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a b s t r a c t

A directed dominating set in a directed graph D is a set S of vertices of V such that
every vertex u ∈ V (D) \ S has an adjacent vertex v in S with v directed to u. The directed
domination number of D, denoted by γ (D), is the minimum cardinality of a directed
dominating set in D. The directed domination number of a graph G, denoted by Γd(G), is
the maximum directed domination number γ (D) over all orientations D of G. The directed
domination number of a complete graph was first studied by Erdös [P. Erdös, On Schütte
problem, Math. Gaz. 47 (1963) 220–222], albeit in disguised form. The authors [Y. Caro,
M.A. Henning, A Greedy partition lemma for directed domination, Discrete Optim. 8 (2011)
452–458] recently extended this notion to directed domination of all graphs. In this paper
we continue this study of directed domination in graphs. We show that the directed
domination number of a bipartite graph is precisely its independence number. Several
lower and upper bounds on the directed domination number are presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An asymmetric digraph or oriented graph D is a digraph that can be obtained from a graph G by assigning a direction to
(that is, orienting) each edge of G. The resulting digraph D is called an orientation of G. Thus if D is an oriented graph, then for
every pair u and v of distinct vertices ofD, atmost one of (u, v) and (v, u) is an arc ofD. A directed dominating set, abbreviated
DDS, in a directed graph D = (V , A) is a set S of vertices of V such that every vertex in V \ S is dominated by some vertex
of S; that is, every vertex u ∈ V \ S has an adjacent vertex v in S with v directed to u. Every digraph has a DDS since the
entire vertex set of the digraph is such a set. The directed domination number of a directed graph D, denoted by γ (D), is the
minimum cardinality of a DDS in D. A DDS of D of cardinality γ (D) is called a γ (D)-set. Directed domination in digraphs is
well studied (cf. [2,3,7–9,14,17,20,25,26]). We define the lower directed domination number of a graph G, denote γd(G), to be
the minimum directed domination number γ (D) over all orientations D of G; that is,

γd(G) = min{γ (D) | over all orientations D of G}.

The upper directed domination number, or simply the directed domination number, of a graph G, denoted by Γd(G), is defined
as the maximum directed domination number γ (D) over all orientations D of G; that is,

Γd(G) = max{γ (D) | over all orientations D of G}.
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1.1. Motivation

The directed domination number of a complete graph was first studied by Erdös [13] albeit in disguised form. In 1962,
Schütte [13] raised the question of given any positive integer k > 0, does there exist a tournament Tn(k) on n(k) vertices in
which for any set S of k vertices, there is a vertex u which dominates all vertices in S. Erdös [13] showed, by probabilistic
arguments, that such a tournament Tn(k) does exist, for every positive integer k. The proof of the following bounds on the
directed domination number of a complete graph are along identical lines to that presented by Erdös [13]. This result can
also be found in [26]. Throughout this paper, log is to the base 2 while ln denotes the logarithm in the natural base e.

Theorem 1 (Erdös [13]). For every integer n ≥ 2, log n − 2 log(log n) ≤ Γd(Kn) ≤ log(n + 1).

The authors [6] extended this notion of directed domination in a complete graph to directed domination of all graphs.
In this paper, we continue this study of directed domination in graphs. In a sense, this notion of directed domination in
graphsmeasures how ‘‘bad’’ an orientation of an undirected graph can be in terms of the directed domination number of the
orientation. This concept of the directed domination number of a graph has a similar flavor to that of the oriented chromatic
number which is very well studied in the literature.

1.2. Notation

For notation and graph theory terminology we in general follow [21,28]. Specifically, let G be a graph with vertex set
V (G) of order n(G) = |V (G)| and edge set E(G) of size m(G) = |E(G)|, and let v be a vertex in V . The open neighborhood of
v is NG(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is NG[v] = {v} ∪ NG(v). If the graph G is clear from
context, we simply write V , E, n,m,N(v) and N[v] rather than V , E, n,m,NG(v) and NG[v], respectively. For a set S ⊆ V ,
the subgraph induced by S is denoted by G[S]. If A and B are subsets of V (G), we let [A, B] denote the set of all edges between
A and B in G. We denote the diameter of G by diam(G).

We denote the degree of v in G by dG(v), or simply by d(v) if the graph G is clear from context. The minimum degree
among the vertices of G is denoted by δ(G), and the maximum degree by ∆(G). The maximum average degree in G, denoted
by mad(G), is defined as the maximum of the average degrees taken over all subgraphs H of G, that is,

mad(G) = max
H⊂G


2|E(H)|

|V (H)|


.

The parameter γ (G) denotes the domination number of G. The parameters α(G) and α′(G) denote the (vertex)
independence number and the matching number, respectively, of G, while χ(G) and χ ′(G) denote the chromatic number and
edge chromatic number, respectively, of G. The covering number of G, denoted by β(G), is the minimum number vertices that
covers all the edges of G. The clique number of G, denoted by ω(G), is the maximum cardinality of a clique in G.

A vertex v in a digraphDout-dominates, or simply dominates, itself aswell as all verticesu such that (v, u) is an arc ofD. The
out-neighborhood of v, denoted byN+(v), is the set of all vertices u adjacent from v inD; that is,N+(v) = {u | (v, u) ∈ A(D)}.
The out-degree of v is given by d+(v) = |N+(v)|, and themaximumout-degree among the vertices ofD is denoted by∆+(D).
The in-neighborhood of v, denoted byN−(v), is the set of all vertices u adjacent to v inD; that is,N−(v) = {u | (u, v) ∈ A(D)}.
The in-degree of v is given by d−(v) = |N−(v)|. The closed in-neighborhood of v is the setN−

[v] = N−(v)∪{v}. Themaximum
in-degree among the vertices of D is denoted by ∆−(D).

A hypergraph H = (V , E) is a finite set V of elements, called vertices, together with a finite multiset E of subsets of V ,
called edges. A k-edge inH is an edge of size k. The hypergraphH is said to be k-uniform if every edge ofH is a k-edge. A subset
T of vertices in a hypergraph H is a transversal (also called vertex cover or hitting set in many papers) if T has a nonempty
intersection with every edge of H . The transversal number τ(H) of H is the minimum size of a transversal in H . For a digraph
D = (V , E), we denote by HD the closed in-neighborhood hypergraph, abbreviated CINH, of D; that is, HD = (V , C) is the
hypergraph with vertex set V and with edge set C consisting of the closed in-neighborhoods of vertices of V in D.

2. Observations

We show first that the lower directed domination number of a graph is precisely its domination number.

Observation 1. For every graph G, γd(G) = γ (G).

Proof. Let S be a γ (G)-set and let D be an orientation obtained from G by directing all edges in [S, V \ S] from S to V \ S and
directing all other edges arbitrarily. Then, S is a DDS of D, and so γd(G) ≤ γ (D) ≤ |S| = γ (G). However if D is an orientation
of a graph G such that γd(G) = γ (D), and if S is a γ (D)-set, then S is also a dominating set of G, and so γ (G) ≤ |S| = γd(G).
Consequently, γd(G) = γ (G). �

In view of Observation 1, it is not interesting to ask about the lower directed domination number, γd(G), of a graph
G since this is precisely its domination number, γ (G), which is very well studied. We therefore focus our attention on the
(upper) directed domination number of a graph. As a consequence of Theorem 1, we establish a lower bound on the directed
domination number of an arbitrary graph.
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Observation 2. For every graph G on n vertices, Γd(G) ≥ log n − 2 log(log n).

Proof. Let D be an orientation of the edges of a complete graph Kn on the same vertex set as G such that Γd(Kn) = γ (D). Let
DG be the orientation of G induced by arcs of D corresponding to edges of G. Then, Γd(G) ≥ γ (DG) ≥ γ (D) = Γd(Kn). The
desired lower bound now follows from Theorem 1. �

Observation 3. If H is an induced subgraph of a graph G, then Γd(G) ≥ Γd(H).

Proof. Let G = (V , E) and let U = V (H). Let DH be an orientation of H such that Γd(H) = γ (DH). We now extend the
orientation DH of H to an orientation D of G by directing all edges in [U, V \ U] from U to V \ U and directing all edges with
both ends in V \ U arbitrarily. Then, Γd(G) ≥ γ (D) ≥ γ (DH) = Γd(H). �

Observation 4. If H is a spanning subgraph of a graph G, then Γd(G) ≤ Γd(H).

Proof. Let D be an arbitrary orientation of G, and let DH be the orientation of H induced by D. Since adding arcs cannot
increase the directed domination number, we have that γ (D) ≤ γ (DH). This is true for every orientation of G. Hence,
Γd(G) ≤ Γd(H). �

Hakimi [19] proved that a graph G has an orientation D such that ∆+(D) ≤ k if and only if mad(G) ≤ 2k. Hence if G is a
graph and k is chosen so that 2(k − 1) < mad(G) ≤ 2k, then G has an orientation D such that ∆+(D) ≤ k = ⌈mad(G)/2⌉.
We state this as an observation.

Observation 5 ([19]). Every graph G has an orientation D such that ∆+(D) ≤ ⌈mad(G)/2⌉.

3. Bounds

In this section, we establish bounds on the directed domination number of a graph.We first present lower bounds on the
directed domination number of a graph.

Theorem 2. Let G be a graph of order n. Then the following holds.

(a) Γd(G) ≥ α(G) ≥ γ (G).
(b) Γd(G) ≥ n/χ(G).
(c) Γd(G) ≥ ⌈(diam(G) + 1)/2⌉.
(d) Γd(G) ≥ n/(⌈mad(G)/2⌉ + 1).

Proof. Since every maximal independent set in a graph is a dominating set in the graph, we recall that γ (G) ≤ α(G) holds
for every graph G. To prove that α(G) ≤ Γd(G), let A be a maximum independent set in G and let D be the digraph obtained
from G by orienting all arcs from A to V \ A and orienting all arcs in G[V \ A], if any, arbitrarily. Since every DDS of D
contains A, we have γ (D) ≥ |A|. However the set A itself is a DDS of D, and so γ (D) ≤ |A|. Consequently, Γd(G) ≥ γ (D) =

|A| = α(G). This establishes Part (a). Parts (b) and (c) follows readily from Part (a) and the observations that α(G) ≥ n/χ(G)
and α(G) ≥ ⌈(diam(G) + 1)/2⌉. By Observation 5, there is an orientation D of G such that ∆+(D) ≤ ⌈mad(G)/2⌉. Let S be
a γ (D)-set. Then, V \ S ⊆ ∪v∈S N+(v), and so n − |S| = |V \ S| ≤


v∈S d

+(v) ≤ |S| · ∆+(D), whence γ (D) = |S| ≥

n/(∆+(D) + 1) ≥ n/(⌈mad(G)/2⌉ + 1). This establishes Part (d). �

We remark that since mad(G) ≤ ∆(G) for every graph G, as an immediate consequence of Theorem 2(d) we have that
Γd(G) ≥ n/(⌈∆(G)/2⌉ + 1).

Next we consider upper bounds on the directed domination number of a graph. The following lemma will prove to be
useful.

Lemma 3. Let G = (V , E) be a graph and let V1, V2, . . . , Vk be subsets of V , not necessarily disjoint, such that ∪
k
i=1 Vi = V (G).

For i = 1, 2, . . . , k, let Gi = G[Vi]. Then,

Γd(G) ≤

k
i=1

Γd(Gi).

Proof. Consider an arbitrary orientation D of G. For each i = 1, 2, . . . , k, let Di be the orientation of the edges of Gi induced
by D and let Si be a γ (Di)-set. Then, Γd(Gi) ≥ γ (Di) = |Si| for each i. Since the set S = ∪

k
i=1 Si is a DDS of D, we have that

γ (D) ≤ |S| ≤
k

i=1 |Si| ≤
k

i=1 Γd(Gi). Since this is true for every orientation D of G, the desired upper bound on Γd(G)
follows. �

As a consequence of Lemma 3, we have the following upper bounds on the directed domination number of a graph.

Theorem 4. Let G be a graph of order n. Then the following holds.
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(a) Γd(G) ≤ n − α′(G).
(b) If G has a perfect matching, then Γd(G) ≤ n/2.
(c) Γd(G) ≤ n with equality if and only if G = K n.
(d) If G has minimum degree δ and n ≥ 2δ, then Γd(G) ≤ n − δ.
(e) Γd(G) = n − 1 if and only if every component of G is a K1-component, except for one component which is either a star or a

complete graph K3.

Proof. (a) Let M = {u1v1, u2v2, . . . , utvt} be a maximum matching in G, and so t = α′(G). For i = 1, 2, . . . , t , let
Vi = {ui, vi}. If n > 2t , let (Vt+1, . . . , Vn−2t) be a partition of the remaining vertices of G into n − 2t subsets each consisting
of a single vertex. By Lemma 3, Γd(G) ≤

n−t
i=1 Γd(Gi) = t + (n − 2t) = n − t = n − α′(G). Part (b) is an immediate

consequence of Part (a). Part (c) is an immediate consequence of Part (a) and the observation that α′(G) = 0 if and only if
G = K n.

(d) It is well known (see, for example, [4, pp. 87]) that if G has n vertices and minimum degree δ with n ≥ 2δ, then
α′(G) ≥ δ. Hence by Part (a) above, Γd(G) ≤ n − δ.

(e) Suppose that Γd(G) = n − 1. Then by Part (a) above, α′(G) = 1. However every connected graph F with α′(F) = 1
is either a star or a complete graph K3. Hence, either G is the vertex disjoint union of a star and isolated vertices or of a
complete graph K3 and isolated vertices. �

4. Relation to other parameters

We establish next that the directed domination number of a bipartite graph is precisely its independence number. For
this purpose, recall that König [24] and Egerváry [12] showed that if G is a bipartite graph, then α′(G) = β(G). Hence by
Gallai’s Theorem [15], if G is a bipartite graph of order n, then α(G) + α′(G) = n.

Theorem 5. If G is a bipartite graph, then Γd(G) = α(G).

Proof. Since G is a bipartite graph, we have that n − α′(G) = α(G). Thus by Theorems 2(a) and 4(b), we have that
α(G) ≤ Γd(G) ≤ n − α′(G) = α(G). Consequently, we must have equality throughout this inequality chain. In particular,
Γd(G) = α(G). �

The upper domination number Γ (G) of a graph G is the maximum cardinality of a minimal dominating set in G. Cheston
and Fricke [10] and Jacobson and Peters [23] proved a similar result to Theorem 5 for the upper domination number of a
graph. Hence for the class of bipartite graphs G, we have that Γd(G) = Γ (G). A natural question is whether there is any
further relationship between the upper domination number Γ and the (upper) directed domination number Γd.

However in general the difference Γd(G) − Γ (G) can be made arbitrary large, as can the difference Γ (G) − Γd(G). For
example, if G = Kn, then Γ (G) = 1 but by Theorem 1, we have Γd(G) ≥ log n − 2 log(log n). Hence for n sufficiently large,
Γd(G) − Γ (G) can be made arbitrary large. On the other hand, let G be obtained from two complete graphs Kn by adding a
perfect matching M between the two cliques. Then, Γ (G) = n. Taking H = 2Kn to be the spanning subgraph of G obtained
from G by deleting the edges ofM , we have by Theorem 1 and Observation 4 that Γd(G) ≤ Γd(H) ≤ 2 log(n + 1). Hence for
n sufficiently large, Γ (G) − Γd(G) can be made arbitrary large.

The following result establishes an upper bound on the directed domination of a graph in terms of its independence
number and chromatic number.

Theorem 6. For every graph G, we have Γd(G) ≤ α(G) · ⌈χ(G)/2⌉.

Proof. LetG have order n. Ifχ(G) = 1, thenG is the empty graph, K n and soΓd(G) = n = α(G), while ifχ(G) = 2, thenG is a
bipartite graph, and so by Theorem5,Γd(G) = α(G). In both cases,α(G) = α(G)·⌈χ(G)/2⌉, and soΓd(G) = α(G)·⌈χ(G)/2⌉.
Hencewemay assume thatχ(G) ≥ 3. Ifχ(G) = 2k for some integer k ≥ 2, then letV1, V2, . . . , V2k denote the color classes of
G. For i = 1, 2, . . . , k, letGi be the subgraphG[V2i−1∪V2i] ofG induced by V2i−1 and V2i and note thatGi is a bipartite graph. By
Theorem5,Γd(Gi) = α(Gi) ≤ α(G) for all 1, 2, . . . , k. Hence by Lemma 3,Γd(G) ≤

k
i=1 Γd(Gi) ≤ kα(G) = α(G)·⌈χ(G)/2⌉,

as desired. Ifχ(G) = 2k+1 for some integer k ≥ 1, then letV1, V2, . . . , V2k+1 denote the color classes ofG. For i = 1, 2, . . . , k,
let Hi be the subgraph of G induced by V2i−1 and V2i and note that Hi is a bipartite graph. Further let Hk+1 = G[V2k+1], and so
Hk+1 is an empty graph on |V2k+1| ≤ α(G) vertices. By Lemma3,Γd(G) ≤

k+1
i=1 Γd(Hi) ≤ (k+1)α(G) = α(G)·⌈χ(G)/2⌉. �

As shown in the proof of Theorem 6, the upper bound of Theorem 6 is always attained if χ(G) ≤ 2. We remark that if
χ(G) = 3 or χ(G) = 4, then the upper bound of Theorem 6 is achievable by taking, for example, G = rKt where t ∈ {3, 4}
and r is some positive integer. In this case, χ(G) = t and Γd(G) = 2r = α(G) · ⌈χ(G)/2⌉.

Theorem 7. If G is a graph of order n, then Γd(G) ≤ n − ⌊χ(G)/2⌋.

Proof. If χ(G) = 1, then the bound is immediate since Γd(G) ≤ n by Theorem 4(c). Hence we may assume that
χ(G) = k ≥ 2. Let V1, V2, . . . , Vk denote the color classes of G. By the minimality of the coloring, there is an edge between
every two color classes. In particular for i = 1, 2, . . . , ⌊k/2⌋, there is an edge between V2i−1 and V2i, and so α′(G) ≥ ⌊k/2⌋.
Hence by Theorem 4(a), Γd(G) ≤ n − α′(G) ≤ n − ⌊k/2⌋. �
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We remark that the bound of Theorem 7 is achievable for graphs with small chromatic number as may be seen by
considering the graph G = K n−k ∪ Kk where 1 ≤ k ≤ 4 and n > k. We show next that the directed domination of a graph
is at most the average of its order and independence number. For this purpose, we recall the Gallai–Milgram Theorem [16]
for oriented graphs which states that in every oriented graph G = (V , E), there is a partition of V into at most α(G) vertex
disjoint directed paths.

Theorem 8. If G is a graph of order n, then Γd(G) ≤ (n + α(G))/2.

Proof. Let D be an orientation of G. By the Gallai–Milgram Theorem for oriented graphs, there is a partition P = {P1, P2,
. . . , Pt} of V (D) into t vertex disjoint directed paths where t ≤ α(G). For i = 1, 2, . . . , t , let |Pi| = pi, and so

t
i=1 pi = n.

By Lemma 3, Γd(G) ≤
t

i=1 Γd(Pi) =
t

i=1⌈pi/2⌉ ≤
t

i=1(pi + 1)/2 = (
t

i=1 pi/2) + t/2 = (n + α(G))/2. �

That the bound of Theorem 8 is best possible, may be seen by considering, for example, the graph G = rK3 ∪ sK1 of order
n = 3r + swith α(G) = r + s and Γd(G) = 2r + s = (n + α(G))/2.

The following result establishes an upper bound on the directed domination of a graph in terms of the chromatic number
of its complement.

Theorem 9. If G is a graph of order n, then Γd(G) ≤ χ(G) · log


n
χ(G)


+ 1


.

Proof. Let t = χ(G) and consider a χ(G)-coloring of the complement G of G into t color classes Q1,Q2, . . . ,Qt , where
|Qi| = qi for i = 1, 2, . . . , t . For each i = 1, 2, . . . , t , the subgraph G[Qi] of G induced by Qi is a clique. We now consider
an arbitrary orientation D of G, and we let Di = D[Qi] denote the orientation of the edges of the clique G[Qi] induced by D.
Then,

γ (D) ≤

t
i=1

γ (Di) ≤

t
i=1

Γd(Qi) =

t
i=1

Γd(Kqi).

This is true for every orientation D of G, and so, by Theorem 1, we have that Γd(G) ≤
t

i=1 log(qi + 1), where
t

i=1 qi = n.
By convexity the right hand side attains its maximum when all summands are as equal as possible; that is, some of the
summands are ⌊n/t⌋ and some are ⌈n/t⌉. Hence, Γd(G) ≤ t log(⌈n/t⌉ + 1). �

As a consequence of Theorem 9, we have the following result on the directed domination number of a dense graph
with large minimum degree. Recall that an equitable coloring is a coloring in which the numbers of vertices in any two
color classes differ by at most one. The well-known Hajnal–Szemerédi Theorem [18] states that every graphwithmaximum
degree ∆ has an equitable coloring with ∆ + 1 colors.

Theorem 10. If G is a graph on n vertices with minimum degree δ(G) ≥ (k − 1)n/k where k divides n, then Γd(G) ≤ n log
(k + 1)/k.

Proof. Since k | n, we note that n = kt for some integer t , implying that δ(G) ≥ (k− 1)t and ∆(G) = n− δ(G) − 1 ≤ t − 1.
By the Hajnal–Szemerédi Theorem [18], the graph G is t-colorable with all color classes of size ⌊n/t⌋ = ⌈n/t⌉ = k. Hence,
G contains t vertex disjoint copies of Kk. Further, χ(G) ≤ t . Thus applying Theorem 9, we have that Γd(G) ≤ t log(k + 1) =

n log(k + 1)/k. �

5. Special families of graphs

In this section, we consider the (upper) directed domination number of special families of graph. As remarked earlier,
the directed domination number of a complete graph Kn is determined by Erdös [13] in Theorem 1, while the directed
domination number of a bipartite graph is precisely its independence number (see Theorem 5).

5.1. Regular graphs

For each given δ ≥ 1, applying Theorem 2(a) to the graph G = Kδ,n−δ yields Γd(G) ≥ n− δ. Hence without regularity, we
observe that for each fixed δ ≥ 1, there exists a graph G of order n and minimum degree δ satisfying Γd(G) ≥ n − δ. With
regularity, the directed domination number of a graphmay bemuch smaller. For a given r , let n = k(r +1) for some integer
k and let G consist of the disjoint union of k copies of Kr+1. Let G1,G2, . . . ,Gk denote the components of G. Each component
of G is r-regular, and by Theorem 1, Γd(G) =

k
i=1 Γd(Gi) =

k
i=1 Γd(Kr+1) ≤ k log(r + 2) = n log(r + 2)/(r + 1). Hence

there exist r-regular graphs of order n with Γd(G) ≤ n log(r + 2)/(r + 1). In view of these observations it is of interest to
investigate the directed domination number of regular graphs.

In 1964, Vizing proved his important edge-coloring result which states that every graph G satisfies ∆(G) ≤ χ ′(G) ≤

∆(G) + 1. As a consequence of Vizing’s Theorem, we have the following upper bound on the directed domination number
of a regular graph.
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Theorem 11. For r ≥ 2, if G is an r-regular graph of order n, then

Γd(G) ≤ n(r + 2)/2(r + 1).

Proof. By Vizing’s Theorem, χ ′(G) ≤ r + 1. Consider an edge coloring of G using χ ′(G)-colors. The edges in each color class
form a matching in G, and so the matching number of G is at least the size of a largest color class in G. Hence if G has sizem,
we have α′(G) ≥ m/χ ′(G) ≥ m/(r + 1) = nr/2(r + 1). Hence by Theorem 4(a), Γd(G) ≤ n − α′(G) ≤ n − nr/2(r + 1) =

n(r + 2)/2(r + 1). �

As a special case of Theorem 11, we have that Γd(G) ≤ 2n/3 if G is a 2-regular graph.We next characterize when equality
is achieved in this bound.

Proposition 1. Let G be a 2-regular graph on n ≥ 3 vertices. Then the following holds.

(a) If G is connected, then Γd(G) = ⌈n/2⌉.
(b) Γd(G) ≤ 2n/3 with equality if and only if G consists of disjoint copies of K3.

Proof. (a) Suppose thatG is a cycle Cn. If n is even,G has a perfectmatching, and so, by Theorem4(c),Γd(G) ≤ n/2. If n is odd,
then α′(G) = (n − 1)/2. By Theorem 4(b), Γd(G) ≤ n − α′(G) = n − (n − 1)/2 = (n + 1)/2. In both cases, Γd(G) ≤ ⌈n/2⌉.
To show that Γd(G) ≥ ⌈n/2⌉, we note that if D is a directed cycle Cn, then every vertex out-dominates itself and exactly one
other vertex, and so Γd(G) ≥ γ (D) = ⌈n/2⌉. This proves part (a).

(b) To prove part (b), let G1,G2, . . . ,Gk be the components of G, where k ≥ 1. For i = 1, 2, . . . , k, let Gi have order ni.
Since each component is a cycle, n ≥ 3k. Applying the result of part (a) to each component of G, we have

Γd(G) =

k
i=1

Γd(Gi) ≤

k
i=1


ni + 1

2


=

n + k
2

≤
2n
3

,

with equality if and only if n = 3k, i.e., if and only if Gi = C3 for each i = 1, 2, . . . , k. �

We remark that the upper bound of Theorem 11 can be improved using tight lower bounds on the size of a maximum
matching in a regular graph established in [22]. Applying Theorem 4(a) to these matching results in [22], we have the
following result. We remark that the (n + 1)/2 bound in the statement of Theorem 12 is only included as it is necessary
when n is very small or r = 2.

Theorem 12. For r ≥ 2, if G is a connected r-regular graph of order n, then

Γd(G) ≤


max


r2 + 2r

r2 + r + 2


×

n
2
,
n + 1
2


if r is even

(r3 + r2 − 6r + 2) n + 2r − 2
2(r3 − 3r)

if r is odd.

We close this section with the following observation. Graphs G satisfying χ ′(G) = ∆(G) are called class 1 and those with
χ ′(G) = ∆(G) + 1 are class 2.

Observation 6. Let G be an r-regular graph of order n. Then the following holds.

(a) If G is of class 1, then Γd(G) ≤ n/2.
(b) If r ≥ n/2, then Γd(G) ≤ ⌈n/2⌉.

Proof. (a) Consider a r-edge coloring ofG. The edges in each color class formaperfectmatching inG, and so, by Theorem4(b),
Γd(G) ≤ n/2.

(b) If n = 2, then the result is immediate. Hence we may assume that n ≥ 3. By Dirac’s theorem, G is Hamiltonian, and
so α′(G) ≥ ⌊n/2⌋. By Theorem 4(b), Γd(G) ≤ n − α′(G) ≤ n − ⌊n/2⌋ = ⌈n/2⌉. �

5.2. Outerplanar graphs

Let OP n denote the family of all maximal outerplanar graphs of order n. We define Mop(n) = max{Γd(G)} where the
maximum is taken over all graphs G ∈ OP n.

Theorem 13. Mop(n) = ⌈n/2⌉.
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Proof. Let G ∈ OP n. Since every maximal outerplanar graph is Hamiltonian, we observe by Observation 4 and
Proposition 1(a), that Γd(G) ≤ Γd(Cn) = ⌈n/2⌉. Since this is true for an arbitrary graph G inOP n, we haveMop(n) ≤ ⌈n/2⌉.
Hence it suffices for us to prove that Mop(n) ≥ ⌈n/2⌉. If n = 3, then by Observation 4, Γd(G) ≥ Γd(Cn) = ⌈n/2⌉, as desired.
Hence we may assume that n ≥ 4, for otherwise the desired result follows.

For n ≥ 4 even, we take a directed cycle
−→
Cn on n ≥ 4 vertices and a selected vertex v on the cycle, and we add arcs from

every vertex u, where u is neither the in-neighbor nor the out-neighbor of v on
−→
Cn , to the vertex v. The resulting orientation

D of the underlying maximal outerplanar graph has γd(D) = n/2. Hence for n ≥ 4 even, we have Mop(n) = n/2.
It remains for us to show that for n ≥ 5 odd,Mop(n) = (n+1)/2. Forn ≥ 5 odd,we take a directed cycle

−→
Cn : v1v2 . . . vnv1

on n vertices. We now add the arcs from vi to v1 for all odd i, where 3 ≤ i ≤ n − 2, and we add the arcs from v1 to vi for all
even i, where 4 ≤ i ≤ n−1. Let G denote the resulting underlyingmaximal outerplanar graph and letD denote the resulting
orientation of D. We now consider an arbitrary DDS S in D.

Suppose first that v1 ∈ S. In order to dominate the (n− 1)/2 vertices v2i+1, where 1 ≤ i ≤ (n− 1)/2, in Dwemust have
that |S ∩ {v2i, v2i+1}| ≥ 1 for all i = 1, 2, . . . , (n − 1)/2. Hence in this case when v1 ∈ S, we have |S| ≥ (n + 1)/2.

Suppose next that v1 ∉ S. Then, v2 ∈ S. In order to dominate the (n−3)/2 vertices v2i, where 2 ≤ i ≤ (n−1)/2, in Dwe
must have that |S ∩ {v2i, v2i−1}| ≥ 1 for all i = 2, . . . , (n − 1)/2. In order to dominate v1, there is a vertex vj ∈ S for some
odd j, where 3 ≤ j ≤ n. Let j be the largest such odd subscript for which vj ∈ S. If j = n, then vn ∈ S and |S| ≥ (n + 1)/2,
as desired. Hence we may assume that j < n. In order to dominate the vertex vi for i odd with j < i ≤ n, we must have
vi−1 ∈ S. In particular, we have that vj+1 ∈ S to dominate vj+2, implying that |S ∩ {vj, vj+1}| = 2 while for i odd where i ≠ j
and 3 ≤ i ≤ n − 2, we have |S ∩ {vi, vi+1}| ≥ 1, implying that |S| ≥ (n + 1)/2.

In both cases, |S| ≥ (n + 1)/2. Since S is an arbitrary DDS in D, we have γ (D) ≥ (n + 1)/2. Hence, Γd(G) ≥ (n + 1)/2,
implying that Mop(n) = (n + 1)/2. �

5.3. Perfect graphs

Recall that a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the
largest clique of that subgraph. Characterization of perfect graphs was a longstanding open problem. The first breakthrough
was due to Lovász in 1972 who proved the Perfect Graph Theorem.

Perfect Graph Theorem. A graph is perfect if and only if its complement is perfect.

Let α ≥ 1 be an integer and let Gα be the class of all graphs G with α ≥ α(G). We are now in a position to present an
upper bound on the directed domination number of a perfect graph in terms of its independence number.

Theorem 14. If G ∈ Gα is a perfect graph of order n ≥ α, then

Γd(G) ≤ α log (⌈n/α⌉ + 1) .

Proof. By the Perfect Graph Theorem, the complement G of G is perfect. Hence, χ(G) = ω(G) = α(G). The desired result
now follows from Theorem 9. �

6. Interplay between transversals and directed domination

In this section, we present upper bounds on the directed domination number of a graph by demonstrating an interplay
between the directed domination number of a graph and the transversal number of a hypergraph. We shall need the
following upper bounds on the transversal number of a uniform hypergraph established by Alon [1] and Chvátal and
McDiarmid [11]. Applying probabilistic arguments, Alon [1] showed the following result.

Theorem 15 (Alon [1]). For k ≥ 2, if H is a k-uniform hypergraph with n vertices and m edges, then τ(H) ≤ (m + n)(ln k)/k.

Theorem 16 (Chvátal, McDiarmid [11]). For k ≥ 2, if H is a k-uniform hypergraphs with n vertices and m edges, then τ(H) ≤

(n + ⌊
k
2⌋m)/⌊ 3k

2 ⌋. bound is sharp.

We proceed further with two lemmas. For this purpose, we shall need the Szekeres–Wilf Theorem, where we recall that
a graph G is k-degenerate if every induced subgraph of G has minimum degree at most k.

Theorem 17 (Szekeres–Wilf [27]). If G is a k-degenerate graph, then χ(G) ≤ k + 1.

Lemma 18. If G is a graph and D is an orientation of G such that ∆−(D) ≤ k for some fixed integer k ≥ 0, then χ(G) ≤ 2k+ 1.
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Proof. It suffices to show that G is 2k-degenerate, since then the desired result follows from the Szekeres–Wilf theorem.
Assume, to the contrary, that G is not 2k-degenerate. Then there is a subset S of V (G) such that the subgraph GS = G[S]
induced by S has minimum degree at least 2k + 1 and hence contains at least (2k + 1)|S|/2 edges. Let DS = D[S] be the
orientation of D induced by S. Since ∆−(D) ≤ k, we have that ∆−(DS) ≤ k and

k|S| ≥


v∈V (DS )

d−(v) = |E(GS)| ≥ (2k + 1)|S|/2 > k|S|,

a contradiction. �

Lemma 19. Let D be an orientation of a graph G. If G contains nk vertices with in-degree at most k in D for some fixed integer
k ≥ 0, then nk ≤ (2k + 1)α(G).

Proof. Let Vk denote the set of all vertices of G with in-degree at most k in D, and so nk = |Vk|. Let Gk = G[Vk] and let
Dk = D[Vk]. Then, Dk is an orientation of Gk such that ∆−(Dk) ≤ k, and so by Lemma 18, χ(Gk) ≤ 2k + 1. Since every
color class of Gk is an independent set, and therefore has cardinality at most α(G), we have that nk = |Vk| ≤ χ(Gk)α(G) ≤

(2k + 1)α(G). �

Let f (n, k), g(n, k), and h(n, k) be the functions of n and k defined as follows.

f (n, k) = 2n ln(k + 2)/(k + 2) + (2k + 1)α(G)

g(n, k) = n(k + 2)/3k + 2(2k + 1)α(G)/3
h(n, k) = n(k + 1)/(3k − 1) + 2k(2k + 1)α(G)/(3k − 1).

Theorem 20. If G is a graph on n vertices, then

Γd(G) ≤


min
k≥0

{f (n, k), g(n, k)} if k is even

min
k≥1

{f (n, k), h(n, k)} if k is odd.

Proof. Let D be an arbitrary orientation of the graph G and let k ≥ 0 be an arbitrary integer. Let Vk denote the set of all
vertices of Gwith in-degree at most k in D and let nk = |Vk|. Let V>k = V (G) \Vk, and so all vertices in V>k have in-degree at
least k+ 1 in D. Let H>k be the hypergraph obtained from the CINH HD of D by deleting the nk edges corresponding to closed
in-neighborhoods of vertices in Vk. Each edge in H>k has size at least k + 2.

We now define the hypergraph H as follows. For each edge ev in H>k corresponding to the closed in-neighborhood of a
vertex v in V>k, let e′

v consist of v and exactly k + 1 vertices from N−(v). Thus, e′
v ⊆ ev and e′

v has size k + 2. Let H be the
hypergraph obtained from H>k by shrinking all edges ev of H>k to the edges e′

v . Then, H is a (k + 2)-uniform hypergraph
with n vertices and n − nk edges.

Every transversal T in H contains a vertex from the closed in-neighborhood of each vertex from the set V>k in D, and
therefore T ∪ Vk is a DDS in D. In particular, taking T to be a minimum transversal in H , we have that γ (D) ≤ τ(H) + nk. By
Lemma 19, nk ≤ (2k + 1)α(G). Applying Theorem 15 to the hypergraph H , we have that

τ(H) ≤ (n + n − nk) ln(k + 2)/(k + 2) ≤ 2n ln(k + 2)/(k + 2),

and so γ (D) ≤ τ(H) + nk ≤ 2n ln(k + 2)/(k + 2) + α(G)(2k + 1) = f (n, k). Applying Theorem 16 to the hypergraph H for
k even, we have that

τ(H) ≤ (2n + k(n − nk))/3k = n(k + 2)/3k − nk/3,

and so γ (D) ≤ τ(H) + nk ≤ n(k + 2)/3k + 2nk/3 ≤ n(k + 2)/3k + 2(2k + 1)α(G)/3 = g(n, k). Thus for k even, we have
that Γd(G) ≤ min{f (n, k), g(n, k)}. Applying Theorem 16 to the hypergraph H for k odd, we have that

τ(H) ≤ (2n + (k − 1)(n − nk))/(3k − 1) = n(k + 1)/(3k − 1) − (k − 1)nk/(3k − 1),

and so γ (D) ≤ τ(H)+ nk ≤ n(k+ 1)/(3k− 1)+ 2knk/(3k− 1) ≤ n(k+ 1)/(3k− 1)+ 2k(2k+ 1)α(G)/(3k− 1) = h(n, k).
Thus for k odd, we have that Γd(G) ≤ min{f (n, k), h(n, k)}. �

Let fn(α), gn(α), and hn(α) be the functions of n and α defined as follows.

fn(α)
.
=

√
2nα


ln(

2n/α ) + 2


− 2α

gn(α)
.
=

1
3


n + 2α + 4

√
2nα


hn(α)

.
=

1
3


n +

14
3

α +

√
2α (27n + 20α)

3
√
5α + 6n


.

As a consequence of Theorem 20, we have the following upper bound on the directed domination of a graph.
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Theorem 21. If G is a graph on n vertices with independence number α, then

Γd(G) ≤ min {fn(α), gn(α), hn(α)} .

Proof. By Theorem 20, we need to optimize the functions f (n, k), g(n, k) and h(n, k) over k to obtain an upper bound
on Γd(G). To simplify the notation, let α = α(G). Optimizing the function g(n, k) over k (treating n as fixed), we get
g(n, k) ≤ gn(α), while optimizing the function h(n, k) over k (treating n as fixed), we get h(n, k) ≤ hn(α). Optimization
of the function f (n, k) is complicated. Hence to simplify the computations, we choose a value k∗ for k and show that
f (n, k∗) ≤ fn(α).

Supposeα ≥ n/2. Then,α = cnwith 1 ≥ c ≥ 1/2. Substituting this into fn(α)weget fn(α) = n
√
2c(ln(2/c)+2)−2cn =

n
√

2c(ln(2/c) + 2) − 2c


≥ n, and so the inequality Γd(G) ≤ fn(α) holds trivially. Hence we may assume that α ≤ n/2.

We now take k =
√
2n/α − 2 ≥ 0. Substituting into f (n, k) = 2n ln(k + 2)/(k + 2) + (2k + 1)α, we get

f (n, k) = 2n ln(

2n/α )/


2n/α + (2


2n/α − 3)α

=
√
2nα ln(


2n/α ) + 2α


2n/α − 3α

=
√
2nα


ln(

2n/α ) + 2


− 3α

< fn(α),

as desired. �

If every edge of a hypergraphH has size at least r , we define an r-transversal ofH to be a transversal T such that |T∩e| ≥ r
for every edge e inH . The r-transversal number τr(H) ofH is theminimum size of an r-transversal inH . In particular, we note
that τ1(H) = τ(H). For integers k ≥ r where k ≥ 2 and r ≥ 1, we first establish general upper bounds on the r-transversal
number of a k-uniform hypergraph. Our next result generalizes that of Theorem 15 due to Alon [1], as well as generalizes
results due to Caro [5].

Theorem 22. For integers k ≥ r where k ≥ 2 and r ≥ 1, let H be a k-uniform hypergraph with n vertices and m edges. Then,
τr(H) ≤ n ln k/k + rm(2 ln k)r/k.

Proof. Since every minimal transversal in H contains no isolated vertex, we may assume that δ(H) ≥ 1. When k = 2 and
r = 1, the result follows from Theorem 15. When k = r = 2, we have that τr(H) = n and the desired result follows. Hence
wemay assume that k ≥ 3 and r ≥ 1. Pick every vertex of V (H) randomlywith probability p to be determined later but such
that (1 − p) > 1/2. Let X be the set of randomly picked vertices and let EX be the set of edges of E(H) whose intersection
with X is at most r − 1. For every fixed edge e ∈ E(H), the probability that e is in EX is exactly

Pr(e ∈ EX ) =

r−1
i=0


k
i


pi(1 − p)k−i

= (1 − p)k
r−1
i=0


k
i


p

1 − p

i

. (1)

We now choose p = ln k/k. With this choice of p, we have that (1 − p) > 1/2. Hence, 1/(1 − p)i < 2i for all i ≥ 1. Since
1 − x ≤ e−x for all x ∈ R, we note that (1 − p)k ≤ e−pk

= e− ln k
= 1/k. Substituting p = ln k/k into Eq. (1) we therefore get

Pr(e ∈ EX ) ≤
1
k

r−1
i=0

ki

i!
·

pi

(1 − p)i
≤

1
k

r−1
i=0

(2kp)i

i!
≤

1
k

r−1
i=0

(2 ln k)i ≤
1
k
(2 ln k)r ,

since 1 + q + q2 + · · · + qr−1
= (qr − 1)/(q − 1) ≤ qr for q > 2 and r ≥ 1 (recall that k ≥ 3, and so 2 ln k > 2). For each

edge e ∈ EX , we add r − |e ∩ X | (which is at most r) vertices from e \ X to a set Y . Then, T = X ∪ Y is a r-transversal in H
and |Y | ≤ r|EX |. By the linearity of expectation, E(T ) = E(X) + E(Y ) ≤ E(X) + rE(EX ) = n ln k/k + rm(2 ln k)r/k. �

For r ≥ 1, an r-directed dominating set in a directed graph D = (V , A) is a set S of vertices of V such that every vertex
in V \ S is dominated by at least r vertices of S; that is, every vertex u ∈ V \ S is adjacent from r vertices v in S with v
directed to u. The directed r-domination number of a graph G, denoted by Γd(G, r), is defined as the maximum r-directed
domination number γr(D) over all orientations D of G. Using r-transversals in hypergraphs, we obtain the following bound
on the directed r-domination number of a graph.

Theorem 23. For r ≥ 1 an integer, if G is a graph on n vertices, then

Γd(G, r) ≤ min
k≥r


(2k − 1)α(G) + n ln(k + 1)/(k + 1) + rn(2 ln(k + 1))r/(k + 1)


.

Proof. Let D be an arbitrary orientation of the graph G and let k ≥ r be an arbitrary integer. Let V<k denote the set of all
vertices of Gwith in-degree at most k − 1 in D and let n<k = |V<k|. Let G<k be the subgraph of G induced by the set V<k and
let D<k be the orientation of G<k induced by D. Then, ∆−(D<k) ≤ k − 1, and so, by Lemma 18, χ(G<k) ≤ 2k − 1, implying
that n<k ≤ (2k − 1)α(G).
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Let Vk = V (G) \ V<k, and so all vertices in Vk have in-degree at least k in D. Let Hk be the hypergraph obtained from
the CINH HD of D by deleting the n<k edges corresponding to closed in-neighborhoods of vertices in V<k. Each edge in Hk
has size at least k + 1. We now define the hypergraph H as follows. For each edge ev in Hk corresponding to the closed
in-neighborhood of a vertex v in Vk, let e′

v consist of v and exactly k vertices from N−(v). Thus, e′
v ⊆ ev and e′

v has size
k+ 1. Let H be the hypergraph obtained from Hk by shrinking all edges ev of Hk to the edges e′

v . Then, H is a (k+ 1)-uniform
hypergraph with n vertices and n − n<k edges.

Every r-transversal T in H contains at least r vertices from the closed in-neighborhood of each vertex from the set Vk in
D, and therefore T ∪ V<k is a r-directed dominating set in D. In particular, taking T to be a minimum r-transversal in H , we
have that γr(D) ≤ τr(H)+n<k. By Lemma 19, n<k ≤ (2k−1)α(G). Noting that k+1 ≥ r +1 ≥ 2, we can apply Theorem 22
to the hypergraph H yielding τr(H) ≤ n ln(k+1)/(k+1)+ r(n−n<k)(2 ln(k+1))r/(k+1), and so γr(D) ≤ τr(H)+n<k ≤

(2k − 1)α(G) + n ln(k + 1)/(k + 1) + rn(2 ln(k + 1))r/(k + 1). Since this is true for every integer k ≥ r , the desired upper
bound on Γd(G, r) follows. �

7. Open questions

We close with a list of open questions and conjectures that we have yet to settle. LetRn denote the family of all r-regular
graphs of order n. We define m(n, r) = min{Γd(G)} and M(n, r) = max{Γd(G)}, where the minimum and maximum are
taken over all graphs G ∈ Rn. Then, m(n, 1) = M(n, 1) = n/2. By Proposition 1, m(n, 2) = n/2 while M(n, 2) = 2n/3. We
remark that by Theorem 11, for r ≥ 2, we know that

n
2

≤ M(n, r) ≤


r + 2
r + 1


·
n
2

(2)

(and this upper bound onM(n, r) can be improved slightly by Theorem 12).

Conjecture 1. For r ≥ 3,M(n, r) = n/2.

By Theorem 2(a), we know that if G ∈ Rn, then Γd(G) ≥ α(G) ≥ n/(r + 1), and so n/(r + 1) ≤ m(n, r). Moreover taking
n/(r + 1) copies of Kr+1, we have by Theorem 1 thatm(n, r) ≤ n log(r + 2)/(r + 1). We pose the following question.

Question 1. For r ≥ 3, does there exists a constant c such thatm(n, r) ≤ cn/(r + 1)?

Let OP n denote the family of all maximal outerplanar graphs of order n and define mop(n) = min{Γd(G)}, where the
minimum is taken over all graphs G ∈ OP n. Since outerplanar graphs are 3-colorable, we note by Theorem 2(b) that for
every graph G ∈ OP n, Γd(G) ≥ n/3, implying that mop(n) ≥ n/3. By Theorem 13, we know that mop(n) ≤ ⌈n/2⌉. Thus,
n/3 ≤ mop(n) ≤ ⌈n/2⌉.

Problem 1. Find good lower and upper bounds on mop(n).

Let Pn denote the family of all maximum planar graphs of order n. We define mp(n) = min{Γd(G)} and Mp(n) =

max{Γd(G)}, where the minimum and maximum are taken over all graphs G ∈ Pn.

Problem 2. Find good lower and upper bounds on mp(n) and Mp(n).
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