. Finally, we present our conclusions.

2. Time Domain

We begin by formalizing the concepts of macro-instant and micro-instant, along with
the relationship between the two. These concepts, along with the others that are formal-
ized below, are all summarized by Figure 1.

6

Z

- Rppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
p

ppp
ppp
ppp
pMicro-instant

�
��	

Macro-instant
�

�	
Relevant instant

�
��	bb b bqStart b@@R

Nowb ��	
Figure 1. Time domain.

Definition 2.1. The time domain is the set T = R × Z, endowed with the natural
lexicographic order. Each real r determines a macro-instant and each pair t = 〈r, z〉,
where r ∈ R and z ∈ Z, defines a micro-instant. The two components of 〈r, z〉 are
accessed through projection functions πR and πZ, such that r = πR〈r, z〉 (the real part)
and z = πZ〈r, z〉 (the integer part). A macro-instant r consists of all micro-instants
whose real part is r.

A time domain is only useful if an order can be imposed on that domain. The order
we use is the natural lexicographical order.

Definition 2.2. Let t0 = 〈r0, z0〉 and t1 = 〈r1, z1〉 be two micro-instants in T. Then
t0 ≤ t1 if and only if r0 < r1 or r0 = r1 and z0 ≤ z1.

Once we have an order, the definition for intervals follows automatically.

Definition 2.3. Let t0 and t1 be micro-instants in T. Then [t0, t1] defines an interval
over T: For all t ∈ T such that t0 ≤ t ≤ t1, we have t ∈ [t0, t1]. Any micro-instant t may
also be written [t, t]. An arbitrary interval is normally written as ∆.

We are not interested in modeling all of eternity. Rather, in any given base, we are
interested in a particular subset of the time line. Rather than using some special value 0,
which gives the impression that at some point time was invented, we allow the use of
arbitrarily defined starting and ending points.

652 J.-R. Gagné and J. Plaice

Definition 2.4. The names start and now refer, respectively, to the first and last micro-
instants that are relevant to an application. The interval UT = [start, now], called the
universal set of instants, contains all instants of interest.

To model the valid time of a formula, we need to manipulate sets of intervals, here called
temporal elements. Note that empty temporal elements (empty unions) will correspond
to formulae that are never true.

Definition 2.5. A temporal element I is a finite union of intervals in UT. This set of
intervals is closed under finite applications of union, intersection, and complementation.
With UT as its maximum element, and the empty set as its minimum element, it forms
a Boolean algebra. An interval ∆ ∈ I is maximal if there does not exist another ∆′ ∈ I
such that ∆ ∪∆′ is an interval.

Once temporal elements are defined, it becomes clear that only certain micro-instants—
the relevant micro-instants—are of importance in deriving new information.

Definition 2.6. The relevant micro-instants of an interval [t0, t1] are simply t0 and t1.
The set of relevant micro-instants of a temporal element I is the set

Λ(I) = {t | t is a relevant micro-instant of a maximal interval of I}.

To ensure computability, the set of relevant micro-instants in a given interval must be
finite. Below is a simple statement of when this is true.

Proposition 2.1. Let I ⊆ UT. Then I is a temporal element iff Λ(I) is finite.

A proof can be found in .Gadia (1988).

3. Syntax

Logic programs without any function symbols, i.e. Datalog programs (.Ullman, 1988),
can be regarded as deductive databases. Since Datalog is function-free, all predicates
in a Datalog program are guaranteed to represent finite relations: the domain of any
Herbrand interpretation of the program is finite.

For the purposes of the following definitions, we assume the existence of a finite sig-
nature Σ with constant symbols, predicate symbols (each of a given arity), and with no
function symbols. We also assume the existence of a countably infinite set V of variables.
We write TΣ[V] for the set of terms (including variables) over Σ and AtΣ for the set of
atoms over Σ.

Definition 3.1. Let p ∈ Σ be a predicate symbol, n be the arity of p and x1, . . . , xn be
terms in TΣ[V]. Then p(x1, . . . , xn) is a simple atomic formula (or simple atom). To
simplify the presentation below, p(x1, . . . , xn) will often be abbreviated as p(~x) or even
just as p.

Definition 3.2. Let ∆ be an interval in UT and p a simple atom. Then ∆p is a time-
stamped atom, and ∆ is called a timestamp. The meaning of ∆p is that p is valid during
the interval ∆.

A Non-standard Temporal Deductive Database System 653

Definition 3.3. An nstl atom is either a simple atom or a timestamped atom. An
arbitrary nstl atom is written α.

Definition 3.4. The set of nstl formulae is given by the following grammar:

ϕ ::= α | ¬α | ϕ∨ϕ | ϕ∧ϕ | ϕ;ϕ | (∀X)ϕ

where ϕ stands for an arbitrary nstl formula.
The other logical connectives are composed as usual (ϕ← ψ is equivalent to ϕ∨¬ψ and

(∃X)ϕ is equivalent to ¬(∀X)¬ϕ). Intuitively, ∆p means “p is valid during the interval
∆” and ϕ;ψ means “ϕ is true at some time strictly before ψ is true”.

Definition 3.5. The set of nstl conjunctions is given by the following grammar:

χ ::= α | ¬α | χ∧χ | χ;χ

where χ is an arbitrary nstl conjunction.

In other words, an nstl conjunction is a special case of formula that does not use
disjunction or universal quantifiers.

Definition 3.6. An nstl Horn rule is a formula of the form α ← χ, where α is an
nstl atom and χ is an nstl conjunction.

Definition 3.7. An nstl program is a set of nstl Horn rules.

4. Perfect-model Semantics

The semantics of nstl programs is derived from the standard perfect-model semantics
of ordinary logic programs. To ensure that this is possible, the Herbrand base must be
modified so that it can take into account when predicates are valid. Therefore, facts are
not just ground atoms but, rather, pairs consisting of a temporal element and a formula.

First, let us redefine the notions of Σ-interpretation, validity, models and Herbrand
models in the context of nstl. [See .Lloyd (1987) for a full discussion of ordinary logic
programs and .Przymusinski (1988) for a full treatment of perfect-model semantics.] As
in Section 3, we assume the existence of a function-free signature Σ.

Interpretations of nstl programs must include a temporal element for each ground
atom. Doing so defines the valid time for that formula.

Definition 4.1. An nstl Σ-interpretation A consists of:

1. a non-empty set of constants called dom(A);
2. an element cA ∈ dom(A) for each constant c ∈ Σ;
3. a relation pA ⊆ dom(A)n for each n-ary predicate symbol p ∈ Σ;
4. a temporal element Iα ⊆ UT for each α ∈ AtΣ.

The definition of a Herbrand interpretation is standard.

Definition 4.2. An nstl Herbrand interpretation is a Σ-interpretation for which dom(A)
is the set of all ground atoms of Σ.

654 J.-R. Gagné and J. Plaice

Now comes the interesting part. Facts for nstl are (temporal element, atom) pairs.
Each atom has a valid time, defining when it is true.

Definition 4.3. Let I be a temporal element and α be a ground simple (no timestamp)
atom. Then the pair Iα is an nstl fact.

Definition 4.4. An nstl Herbrand base is a set of nstl facts, one for each ground
simple atom α ∈ AtΣ. This base states when each of these formulae is valid.

Herbrand bases are interesting in general because they have nice simple properties.
These properties are shared by nstl Herbrand bases.

Proposition 4.1. The set of relevant timestamps in an nstl Herbrand base is finite.

Proof. Follows immediately from the fact that the standard Herbrand base is finite. 2

Proposition 4.2. There is an nstl Herbrand base corresponding to each nstl Her-
brand interpretation.

Proof. Let pH be the relation p in the nstl Herbrand interpretation H. We can con-
struct the nstl Herbrand base Hb from an nstl Herbrand interpretation H:

Hb

= {Ip(~x) | p ∈ Σ, ~x ∈ pH and I is the temporal element corresponding to p(~x) ∈ AtΣ}.

Inversely, the nstl Herbrand interpretation H may be constructed from an nstl

Herbrand base Hb if we interpret every n-ary predicate symbol p in Σ by:

pH = {~x | Ip(~x) ∈ Hb}

and for every atom p(~x) ∈ AtΣ, Ip(~x) is equal to the temporal element associated to p(~x)
in H. 2

Since we can either use the nstl Herbrand base or the nstl Herbrand interpretation
without loss of information, we may abuse language and write H in place of Hb.

To simulate real-time and to ensure computability over the entire time line, neither
changing the past nor querying the future is allowed. The past is done and the future
has not yet taken place.

Definition 4.5. Let H be an nstl Herbrand interpretation, t be a micro-instant, and ϕ
be an nstl formula, we define the validity of ϕ in interpretation H at the micro-instant t,
denoted H |=t ϕ as:

H |=t p(~x) iff ∃ Ip(~x) ∈ H such that t ∈ I,
H |=t [t0, t1]ϕ iff t1 ≤ t and (∀t′ ∈ [t0, t1])H |=t′ ϕ,
H |=t ¬ϕ iff H 6|=t ϕ,
H |=t (ϕ ∧ ψ) iff H |=t ϕ and H |=t ψ,
H |=t (ϕ ∨ ψ) iff H |=t ϕ or H |=t ψ,
H |=t (ϕ;ψ) iff H |=t ψ and (∃ t′ < t)H |=t′ ϕ,
H |=t (∀X)ϕ iff for every x ∈ TΣ, H |=t ϕ[X/x],

A Non-standard Temporal Deductive Database System 655

where ϕ[X/x] stands for the substitution of term x for free occurrences of variable X in
formula ϕ.

Definition 4.6. Let P be an nstl program, H be an nstl Herbrand interpretation,
and t be a micro-instant. Then H is a model of P iff for all ϕ in P and for all t ∈ UT,
H |=t ϕ.

The nstl includes negation. The nstra “default” operator (see Section 7), when
translated into nstl explicitly uses negation, which may be interpreted as negation as
failure. The semantics is extended using perfect-model semantics (.Przymusinski, 1988).

As we extended the usual Horn clause admitting negation with serial conjunction (“;”)
and timestamped atoms, we now introduce the notion of the actual part of a body of an
nstl Horn rule.

Definition 4.7. The actual part of an nstl conjunction χ is Υ(χ), defined case by case
as follows:

Υ(p) = {p}, p is an atom,
Υ(∆p) = {p},
Υ(¬p) = {¬p},

Υ(¬∆p) = {¬p},
Υ(χ1 ∧ χ2) = Υ(χ1) ∪Υ(χ2),
Υ(χ1;χ2) = Υ(χ2).

Definition 4.8. The actual part of a body of an nstl Horn rule α← χ is the set Υ(χ).

The semantics of negation as failure can be problematic when recursion occurs through
the use of negation. To avoid this problem, only locally stratified programs are considered
(.Przymusinski, 1988).

The stratification only takes place over a micro-instant, so only the actual part of
bodies of nstl Horn rules are examined. We begin by defining local stratification.

Definition 4.9. Let P be an nstl program. Then P ∗ denotes the ground instantiation
of P (the set of all ground instances of rules in P). Then we construct a directed graph
D(P), whose nodes are atoms in P ∗. The arcs in the graph are defined as follows:

There is an ordinary arc from q to p iff q occurs in the actual part of a body of a
rule in P ∗ whose head contains p.
There is a negative arc from q to p iff ¬q occurs in the actual part of a body of a
rule in P ∗ whose head contains p.

Definition 4.10. Let p and q be ground nstl simple atoms. Then p
+
¹ q iff there is a

directed path from q to p.

Definition 4.11. Let p and q be ground nstl simple atoms. Then p ¹ q iff there is a
directed path from q to p with at least one negative arc.

656 J.-R. Gagné and J. Plaice

Definition 4.12. An nstl program P is locally stratified if and only if the relation “¹”
is well-founded, i.e. it has no infinite sequence of atoms p1, p2, . . . such that p1 ¹ p2 ¹

The perfect models of an nstl program P are defined in terms of a preference order ¿
over the models of P .

Definition 4.13. The expression M ¿ M ′ holds iff for any atom α and any micro-
instant t, if M |=t α and M ′ 6|=t α, then there exists β such that β ¹ α, M 6|=t β
and M ′ |=t β.

Definition 4.14. Let P be an nstl program. Then a perfect model of P is any model
that is minimal with respect to ¿. We write M(P) for the set of perfect models of P .

Below, we assume that entailment includes negation as failure and we only consider
perfect models.

5. The Computation Process of an NSTL Program

The nstl Herbrand base is computed iteratively. The base is computed at each relevant
micro-instant, starting from the base computed in the previous relevant micro-instant.
The process begins at the first relevant micro-instant, with an empty base. The process
finishes with the last relevant micro-instant, and the result is the nstl Herbrand base.
Within each micro-instant, entailment is computed through negation by failure.

5.1. fixpoint computation for a specific micro-instant

In the presentation of fixpoint computation, we make use of the following well-known
theorem (.Tarski, 1955).

Proposition 5.1. (Tarski–Knaster) Let G be a monotone and continuous function.
Then

µG = G(∅)↑ω =
⋃
n≥0

Gn(∅).

The µ operator, when applied to a function G, finds the least fixpoint of this func-
tion, by iteratively calculating X = G0(∅), G1(∅), . . . , Gn(∅), until Gn+1(X) = Gn(X),
meaning that Gn(X) is the least fixpoint of G.

The standard TP operator used for the semantics of logic programs is modified to take
into account the specific micro-instant.

Definition 5.1. Let P be an nstl program, t be a micro-instant and H be an nstl

Herbrand base.

TP,t,H(H) = H ∪ {θα | α← χ ∈ P and θ : V → TΣ and (H ∪H) |=t θχ}.

Definition 5.2. The fixpoint for a micro-instant t is µTP,t,H , where H is the Herbrand
base computed at the previous micro-instant.

A Non-standard Temporal Deductive Database System 657

5.2. computing over the set of all relevant micro-instants

The key to computing for all instants is determining all the potentially relevant micro-
instants, i.e. those instants in which facts might be added to or modified in the Herbrand
base. These are computed using the ΛP (H) operator, which is an extension of the Λ op-
erator.

Definition 5.3. The set of potentially relevant micro-instants for an nstl rule ϕ
is ΛH(ϕ).

ΛH(p) = ∪{Λ(I) | ∃θ : V → TΣ and Ipθ ∈ H},
ΛH([t0, t1]p) = {t1},

ΛH(¬ϕ) = ΛH(ϕ),
ΛH(ϕ ∧ ψ) = ΛH(ϕ) ∪ ΛH(ψ),

ΛH(ϕ;ψ) = ΛH(ψ) ∪ {t+ 〈0, 1〉 | t ∈ ΛH(ϕ)},
ΛH(p← χ) = ΛH(χ),

ΛH([t0, t1]p ← χ) = {t0, t1} ∪ [t0, t1] ∩ ΛH(χ)

where the I correspond to temporal elements. Rule ΛH([t0, t1]p ← χ) corresponds to
asserting facts.

Definition 5.4. The set of potentially relevant micro-instants for an nstl program P
for a Herbrand base H is given by

ΛP (H) =
⋃
ϕ∈P

ΛH(ϕ).

Definition 5.5. An nstl program successively applies, in order, the fixpoint calcula-
tions for all relevant micro-instants:

FP =
⋃

i=0,...,|M |
FP,i(∅),

where

FP,0(H) = H,

FP,i(H) = µTP,Mi,(FP,i−1(H)),

M = {start} ∪ [start, now] ∩ ΛP ({UT} ×AtΣ).

This version of the function F computes a fixpoint for a micro-instant and then ad-
vances to the the next relevant micro-instant. This process begins with the first relevevant
micro-instant, start, and terminates after the last relevant micro-instant, now.

6. Results about NSTL

Remember thatM(P) stands for the set of perfect models of a program P . By defini-
tion we have: for all A ∈ M(P), A |= P , where |= is the stratified entailment defined in
Section 4.

658 J.-R. Gagné and J. Plaice

Theorem 6.1. Let P be a nstl program for which the directed graph D(P) is acyclic
(Horn rules are not recursive). Among the nstl Herbrand interpretations that are models
of P , there is a least nstl Herbrand perfect model LP defined by:

LP = {Ip(x1, . . . , xn) | x1, . . . , xn ∈ TΣ and I ⊆ UT and (∀t ∈ I)P |=t p(x1, . . . , xn)}.

Proof. Let α← β1∧ . . . ; . . .∧βi∧ . . . ; . . .∧βm be an nstl formula in P . Should m = 0,
then this is simply a fact. We rewrite this formula in a more practical form as

α← βk11 . . . βkmm ,

where each ki denotes the number of “;” to the right of the βi.
So, let X1, . . . , Xn be the variables in α and the βi. Then LP is a perfect model of P

can be written as follows:

LP |= α← βk11 . . . βkmm .

This holds if for all t ∈ UT,

LP |=t ∀X1 . . . ∀Xn(βk11 . . . βk1m → α).

This last statement holds if for all sequences of micro-instants

tk1 < tk2 < · · · < tki < · · · < tkm = t,

where each tki ∈ UT, and for all ground terms x1, . . . , xn, then

LP |=tki β
ki
i [X1/x1, . . . , Xn/xn], i = 1, . . . ,m ⇒ LP |=t α[X1/x1, . . . , Xn/xn] ∈ LP .

This last implication can be translated into

(∃Iβi)Iβiβi[X1/x1, . . . , Xn/xn] ∈ LP and tki ∈ Iβi , i = 1, . . . ,m
⇒ (∃Iα)Iαα[X1/x1, . . . , Xn/xn] ∈ LP and t ∈ Iα;

which holds if

P |=tki β
ki
i [X1/x1, . . . , Xn/xn], i = 1, . . . ,m ⇒ P |=t α[X1/x1, . . . , Xn/xn];

which is true, since P |=t ((β1 ∧ . . . ; . . . ∧ βi ∧ . . . ; . . . ∧ βm)→ α)[X1/x1, . . . , Xn/xn].
Hence LP is a perfect model of P . We must still show that it is the least model.
Let A ∈ M(P) be an arbitrary perfect model of P and HLP be the nstl Herbrand

interpretation corresponding to the nstl Herbrand base LP . Since A is a model of all
formulae that follow from P , it must also be a model of all formulae in HLP . Since
formulae in HLP are all ground simple nstl atoms, it follows that LP ⊆ A.

The set M(P) is closed under model-intersection, so uM(P) = LP . 2

Theorem 6.2. The set uM(P) is computable and equal to FP .

Proof. We first prove that uM(P) is closed under intersection. This is true for ordinary
logic programs (.Lloyd, 1987). What is different here is the presence of temporal elements
associated to each atom. But Definition 2.5 tells us that the intersection of temporal
elements is itself a temporal element. It follows that the same holds true for perfect
models of P .

We next prove that FP is a fixpoint. We do this by proving that for all i ≥ 0, Fp,i is a
fixpoint.

A Non-standard Temporal Deductive Database System 659

Case 1: Fp,0(H) = H is a fixpoint.
Case 2: Suppose that Fp,i−1(H), i ≥ 1. We wish to prove that Fp,n(H) is also a fixpoint:

TP,Mi,(Fp,i(H))(∅) = TP,Mi,(TP,Mi,(Fp,i−1(H))(∅)↑ω)(∅)
= TP,Mi,(Fp,i−1(H))(∅) ↑ω

= Fp,i(H).

So FP is a fixpoint. Now we must prove that it is the least fixpoint.
Suppose for contradiction that FP is not the least fixpoint. Then there must be α ∈ FP

such that P 6|= α. However, α ∈ FP implies that there exists X such that α ∈ FP,X(∅)
(by definition). Since FP,X(∅) ⊆ FP , we have α ∈ FP , a contradiction. Therefore FP is
the least fixpoint, hence

FP = LP = uM(P).

Now we must show that FP is finite and computable. This is done by showing that for
all i ≥ 0, Fp,i(H) is finite and computable.

We first show by induction that if H is finite, then for all i ≥ 0, FP,i(H) is finite.
Case 1: Fp,0(H) = H.
Case 2: Suppose that Fp,i−1(H) is finite. We wish to prove that Fp,i(H) is finite:

Fp,i(H) = TP,Mi,(Fp,i−1(H))(∅) ↑ω,

which is finite.
Since according to the definition of FP , the initial Herbrand base is ∅, and all subse-

quent bases are the result of applying an Fp,i, it follows that all of the Fp,i(H) in the
definition of FP are finite.

Since the cardinality of M is finite and µXTP,t(H) is computable, it follows that FP
is computable. 2

7. Blizzard

The basis for the work below are the primitives of Blizzard, a language invented to
express the semantics of timestamped dataflow programming, for the purposes of reactive
systems. In Blizzard, discrete events take place over a dense time line. Here, variables
can be defined everywhere on the non-standard time line, but should only change a finite
number of times in a given closed interval.

Let V be any set of values. Let UT = [start ,now] be the time domain as defined in
Section 2. A subset T of UT is called a date set. A flow X on V dated by UT is a pair
(TX , vX), where TX is a date set and vX : TX → V .

It is important to note that a flow can be finite, even empty. Furthermore, if X =
(TX , vX) and t 6∈ TX , then X has no value at time t.

7.1. operations on flows

Let X = (TX , vX) be a flow on VX , Y = (TY , vY) be a flow on VY and, for each i,
Xi = (TXi , vXi) be a flow on VXi .

660 J.-R. Gagné and J. Plaice

Table 1. Data operations.

a = 1 2 4 3 2
b = 3 5 6 7
a + b = 4 9 9

Table 2. Default.

a = 1 2 3 2
b = 3 6 7
a default b = 1 2 3 6 2

constants

Let k ∈ V be a constant. Then k is a flow on V defined by:

TZ = {start− 〈0, 1〉},
vZ(t) = k.

The value k is available “before the beginning of time”.

data operations

Let f : VX1 × · · · × VXn → VZ be a mapping. Then Z = f(X1, . . . , Xn) is a flow on VZ
defined by:

TZ =
⋂

i=1,...,n

TXi ,

vZ(t) = f
(
vX1(t), . . . , vXn(t)

)
.

At any instant, an operation is only applied to its operands if each of the operands is
available exactly at that instant. Should one of the operands not be available, then no
operation is made and the available operands disappear into cyberspace.

For the purposes of the relational algebra, the operations ∩, ∪, ×, −, πX , σF , sumx,
avgx, count, maxx and minx are all considered mappings.

default

Z = X default Y is the flow (TZ , vZ) on VX ∪ VY defined by:

TZ = TX ∪ TY ,

vZ(t) =
{
vX(t) if t ∈ TX ,
vY (t) if t ∈ TY − TX .

If only one value arrives at time t, then Z produces this value; if two values arrive
together, then Z produces the X.

A Non-standard Temporal Deductive Database System 661

Table 3. Memory.

a = 1 2 4 3 2
b = 3 5 6 7
a before b = 2 3 3

Table 4. Memory shift.

a = 1 2 4 3 2
b = 3 5 6 7
a before a = 1 2 4 3

memory

Z = X before Y is the flow (TZ , vZ) on VX defined by:

TZ =
{ {

t ∈ TY | min(TX) < t
}

if TX 6= ∅,
∅ otherwise,

vZ(t) = vX
(
sup{t′ ∈ TX | t′ < t}

)
.

If Y produces a value at time t, then Z produces at time t the last value produced by X
strictly before t. Should X never have produced a value before t, there is no input.

time-stamp filtering

Z = X | Y is the flow (TZ , vZ) on VX defined by:

TZ = TX ∩ TY ,
vZ(t) = vX(t).

The flow Z produces those values of X that are simultaneous with values of Y .

value filtering

Z = ϕFX is the flow (TZ , vZ) on VX defined by:

TZ =
{
t ∈ TX | vX(t) ∈ F

}
,

vZ(t) = vX(t).

If a value arrives at time t, then Z produces it only if it is true, otherwise it is discarded.

8. Interpreting Queries

Let A be an atom of the form p(e1, . . . , en), where p is a predicate symbol and all
the ei are terms. Formulae of the form [t0, t1]presentp and [t0, t1]A are called canonical
terms. The idea is that [t0, t1]A states that A is satisfied from time t0 to time t1. As for
[t0, t1]presentp, it states that the predicate p is present from time t0 to time t1, even
if there may be no terms ei for which p(e1, . . . , en) is satisfied: presentp is necessary to
distinguish instants in which no information about p is available and instants where p is
present but never satisfied.

662 J.-R. Gagné and J. Plaice

Table 5. Time-stamp filtering.

a = 1 2 4 3 2
b = 3 5 6 7
a | b = 1 4 2

Table 6. Value filtering.

a = 1 2 4 3 2
ϕ{2,3}a = 2 3 2

The semantics of nstl is based on the Herbrand universe. For a given program P , the
Herbrand universe of P is written UP , which should be finite. A non-standard temporal
interpretation A of P assigns each predicate symbol used in P a partial mapping from
the collection of instants to finite relations over UP . Let Pred be the set of all predicate
symbols appearing in P . Then

A ∈
[
Pred →

⋃
n≥0

[
T⇀ P(UnP)

]]
,

where [X → Y] means the set of all total functions from X to Y ; [X ⇀ Y] the set of
all partial functions from X to Y ; Xn the n-fold Cartesian product of X and P(X) the
powerset of X.

Given an nstl program db (a non-standard temporal deductive database), a nstra

expression contains only those predicate symbols used in db and terms from the Herbrand
universe of db. Let E be an nstra relation: then [[E]](db) is the denotation of E with
respect to db. Therefore,

[[E]] ∈
[
DB →

⋃
n≥0

[
T⇀ P(UnP)

]]
,

where DB is the set of nstl programs and U is the set of ground terms of the non-
standard temporal logic. The definitions of the denotations of each kind of nstra ex-
pression are as follows.

[[p]](db) =
(
uM(db)

)
(p) default

(
∅ before

((
uM(db)

)
(presentp)

))
[[51E]](db) =51[[E]](db)

[[E 52 E
′]](db) = [[E]](db)52 [[E′]](db)

where p is a predicate symbol; 51 is a unary nstra operator (ϕF , πX , σF , sumx, avgx,
count, maxx and minx); and 52 is a binary nstra operator (default, before, |, ∩, ∪,
× and (−)).

Since nstra works at the relation level, and nstl works at the tuple level, there is no
need for a direct equivalence between nstra expressions and nstl programs. Neverthe-
less, nstl has an expressive power so similar to nstra that the intensional definition of
relations, i.e. nstl programs, may be elaborated with the following guideline in mind:

A Non-standard Temporal Deductive Database System 663

nstra nstl Horn clauses

ϕ{true}(A) A(true) A(false) may be needed elsewhere
A | B A(~x), B the usual conjunction
A defaultB C(~x) :−A(~x). either A or

C(~x) :−¬A,B(~x). B is true
A beforeB A(~x);B we are looking for instances of A

Since the “default” operator is a switch, it must be translated into an intermediate
predicate C.

The “;” operator is a logical serial operator meaning that “A;B” is true at time t iff B
is true at time t and A is true at a time t′ < t.

The implicit handling of presentp in nstra must be explicit in nstl so the program-
mer must be able to deal with this situation.

Below, we present an example in which the choice of time domain has major impact
on the semantics of the example. Consider the following three nstra equations:

hasAppearedR = R before true;
hasAppearedQ = hasAppearedR before true;
on = hasAppearedR and not hasAppearedQ;

which correspond to the three following nstl rules:

hasAppearedR :- R ; true.
hasAppearedQ :- hasAppearedR ; true.
on :- hasAppearedR, not hasAppearedQ.

If the time domain is discrete, then the equations ensure that on becomes true the in-
stant following the first appearance of R. On the other hand, if we reduce the granularity
to zero, then the program has no meaning, since the before operator is not well-defined
over the real domain. However, using an infinitesimal granularity, as in this paper, al-
lows us to give meaning to such programs without having to limit the granularity of
databases. In this particular instance, the on relation is valid over one micro-instant, the
one immediately following the first micro-instant at which R is valid.

9. Discussion

We have defined a temporal database system that supposes a non-standard time line.
It is composed of a logic, nstl, essentially Datalog with an additional operator, “;”,
and of nstra, the relational algebra with three temporal operators.

Queries are made in nstra, which is capable of applying aggregate operations on
results provided by the deductive database written in nstl. The temporal operations
can be used to make queries about relations with different rates of validity.

The limitation of the current system is that the deductive system cannot make compu-
tations for the future. To do this would require some sort of delay operator; this problem
is currently being looked at.

664 J.-R. Gagné and J. Plaice

Acknowledgements

We would like to thank André Arnold, who came up with the basic primitives in
Blizzard. We would also like to thank one of the referees, who forced us to come up
with an intuitive explanation for non-standard time.

References

Boussinot, P., De Simone, R. (1991). The Esterel language. Proc. IEEE, 79(9), 1293–1304.
Gadia, S.K. (1988). A homogeneous relational model and query languages for temporal databases. ACM

Transactions on Database Systems, 13(4), 418–448.
Gagné, J.-R., Plaice, J. (1995). A non-standard temporal deductive database system. In Executable

Temporal Logics: Working Notes. Workshop of IJCAI 1995. Los Altos, CA: AAAI.
Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D. (1991). The synchronous data flow programming

language lustre. Proc. IEEE, 79(9), 1305–1320.
Iwasaki, Y., Farquhar, A., Saraswat, V., Bobrow, D., Gupta, V. (1995). Modeling time in hybrid systems:

How fast is “instantaneous”? In Proc. IJCAI 1995, pp. 1773–1780. Los Altos, CA: AAAI.
Lloyd, F.W. (1987). Foundations of Logic Programming, 2nd edition. Berlin: Springer-Verlag.
McLauglin, W.I., Miller, S.L. (1992). An epistemological use of nonstandard analysis to answer Zeno’s

objections against motion. Synthese, 92, 371–384.
Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American

Mathematical Society, 83(7), 1165–1198.
Orgun, M.A., Wadge, W.W. (1992). A relational algebra as a query language for Temporal Datalog, In

Proc. DEXA’92, Database and Expert Systems Appplications, pp. 276–281. Berlin: Springer-Verlag.
Le Borgne, M., Le Guernic, P., Gautier, T., Le Maire, C. (1991). Programming real-time applications

with signal. Proc. IEEE, 79(9), 1321–1336.
Przymusinski, T.C. (1988). On the declarative semantics of deductive databases and logic programs.

In Minker, J., (ed.), Deductive Databases and Logic Programming, pp. 193–216. Los Altos, CA:
Morgan Kaufmann.

Robinson, A. (1974). Non-standard analysis, revised edition. Amsterdam: North-Holland.
Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathe-

matics, 5, 285–309.
Ullman, J.D. (1988). Principles of Database and Knowledge-Base Systems, volume 1. Rockville, MD:

Computer Science Press.
Wiederhold, G., Jajodia, S., Litwin, W. (1991). Dealing with granularity of time in temporal databases.

In Andersen, R., Bubenko, J.A. jr, Sølvberg, A., (eds), Advanced Information Systems Engineering,
pp. 124–140. Berlin: Springer-Verlag, LNCS series.

