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Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands
may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact
with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor sub-
populations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-
protein-coupledmembrane receptors as clients. The sigma-2 receptor was identified as the progesterone recep-
tormembrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulat-
ed in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands
may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after
administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the
type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker
for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current ra-
diochemical efforts are focused on the development of subtype-selective radioligands for positron emission to-
mography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for
sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma li-
gands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer,
but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a
Special Issue entitled: Membrane channels and transporters in cancers.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Sigma receptors were originally described as a subtype of the opioid
receptor family, but later shown to be unique proteins integrated in
plasma,mitochondrial and endoplasmatic reticulummembranes of sev-
eral organs including liver, kidney and brain. Two subtypes of sigma
receptors have been identified, termed sigma-1 and sigma-2 [1]. As
discussed previously [2], the endogenous ligands for these receptors
have not been identified with certainty but may include steroid hor-
mones (particularly progesterone), sphingolipid-derived amines and
N,N-dimethyltryptamine (DMT).

Recent evidence has been presented in support of the hypothesis
that DMT, a well-known hallucinogen, may in fact be an endogenous
sigma-1 agonist. DMT is a substrate for the serotonin transporter
(with even higher affinity than serotonin itself) and is also a substrate
for the vesicular monoamine transporter 2. These transporter proteins
may allow the accumulation of DMT (and other tryptamines) in neu-
rons to the micromolar levels needed for sigma-1 receptor activation
[3]. Consistent with this hypothesis, radiolabeled DMT enters the brain
of living rabbits very rapidly (10 s) and is retained there in intact form
for at least 7 days, whereas the compound is cleared from the rest of
the body via the renal route [4]. Although the authors labeled DMT
with 131I and thus modified its structure, the in vivo behavior of the 2-
iodo derivative is expected to be similar to that of the parent
indolealkylamine. Persistence of DMT in the mammalian brain can be
explained by the fact that DMT is stored in vesicles and thereby
protected from degradation by monoamine oxidase. Using immunocy-
tochemical techniques, indole-N-methyl transferase (INMT), the
enzyme that converts tryptamine to DMT, was shown to be localized
to postsynaptic sites of C-terminals of mouse motoneurons in close
proximity to sigma-1 receptors which are enriched at these sites [5].
Moreover, DMT inhibits INMT non-competitively by binding to an allo-
steric site on the enzyme molecule. DMT formation may therefore be
regulated via a negative feedback loop [6]. Interestingly, downregula-
tion of INMT has been associated with tumor recurrence (e.g., of malig-
nant prostate and lung cancers) and inmt was identified as a candidate
gene in the prevention of cancer progression [7].

Molecular biology techniques have indicated that sigma-1 receptors
play critical roles in the mammalian nervous system. As discussed
previously [2], sigma-1 knockout (KO) mice are viable and fertile and
do not display any overt phenotype, although the response of such an-
imals to painful stimuli is strongly suppressed and KOmice display de-
pressive behavior under certain forms of stress. A more recent study
has reported gender-related alterations in KO mice. Male knockouts
show signs of increased anxiety in the open-field, passive avoidance
and elevated plus-maze tests. They also show increased depressive-
like behavior in the forced swimming test, but no memory changes.
Female knockouts show deficits in spontaneous alternation or water
maze learning, and avoidance escape latency. These symptoms of
impaired memory appear to be related to changes in steroid tonus,
since female KO mice have decreased plasma levels of 17β-estradiol
compared to wild-typemice and treatmentwith 17β-estradiol reverses
their memory deficits [8].

By the transduction of cultured rat hippocampal neuronswith siRNA
for the sigma-1 receptor and gene expression analysis using a rat ge-
nome cDNA array, knockdown of the sigma-1 receptor was shown to
impair many cellular functions, including steroid biogenesis, protein
ubiquitination, organization of the actin cytoskeleton and Nrf2-
mediated responses to oxidative stress [9]. Several studies have shown
that sigma-1 receptors play an important role in theprotection of retinal
cells against various forms of damage. KO mice suffer from late onset
inner retinal dysfunction [10]. They show accelerated retinal ganglion
cell death after optical nerve crush [11] and a more rapid loss of retinal
function in diabetes [12].

In an article which preceded the current overview [2], wewrote that
the identity of the sigma-2 receptor was unknown and the existence of
this subtype had only been proven pharmacologically. However, within
one year a studywas published [13] inwhich sigma-2 receptorswere ir-
reversibly labeled usingWC-21, a ligand containing an azide moiety for
photoaffinity tagging and a fluorescein isothiocyanate (FITC) group for
visualization of the sigma-2 protein. By matrix-assisted laser desorp-
tion/ionization–mass spectrometry analysis, the membrane-bound
protein which was labeled by WC-21 in rat liver was identified as pro-
gesterone receptor membrane component 1 (PGRMC1). Knockdown
of the PGRMC1 protein with specific short interfering RNA (siRNA) re-
duced the binding of a radioiodinated sigma-2 receptor ligand in HeLa
cells and of a fluorescent sigma-2 receptor ligand in human embryonic
kidney 293T cells.Moreover, knockdownof PGRMC1 reduced the ability
of sigma-2 agonists to induce caspase-3 activation in HeLa cells. Overex-
pression of PGRMC1 by transfection of HeLa cells with PGRMC1 cDNA
was associated with a striking (60%) increase of the cellular binding of
the radioiodinated sigma-2 ligand. Treatment of A549 lung cancer
cells with a PGRMC1 ligand (AG-205) or a sigma-2 receptor ligand
(WC-26) induced similar, dose-dependent upregulations of the
PGRMC1 protein. Both the PGRMC1 ligand AG-205 and various sigma-
2 receptor ligands (DTG, siramesine, SV119, and WC-26) displaced
bound radioiodinated sigma-2 receptor ligand in tumor cell membrane
homogenates in a concentration-dependent manner. Thus, these ligands
appeared to bind to the same site. Confocal microscopy indicated that
PGRMC1 and the sigma-2 receptor protein had the same intracellular
localization, viz. in mitochondria and endoplasmatic reticulum [13].
Based on this combined evidence, the PGRMC1 protein complex was
identified as the putative sigma-2 receptor binding site.

It had already been known for a long time that sigma-2 ligands in-
hibit high-affinity progesterone binding to amicrosomal fraction of por-
cine liver, suggesting that high-affinity progesterone binding sites are
part of a complex including sigma receptors, if not themselves sigma
receptors [14]. But the important study of Xu et al. [13] provided actual
proof for the identity of the sigma-2 receptor and PGRMC1. Since
PGRMC1 is a knownprotein, the cDNA sequence of the sigma-2 receptor
gene may in fact already have been determined, both in porcine [15]
and human [16] tissues.

Although the close identity of the sigma-2 receptor and PGRMC1
appears to have been established, some questions remain unanswered.
First, the molecular masses of both proteins appear to be different.
Values of 22 to 28 kDa have been reported for PGRMC1 [17–19]whereas
a value of only 21.5 kDa has been determined for the sigma-2 receptor
protein [20]. These differences may be related to post-translational pro-
cessing or splice variants of a single protein. Second, inhibition of tumor
cell proliferation has been reported to require the agonist action of anti-
cancer drugs at sigma-2 receptors [21,22] but an antagonist action at
PGRMC1 [23,24]. This contradiction may be more apparent than real,
since agonist or antagonist actions at sigma receptors have not been
well-defined. Compounds which were originally classified as sigma ag-
onists may in fact be antagonists, and vice versa [25–27]. Caspase-3 ac-
tivation by sigma-2 receptor ligands has been proposed to serve as a
functional assay for differentiating sigma-2 agonists, partial agonists
and antagonists [27]. Finally, PGRMC1 is known to bind to P450
resulting in the stimulation of its activity and increased cholesterol syn-
thesis [28], but for the sigma-2 receptor such binding has not been
reported. Future research in this exciting field may resolve these
discrepancies and may result in further confirmation of the identity of
PGRMC1 and the sigma-2 receptor protein.

Although sigma-1 and sigma-2 receptors are usually treated as
members of a common sigma receptor “family” and share affinity for
certain artificial ligands and steroids like progesterone, the structures
of the sigma-1 and sigma-2 receptor proteins are in fact unrelated.
While the sigma-2 receptor seems to belong to a progesterone receptor
complex, the sigma-1 receptor has been characterized as a chaperone
protein [29,30]. The function and intracellular location of this protein
are altered by ligands but the protein can be active even in the absence
of ligands. Thus, the notion of “agonists” and “antagonists”, which is



Fig. 1. Proposed signaling pathway which links the sigma-2 receptor to NGAL expression
and tumor invasion.
Redrawn after [34].
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commonly applied to receptor ligands, may not be applicable to com-
pounds which interact with sigma-1 receptors.

2. Receptor overexpression in tumors and tumor cell lines

Both subtypes of sigma receptors are overexpressed in rapidly prolif-
erating normal cells and cancer cells from animal and human origins.
Particularly the sigma-2 receptor is an interesting tumor imaging target
since it is expressed about 10-fold more in proliferating tumor cells
compared with quiescent tumor cells and because ligand binding to
this receptor can result in tumor cell death both via apoptotic and
non-apoptotic mechanisms (reviewed in [2]). A comprehensive over-
view of sigma receptor expression in various cell lines, bovine tumors
and human tumors was presented in [2]. Here, only some recent find-
ings will be reported.

Using a fluorescently labeled ligand (SW120), investigators from the
National Institutes of Health showed that sigma-2 receptors are highly
expressed in proliferating human stem cells (bone marrow stromal,
neural progenitor, amniotic fluid, hematopoietic and embryonic) com-
pared to differentiated lineage-restricted cells. These results provided
additional support for the hypothesis that sigma-2 receptor expression
is a biomarker of the proliferative status of cells. However, in contrast to
tumor cells where sigma-2 ligands induce significant apoptosis, very little
apoptosis was observed in ligand-treated stem cells [31]. Thus, sigma-2
receptor ligands may be used to selectively eliminate tumor cells.

RT-4, a human urinary bladder tumor cell line, expresses sigma-2
receptors at a very high density and sigma-1 receptors at a lower den-
sity (2108 and 279 fmol/mg protein, respectively). Membrane ho-
mogenates of this cell line can be employed for a sigma-2 receptor
binding assay, using the non-subtype-selective sigma ligand [3H]
ditolylguanidine (DTG) in the presence of 2 μM non-radioactive
(+)-pentazocine to block sigma-1 receptors. Ki-values of sigma-2 li-
gands determined in that assay are in good accordance with Ki-values
estimated in rat liver preparations. RT-4-derived membrane fragments
are therefore an animal-friendly alternative to rat liver homogenates
and can be used to determine the affinity of ligands to human sigma-2
receptors [32].

Sigma-2 receptors were found to be significantly over-expressed in
12 out of 15 samples of human small cell lung carcinoma (up to 6-
fold) and were particularly elevated in poorly differentiated tumors. In
vitro treatment of small cell lung carcinoma cells (A549, NCI-H226)
with the PGRMC1/sigma-2 receptor ligand AG-205 or with siRNA for
the sigma-2 receptor resulted in growth inhibition and in the case of
the NCI-H226 cell line also in the loss of viability through a caspase-3-
and caspase-8-independent pathway. Sigma-2 receptors were signifi-
cantly over-expressed in 6 out of 15 samples of human adenocarci-
nomas (up to 4-fold), and sigma-2 receptor expression was inversely
correlatedwith patient survival. Sigma-2 receptors appeared to be asso-
ciated with secretory vesicles in lung cancer cells and to be secreted by
these cells. Sigma-2 receptor levels in the plasma of lung cancer patients
were therefore significantly elevated (up to 7-fold) compared to plasma
of cancer-free individualswhere these levelswere very low. The authors
concluded that the sigma-2 receptor is a potential tumor and serumbio-
marker as well as a therapeutic target for lung cancer [33].

In a subsequent study from the same group, the knockdown of the
PGRMC1/sigma-2 receptor in A549 cells was found to block the expres-
sion of neutrophil gelatinase-associated lipocalin/lipocalin-2 (NGAL)
and to decrease the activity of matrix metalloproteinase-9 (MMP9) in
samples of the culture medium. NGAL is a secreted glycoprotein that
binds to MMP9 and protects it from degradation. MMP9 activity is
essential for the breakdown of the extracellular matrix and is involved
in tumor invasion and survival. Transfection of cells in which the
sigma-2-receptor had been knocked down with a plasmid encoding
sigma-2 receptor/PGRMC1 resulted in re-expression of sigma-2 recep-
tors and restoration of the NGAL levels. NGAL proved to be essential
for the formation and growth of A549 in vivo tumors, since A549 cells
in which NGAL had been knocked down showed strongly impaired
xenograft formation in athymic nude mice. By incubating normal cells
and cells in which the sigma-2 receptor had been knocked down with
inhibitors of the epidermal growth factor receptor (EGFR), protein ki-
nase B (Akt) and extracellular signal-regulated kinases (ERK), evidence
was obtained for the hypothesis that the sigma-2 receptor increases
NGAL levels by activating the transcription factor NFκB via EGFR [34]
(see Fig. 1). Since NGAL expression is dependent on the sigma-2 recep-
tor, the latter protein may be an important target for inhibiting tumor
invasion and cancer progression.

RPMI 8226, the hematopoietic cell line of humanmultiple myeloma,
expresses sigma-1 receptors at high density (Bmax 477 fmol/mgprotein,
122,000 binding sites per cell). Fourteen different sigma-1 ligands
showed similar competition with [3H]-(+)-pentazocine for binding to
sigma-1 receptors in membrane fragments isolated from this cell line
and the estimated Ki values were in good accordance with Ki-values
assessed in guinea pig brain preparations. Thus, RPMI 8226-derived
membrane fragments may be an animal-friendly alternative to guinea
pig brain homogenates for assessment of the sigma-1 affinity of novel
drugs [35].

Flow cytometry analysis and Western blotting indicated strong
expression of the sigma-1 receptor in three different human esophageal
squamous cell carcinoma (ESCC) cell lines (KYSE150, KYSE180 and,
particularly, EC109). In these cell lines, further immunocytochemistry
showed that the receptor protein is located mainly in the cytoplasm
and thenucleus. Immunohistochemical analysis of patient samples indi-
cated that the sigma-1 receptor is overexpressed in ESCC compared to
normal epithelium. Levels of total sigma-1 receptor protein were signif-
icantly correlated with pathologic tumor, node, metastasis (TNM) clas-
sification of the tumors, and levels of nuclear sigma-1 receptor protein
were correlated both with TNM classification and the presence of
lymph node metastases. Thus, sigma-1 receptor expression may be a
factor predicting ESCC classification and ESCC development [36].

In an animal study from our own laboratory, sigma-1 receptors were
found to be overexpressed (N2-fold) in spontaneous pituitary tumors as
compared to the normal pituitary. This overexpression was detected as
an increase in uptake (N3-fold) and binding potential (BPND, N2-fold) of
the sigma-1 receptor ligand 11C-SA4503. In microPET scans of aged rats
using this tracer, even very small tumors (e.g., a specimen of 17 mg)
were clearly visualized. Thus, PET with a radioligand for sigma-1 recep-
tors (like 11C-SA4503) may have promise for the detection of pituitary
adenomas and microadenomas. It is not yet clear whether such scans
can discriminate between symptomatic, hormone-secretive and non-
symptomatic, nonsecretive neoplasms [37].
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3. Sigma ligands for diagnostic imaging

The overexpression of sigma receptors in tumor cells motivated the
development of radiolabeled sigma ligands for diagnostic imaging using
positron emission tomography (PET, see Fig. 2) or single photon emis-
sion computed tomography (SPECT). An overview of the development
of sigma receptor ligands for imaging purposeswas provided in our pre-
vious review article [2]. At the time of writing, the most commonly
applied sigma-1 receptor ligands were radioiodinated benzamides, the
piperidine 18F-FPS and the piperazines 11C-SA4503 and 18F-FESA5845.
In recent years, radiochemical efforts have focused on the development
of selective radioligands for each sigma receptor subtype. A comprehen-
sive review concerning the development of sigma-2 ligands for PET,
SPECT, optical imaging, photoaffinity labeling and binding assays was
published in 2013 [38].
3.1. Novel sigma-1 receptor probes

A spirocyclic, radiofluorinated sigma-1 receptor ligand, 1′-benzyl-3-
(2-[18F]fluoroethyl)-3H-spiro[[2]benzofuran-1,4′-piperidine] or [18F]
fluspidine, was prepared by German investigators (see Fig. 3). Com-
pared to 11C-SA4503, this compound could offer the advantages of a
very high affinity to sigma-1 receptors (Ki 0.59 nM vs 17 nM), a longer
physical half life (109.8min vs 20.4min) and negligible affinity towards
emopamil binding protein, a vertebrate sterol isomerase which is locat-
ed in endoplasmatic reticulum membranes and is involved in the bio-
synthesis of cholesterol. Biodistribution studies in female CD-1 mice
and ex vivo phosphor storage imaging of brain slices indicated that the
novel compound is a promising probe for molecular imaging of sigma-
1 receptors. Tracer uptake in brain, heart, lung and spleen was signifi-
cantly inhibited after the pretreatment of animals with the dopamine
D2/sigma receptor ligand haloperidol (1 mg/kg), but not reduced after
treatment of mice with the emopamil binding protein inhibitor tamox-
ifen (1 mg/kg). Specific binding appeared to be at least 75% of the total
cerebral uptake of radioactivity at 60min after injection. [18F]Fluspidine
showed a high brain uptake (3.9 to 4.7% ID/g), a regional distribution of
radioactivity consistent with binding to sigma-1 receptors, and moder-
ate in vivo metabolism. At 60 min after injection, 67% of total plasma
radioactivity still represented the parent compound. Blood–brain barri-
er passage of radioactive metabolites was not observed [39]. In a subse-
quent publication from the same group, the (R)- and (S)-enantiomers of
fluspidine were prepared. Ki-values of these enantiomers at sigma-1
receptors were 0.57 nM and 2.3 nM, respectively, and selectivities for
the sigma-1 subtype were 2895- and 390-fold. Although incubation of
the (R)- and (S)-enantiomers with rat liver microsomes led to the
Fig. 2. PET images of the head-and-neck region of a single rat made with the glucose ana-
log 18F-FDG (left) and the sigma-1 receptor ligand 11C-SA4503 (right). The animal had a C6
glioma tumor implanted in its right shoulder. Visible are the tumor (T), brain (B),
Harderian gland and nasal epithelium. Note that the tumor is well-visualized by both
tracers, but the areas with strong 18F-FDG uptake and those with elevated binding of the
sigma-1 ligand do not match.

Fig. 3. Novel sigma-1 receptor ligands for PET imaging.
identification of seven and eight metabolites, respectively, the (S)-
enantiomer was metabolically more stable than the eutomer [40].

A subsequent publication from the same group highlighted that
small modifications of the chemical structure of a radioligand can
have serious consequences for its pharmacokinetics. An analog of
18F-fluspidine was prepared in which the fluoroethyl moiety was re-
placed by a fluoromethyl group. Although this compound had almost
equally high sigma-1 receptor affinity as 18F-fluspidine (Ki 0.74 nM vs
0.59 nM) and a comparable selectivity for the sigma-1 subtype (743-
fold vs. 1334-fold), the fluoromethyl derivative failed as a PET tracer
because of rapid metabolism, entry of two radiometabolites into the
brain, low target-to-nontarget ratios in ex vivo autoradiography and a
continuous washout from the central nervous system [41].

Investigators from Stanford University prepared a benzothiazolone
sigma-1 receptor ligand, 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)
benzo[d]thiazol-2(3H)-one, or [18F]FTC-146 [42,43] (see Fig. 3). Pre-
treatment of normal BalbCmicewith equal doses of three different non-
radioactive sigma-1 ligands (haloperidol, FTC-146 or BD1047) reduced



Fig. 4. Novel sigma-2 receptor ligands for PET imaging.
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the brain uptake of [18F]FTC-146 by 80 to 82% at 60 min after injection.
The fraction of plasma radioactivity representing the intact parent com-
pound was 60% at 30 min and 50% at 60 min. Radioactive metabolites
did not enter the brain [42]. In a later publication from the same group,
[18F]FTC-146was evaluated in rats and squirrelmonkeys. Biodistribution
studies in control and haloperidol- or BD1047-pretreated rats indicated a
large specific binding fraction in sigma-1 receptor-expression organs
(brain, pancreas, spleen and liver, 85%, N80%, N65% and N70%, respec-
tively). The regional distribution of radioactivity in the rat brain as
observed by ex vivo autoradiography was consistent with the known
distribution of sigma-1 receptors. Tracer metabolism in rats appeared
to be more rapid than in mice, with about 20% of total plasma radioac-
tivity representing the intact parent compound at 60 min after injec-
tion. However, blood–brain barrier passage of radioactive metabolites
did not occur. [18F]FTC-146 showed specific in vivo binding also in the
monkey brain, and cerebral uptake of the tracer was reduced by 68%
to 77% after pretreatment of monkeys with haloperidol. Metabolism in
squirrel monkeys appeared to be about as equally rapid as in rats,
with 15% intact parent compound remaining in monkey plasma at
between 50 and 110 min [43]. [18F]FTC-146 has therefore favorable
characteristics for in vivo studies of sigma-1 receptors in the brain.

Chinese investigators prepared 18F-labeled 1-(1,3-benzodioxol-5-
ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (nicknamed [18F]
XW-6, see Fig. 3) as a potential sigma-1 receptor ligand for PET imaging.
This compound shows a lownanomolar affinity to sigma-1 receptors (Ki

1.85 nM), a rather high selectivity for the sigma-1 subtype (157-fold)
and an optimal logD (at pH 7.4) for penetration in tumors and the
brain (+2.57). Favorable biodistribution data were acquired in mice
and rats with N70% specific binding in the mouse brain at 60 min after
injection, and sigma-1 receptor-mediated uptake in several target
organs (brain, lungs, kidneys, heart and spleen) as shown by the impact
of pretreatment of animals with haloperidol. Low uptake of radioactivi-
ty in bone suggested the absence of defluorination. Thus, this piperazine
ligand appears to be a suitable radiotracer for in vivo imaging [44].

A team at Kanazawa University in Japan produced a radiobromine-
labeled vesamicol analog as a sigma receptor imaging agent for PET.
This compound, called (+)-[77Br]pBrV, showed a nanomolar affinity
for sigma-1 receptors (Ki 2.5 nM), but only 9-fold selectivity for the
sigma-1 subtype (see Fig. 3). In vitro binding of the compound to the
DU-145 prostate cancer cell line was examined and biodistribution ex-
periments in DU-145 tumor-bearing mice were performed. Specific
binding of the probe to sigma receptors was observed both in vitro
and in vivo. Judged by tumor-to-blood ratios of radioactivity, N80% of
the tumor uptake was blocked after pretreatment of animals with the
non-radioactive sigma ligands, haloperidol and SA4503. The authors
concluded that (+)-[76Br]pBrV has considerable potential as a sigma
receptor ligand for tumor imaging [45]. For SPECT imaging, a radio-io-
dinated vesamicol analog, (+)-[125I]-IV-OH (see Fig. 3), was also pre-
pared and evaluated in a similar way. Tumor-to-blood ratios of that
compound were 3- to 5-fold reduced after pretreatment of mice with
non-radioactive haloperidol, SA4503, or (+)-pIV, and brain-to-blood
ratios were reduced up to 2.5-fold, suggesting specific in vivo binding
of (+)-[125I]-IV-OH to sigma receptors [46].

Analogs of prezamicol and trozamicol have also been prepared. Four
compounds which were most promising showed nanomolar (1.4 to
4.0 nM) or subnanomolar (0.48 nM) affinities to sigma-1 receptors,
sigma-1 subtype selectivities ranging from 1111-fold to 3627-fold,
logP values between +2.6 and +2.8, and low affinity for the vesicular
acetylcholine transporter [47]. All four can be labeled with 18F or 11C,
but in vivo data for such radioligands have not yet been presented.

The well-known sigma-1 receptor ligand 11C-labeled 1-[2-(3,4-
dimethoxyphenyl)ethyl)]-4-(3-phenylpropyl)-piperazine ([11C]SA4503)
can not only bind to sigma-1 receptors but shows also significant
in vitro affinity to emopamil binding protein (Ki 1.7 nM) [39,48]. For
this reason, Toyohara et al. re-evaluated the in vivo selectivity of [11C]
SA4503 to sigma-1 receptors in the brain. Mice were injected with
[11C]SA4503 after pretreatment with various doses of the sigma-1
receptor ligands haloperidol, ifenprodil and trifluperidol, the emopamil
binding protein blockers tamoxifen and trifluoperazine, or saline. The
brain uptake of [11C]SA4503 was dose-dependently decreased by
sigma-1 receptor ligands, but not by inhibitors of the emopamil binding
protein. Thus, [11C]SA4503 shows sigma-1 selective binding in the liv-
ing brain [49].
3.2. Novel sigma-2 receptor probes

In an attempt to develop novel probes for sigma-2 receptors,
Abate et al. prepared benzamides which combined moieties of 1-
cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)pro-
pyl]piperazine (PB28) N-[4-(3,4-Dihydro-6,7-dimethoxyisoquinolin-
2(1H)-yl)butyl]-2-methoxy-5-methylbenzamide (RHM-1) in a single
molecule. PB28 is a sigma ligand with sub-nM sigma-2 affinity (Ki

0.68 nM), but no subtype selectivity and a high degree of nonspecific
binding, making the 11C-labeled compound unsuitable for in vivo im-
aging. RHM-1 (see Fig. 4) is a sigma-2 ligand with lower affinity (Ki

8.68 nM) but strong sigma-2 subtype selectivity (248-fold); more-
over, [11C]RHM-1 is capable of visualizing tumor lesions in an animal
model. By preparing hybrid molecules, the authors hoped to create a
tracer which would combine high brain uptake with good target-to-
nontarget ratios and in vivo selectivity for the sigma-2 subtype.
Their hybrid molecules showed considerable subtype selectivity and
appropriate lipophilicity, but unfortunately turned out to be sub-
strates for the drug efflux pump P-glycoprotein which precludes
their entry into the brain [50]. The most promising compound from
this series was later labeled with 18F and used for preclinical imaging
studies. Although it had good affinity for sigma-2 receptors (Ki

9.2 nM), a high selectivity for the sigma-2 subtype (330-fold) and
was lipophilic (clogP 3.5), it failed to enter the rat brain, probably
because of P-glycoprotein-mediated efflux (EC50 5.0 μM) [51].
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In another study from the same group, analogs of PB28with reduced
lipophilicity were prepared in an attempt to limit their nonspecific
binding. The propylene linker and the tetralin C4 position of PB28
were modified for this purpose. However, the analogs displayed little
sigma-2 subtype selectivity (maximally 2-fold) and themost promising
candidate with appropriate logD7.4 (+2.38) turned out to be also a sub-
strate for P-glycoprotein [52].

An Australian research team synthesized two novel phthalimido
ligands for sigma-2 receptors: 2-(4-(6,7-dimethoxy-3,4-dihy-
droisoquinolin-2(1H)-yl)butyl)-5-fluoroisoindoline-1,3-dione (18F-
SIG343) and 2-(5-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-
pentyl)-5-fluoroisoindoline-1,3-dione (18F-SIG353). The compounds
demonstrated high affinity (Ki values 8 and 2.4 nM) and good selectivity
for the sigma-2 subtype (200- and 110-fold, respectively) in binding
assays involving membrane fragments isolated from rat brain. In vitro
blocking studies with subtype-selective nonradioactive ligands in
A375 (human amelanoticmelanoma) cells demonstrated that the cellu-
lar binding of 18F-SIG343was sigma-2 receptor-mediated, in contrast to
18F-SIG353whichdid not display any specific binding. Both tracerswere
evaluated in nude mice bearing A375 tumors. Particularly for 18F-
SIG343, specific binding was observed in sigma-receptor containing
organs (brain, liver and lung) as tracer uptakewas significantly reduced
after pretreatmentwith haloperidol or non-radioactive SIG343. Howev-
er, tracer uptake in the tumors was low (about 1% ID/g at 2 h post injec-
tion) and although adequate tumor-to-muscle ratioswere reached (4 or
7 at 2 h post injection, respectively) and metabolic stability of the
tracers was also adequate, no specific signal from sigma-2 receptors
could be detected in tumor cells. Thus, in this particular animal model,
[18F]SIG343 and [18F]SIG353 failed as probes for tumor imaging [53].

In contrast to these negative findings, very promising results were
obtained with the sigma-2 receptor ligand 2-(2-[18F]fluoroethoxy)-N-
(4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl)-5-methyl-
benzamide ([18F]ISO-1, see Fig. 4). This tracer was evaluated in two
different rodent models of breast cancer: female nude mice bearing
tumors of murine mammary tumor 66 cells, and Sprague–Dawley rats
with N-methyl-N-nitrosourea-induced tumors. Rats were subsequently
treated either with bexarotene (220 mg/kg in the diet) or vorozole
(1.25 mg/kg body weight by gavage). In the first model, the tumor-to-
background ratio of [18F]ISO-1 corresponded closely and linearly to
the ratio of proliferative over quiescent cells in each tumor as deter-
mined by flow cytometry. Changes of [18F]ISO-1 uptake during chemo-
therapy in the secondmodel were significantly correlated with changes
in tumor volume determined by repeated magnetic resonance imaging
(MRI) scans. These data suggest that PET studies with a sigma-2 ligand
can indicate both the proliferative status of a tumor and its growth rate.
Thus, sigma-2 receptor imaging can be used in the selection and design
of an appropriate treatment strategy [54]. Afirst human studywith [18F]
ISO-1 in thirty cancer patients confirmed these positive expectations. In
this heterogeneous group (13 patients with primary breast cancer, 10
with head and neck cancer and 7 with lymphoma), tumor-to-muscle
uptake ratios and the maximum standardized uptake value of [18F]
ISO-1 were significantly correlated with expression of the proliferation
marker Ki-67 [55].

Promising preliminary results were also obtained for a structurally
similar ligand, N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)
butyl)-2-(2-fluoroethoxy)-5-iodo-3-methoxyben-zamide (nicknamed
RHM-4, see Fig. 4). Because of its chemical structure, this compound
can be labeled either with 18F (for PET), or with radioiodine (for
SPECT). Both labeled molecules showed similar in vivo pharmacokinet-
ics in mice bearing mammary tumors (grown from the 66 cell line).
Excellent tumor-to-muscle ratios of 8 to 10 were observed at 120 min
after injection [56].

A potential SPECT tracer for imaging of sigma-2 receptors in tumors
has been proposed as well. Chinese investigators prepared 99mTc 4-(4-
cyclohexylpiperazine-1-yl)-butan-1-one-1-cyclopentadienyltricarbonyl
technetium for this purpose. The corresponding rhenium complex was
also prepared and was used to determine in vitro binding parameters of
this novel ligand. It showed moderate affinity to sigma-2 receptors (Ki

64.4 nM) andmoderate sigma-2 subtype selectivity (12.5-fold). The lipo-
philicity of the 99mTc-labeled ligand was about optimal for uptake into
brain and in tumors (logD +2.52). In vitro binding experiments and
biodistribution studies were performed, using C6 rat glioma cells and
male ICR mice, respectively. A high tracer uptake was observed in
(sigma-2 receptor-expressing) C6 cells which was reduced substantially
(up to N90%) after co-incubation with haloperidol. In livingmice, specific
binding of the tracer was observed in receptor-expressing organs (brain,
heart, lung, and spleen), but the reduction of tracer uptake after haloper-
idol pretreatment was not greater than 51% at 2 h post injection. Very
promising results with the same tracer were obtained in C6 glioma
brain tumor-bearing Sprague Dawley rats. Specific binding of the tracer
in the rat brain at 2 h post injection was 67% and the tumors were well-
visualized (tumor-to-brain ratio N2). Thus, itmayprove possible to devel-
op 99mTc-labeled SPECT tracers for sigma-2 receptor imaging [57].

4. Sigma ligands for targeted drug delivery

Since sigma receptors (particularly the sigma-2 subtype) are over-
expressed in many kinds of tumors, they have been considered as an
attractive target not only for cancer diagnosis but also for anticancer
drug delivery. An overview of sigma ligand-based drug targeting exper-
iments is presented in Table 1. Chemical structures of the sigma ligands
which have been employed in these experiments are depicted in Fig. 5.

Two different approaches towards sigma-ligand-based drug target-
ing have been explored (see Table 1). First, sigma ligands were conju-
gated with various nanoparticles, either via a polyethylene glycol
(PEG) spacer or via direct covalent linking at the end of a long alkyl
chain of the sigma ligand. Before injection into experimental animals,
the nanoparticles were filled with various cytostatic or cytotoxic agents.
Second, antisense oligonucleotides or antitumor peptides were conju-
gated with sigma ligands by direct covalent linking, and the resulting
hybrid molecules were systemically administered.

Initial targeting attempts made use of anisamide and haloperidol —
ligands which bind to both subtypes of sigma receptors and may in
addition bind to neurotransmitter binding sites (e.g., dopamine D2
and D3 receptors). More recent attempts have employed compounds
with high selectivity for the sigma-2 receptor subtype (SV119, SW43).
The latter approachmay result in lower brain uptake and greater uptake
in the target tumors.

Conjugation of a sigma ligand to a nanoparticle (either directly or via
a PEG spacer) may be associated with loss of affinity of the ligand to its
target receptor. For this reason, most authors checked whether the
tumor uptake of the targeted nanoparticles, oligonucleotides or
peptides was sigma-receptor specific by comparing uptake in the pres-
ence and absence of a pharmacological dose of a sigma ligand
(ditolylguanidine or haloperidol). Since uptake was strongly reduced
after the pretreatment of animals with sigma ligands, the conjugates
retained sufficient affinity for the intended receptor and the loss of affin-
ity induced by conjugation appeared to be negligible (see Table 1).

Both targeted nanoparticles and antitumor peptides coupled to
sigma ligands have shown considerable potential in preclinical in vitro
and in vivo models of anti-tumor therapy (Table 1), but attempts to
apply such strategies to the treatment of cancer patients have not yet
been reported.

5. Cytotoxic effects of sigma ligands

Since both subtypes of sigma receptors are overexpressed in a large
variety of tumors and can activate apoptotic pathways, sigma ligands
are potentially useful as anticancer drugs either for single agent or adju-
vant chemotherapy. A few comprehensive reviews on the perspectives
of sigma-1 and sigma-2 receptor ligands in cancer therapy were pub-
lished in recent years [74,75]. Not only drugs selective for sigma-1



Table 1
Studies employing sigma ligands for drug targeting.

Carrier and target Payload Outcome Reference

Prostate cancer
Liposomes consisting of phospholipids
conjugated with anisamide via a
polyethylene glycol (PEG) spacer

Doxorubicin IC50 for toxicity to DU-145 cells reduced 8-fold, this effect is blocked by
haloperidol. Targeted liposomes show greater accumulation in murine DU-145
tumors than non-targeted ones. Injection of doxorubicin-containing targeted
liposomes (4 weekly doses of 7.5 mg/kg) inhibits tumor growth 2.8-fold
without significant side effects. Same dose of doxorubicin alone kills mice.

[58]

Nanoparticles of hepta-guanidino-β-cyclodextrin
conjugated with anisamide via PEG

siRNA for vascular endothelial
growth factor

Reduction of tumor growth (2.5-fold after 21 days) in TRAMP C1 mouse
model of prostate cancer. Corresponding reduction in levels of mRNA for
VEGF. No significant toxic side effects.

[59]

Oligonucleotides mono- and multivalently
conjugated with anisamide

Antisense oligonucleotides Monoanisamide conjugates showed slightly higher, and trivalent anisamide
conjugates about two-fold higher uptake in PC-3 cells than unconjugated
oligonucleotide controls. This increase was partially blocked by haloperidol.

[60]

Lung cancer
Liposome–protamine–heparin nanoparticles
with surface-grafted PEG and anisamide

Nonapeptide mimicking the Y845
site of the epidermal growth factor
receptor

Efficient peptide delivery in H460 mouse model of lung cancer; dose
dependent inhibition of tumor growth (up to 8-fold after 20 days) after
repeated i.v. administration (at 2 day-intervals).

[61]

Liposome–protamine–cationic lipid
nanoparticles with surface-grafted PEG and
anisamide

siRNA mixture (for MDM2, c-myc
and VEGF) and carrier DNA

Significant reduction of lung metastases (by 70 to 80% after 17 days) in the
B16F10 model of metastatic lung cancer after two consecutive low doses
(0.45 mg/kg, administered 10 d after tumor cell injection). Mean survival
time of animals prolonged by 30% (from 22 to 29 days). Little local or
systemic immunotoxicity.

[62]

Liposome–protamine–cationic lipid
nanoparticles with surface-grafted PEG and
anisamide

Antisense oligonucleotide or siRNA
against human survivin and carrier
DNA

Dose-dependent downregulation of survivin mRNA and protein in H1299
cells, growth inhibition and induction of apoptosis. Anisamide targeting
increased the delivery efficiency 4- to 7-fold.

[63]

Calcium phosphate nanoparticles with an
asymmetric lipid bilayer coating linked to the
sigma ligand anisamide

siRNA for luciferase (proof of
principle study)

Compared to liposome–protamine–cationic lipid nanoparticles, these novel
particle structure resulted in 40-fold higher siRNA delivery to H460 lung
cancer cells in vitro and 4-fold higher delivery to H460 tumors in living
mice.

[64]

Calcium phosphate nanoparticles with an
asymmetric lipid bilayer coating linked to
anisamide

siRNA mixture (for HDM2, c-myc
and VEGF)

Targeting increases siRNA uptake in A549 cells 9-fold and results in efficient
killing of A549 and H460 cells. Repeated i.v. injections of targeted
nanoparticles in mice bearing A549 and H460 tumors significantly inhibited
tumor growth (up to 4-fold after 31 days)

[65]

Calcium phosphate nanoparticles with an
asymmetric lipid bilayer coating linked to
anisamide

siRNA mixture (for MDM2, c-myc
and VEGF)

Repeated i.v. injections (four times 0.36 mg/kg at 2 day-intervals) of
targeted nanoparticles in mice bearing B16F10 tumors significantly reduced
the number of lung metastases (by 70 to 80%), prolonged the mean survival
time by 27.8% and was not associated with any significant toxicity.

[66]

Breast cancer
Cationic liposomes linked to the sigma/
dopamine receptor ligand haloperidol via a
PEG spacer

Plasmid DNA containing reporter or
therapeutic gene

Targeted liposomes showed N10-fold greater uptake in MCF-7 cells than
non-targeted liposomes. Reporter gene expression was blocked by
haloperidol and ditolylguanidine (sigma ligands). Downregulation of sigma
receptors with (±)-spironolactone reduced transgene expression 10-fold.
Addition of serum did not impair gene delivery.

[67]

Gold nanocages conjugated to the sigma-2
ligand SV119

Chemotherapeutic agents Sigma-2 receptor is overexpressed on the surface of breast cancer stem cells
(cell type responsible for long-term tumor growth, metastasis and
recurrence). Sigma-2 receptor targeted gold nanocages can be used to
increase the efficiency of combination photothermal/chemotherapy

[68]

Melanoma
Nanoparticles conjugated with anisamide and
involving a guanidinium-containing cationic
lipid

Small interfering RNA (siRNA) for c-
myc expression

Impairment of tumor growth in MDA-MB-435 mouse model of melanoma.
Sensitizes B16F10 tumor cells to paclitaxel, combination therapy with
targeted nanoparticles containing c-myc siRNA and paclitaxel resulted in
complete inhibition of tumor growth in mice.

[69]

Pancreatic cancer
Various antitumor peptides covalently linked
to the sigma-2 receptor ligand SV119

Bim (Bcl-2 antagonist) or CTMP-4
(Akt inhibitor) or rapamycin

Conjugates retain affinity for sigma-2 receptors and their secondary target.
Dose-dependent cytotoxicity and apoptosis induction were quantified in
various pancreatic tumor cell lines (Panc02, Panc-1, AsPC-1, CFPAC). The most
promising conjugate (S2-Bim) was tested in mouse models of pancreatic
tumor (Panc02, CFPAC). Could prevent tumor growth and prolong survival.

[70]

Ovarian cancer
SW IV-52s covalently linked to the sigma-2
receptor ligand SW43

SW IV-52s (mimetic compound of
second mitochondria-derived acti-
vator of caspase)

Conjugate retains affinity for sigma-2 receptors and about 10-fold
selectivity for sigma-2 subtype. Dose-dependent cytotoxicity and apoptosis
induction were quantified in various ovarian tumor cell lines (SKOV-3,
CaOV-3, BG-1). SW IV-52s itself was ineffective. I.p. administration of
conjugate to mouse model of ovarian cancer (SKOV3-Luc cells in SCID mice)
significantly reduced tumor burden, improved overall survival (from 74 to
86.5 days) and did not have significant adverse effects.

[71,72]

Various cancers
Liposomes consisting of PEG-dioleyl amido
aspartate covalently linked to the sigma-2
receptor ligand SV119

Doxorubicin Targeted liposomes show significantly higher uptake than non-targeted
liposomes in human prostate cancer (DU-145, PC-3), lung cancer (201T,
A549) and breast cancer (MCF-7) cells, but not in normal bronchial
epithelial cells. Doxorubicin-containing targeted liposomes show greater
cytotoxicity in DU-145 cells than doxorubicin-containing non-targeted
liposomes.

[73]
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and/or sigma-2 receptors have been prepared, but also mixed action
compounds combining sigma receptor interaction with binding to
other targets.

Abate and co-workers described a series of 1-cyclohexyl-4-(4-
arylcyclohexyl)piperazines which combine high affinity to sigma-1
and sigma-2 receptors with inhibition of humanΔ8–Δ7 sterol isomerase
and inhibition of P-glycoprotein (P-gp), an efflux pump involved in
tumor multidrug resistance [76]. The most promising compound of
the series, cis-11, showed Ki values of 0.26, 7.92 and 7.6 nM at the first
three targets. In transfected canine kidney epithelial cells over-
expressing P-gp, 0.1 μMdoxorubicin alonedid not have any antiprolifer-
ative effect. However, when doxorubicin was combinedwith 30 μM cis-
11, 70% cell death was observed within 24 h and a combination with
50 μM cis-11 resulted even in 90% cell death. Administration of 50 μM
cis-11 alone caused 50% cell death in the same assay. Thus, this class
of compounds is capable of inducing significant growth inhibition in
P-gp overexpressing tumor cells [76].

A later study from the same group concerned the development of
tetrahydroisoquinoloines which combine selectivity and high affinity
for the sigma-2 subtype with the capability of reversing P-gp-mediated
drug resistance. The two most promising compounds from the series
showed nanomolar (Ki 5.34 nM) or picomolar (Ki 0.04 nM) affinity at ro-
dent sigma-2 receptors, and high or extremely high selectivity for the
sigma-2 subtype (260-fold and N50,000-fold, respectively). They were
capable of reversing P-gp-mediated resistance and re-establishing the
antitumor effect of doxorubicin in P-gp-overexpressing MCF-7adr
human breast cancer cells. The compound with picomolar affinity
showed even stronger antiproliferative action in doxorubicin-resistant
cells than in parent cells, a phenomenon that has been called “collateral
sensitivity” and may be based on a P-gp-catalyzed ATP-degrading futile
cycle [77]. Thus, these tetrahydroisoquinolines could be evaluated for
the treatment of multidrug-resistant tumors, and be administered either
alone or in combination with classic chemotherapeutic agents.

In an attempt to enhance the apoptosis-inducing ability of haloperi-
dolwithout impairing its targeting ability, medicinal chemists conjugat-
ed the tertiary OH group of haloperidol with cationic lipids of varying
chain lengths. Such conjugation might not affect the affinity of haloper-
idol to sigma-1 or sigma-2 receptors, but could increase cellular entry of
the drug because of the presence of the cationic lipid chain. The most
promising compound of the series, HP-C8, contained a lipid chain with
8 carbon atoms. It showed very strong cytotoxicity towards MCF-7
and MDA-MB-231 (breast cancer) cells at doses at least 100-fold
lower than parent haloperidol, and at least 10-fold lower than
Fig. 5. Sigma ligands which have been em
haloperidol conjugates with other lipid chain lengths that were tried
(4, 12 and 16 carbon atoms). The toxicity of the C8 conjugate was also
much higher than that of haloperidol and the C8 lipid administered in
combination. Moreover, HP-C8 was 2- to 3-fold more toxic to tumor
cells than normal cells (COS-1, HEK-293), and the compound induced
apoptosis in cancer cells but not in normal cells. Downregulation of
sigma-1 receptors in MCF-7 cells resulted in the increased viability of
cells treated with HP-C8, thus, the cytotoxicity of HP-C8 appears to be
sigma receptor-mediated. Five intraperitoneal injections of 7.5 mg/kg
HP-C8 at 2 to 3 day intervals in mice bearing B16F10 melanoma tumors
resulted in greater than 3-fold growth reduction. Experiments with HP-
C8 in human umbilical vein endothelial (HUVEC) cells suggested that
the compound may also be capable of suppressing angiogenesis and
the formation of neovasculature in the tumor environment. Cationic
lipid-modified haloperidol derivatives are therefore an interesting
novel class of anticancer drugs [78].

Othermodifications of haloperidolwere tried aswell. An Italian pub-
lication concerned the phenylbutyrate ester of metabolite II of haloper-
idol. This molecule, called (±)-MRJF4, combines inhibition of histone
deacetylasewith sigma receptor binding. It has affinities to sigma recep-
tors in the 10−7 M range (Ki 162 and 105 nM at sigma-1 and sigma-2,
respectively), but negligible affinity to dopamine D2 and D3 receptors
(Ki N 5000 nM). IC50 values of (±)-MRJF4 for growth inhibition in pros-
tate cancer cell lines (LNCaP and PC-3) are much lower (11 and 13 μM)
than those of 4-phenylbutyric acid (2324 and 2273 μM), haloperidol
metabolite II (177 and 208 μM) or an equimolar mixture of 4-
phenylbutyric acid and haloperidol (190 and 165 μM). Blocking experi-
ments with (+)-pentazocine and AC927 suggested that both subtypes
of sigma receptors are involved in the cytotoxic effects of (±)-MRJF4
with a prevalence of the sigma-2 subtype [79].

A series of adamantane phenylalkylamines was tested for sigma
receptor affinity and antiproliferative activity. The most interesting
compound of the series bound to both sigma-1 and sigma-2 receptors
with affinities in the 10−8 M range (IC50 values 48 and 85 nM, respec-
tively). It displayed a significant antiproliferative activity to human
colon (HCT-116, HCT-15), prostate (DU-145, PC-3), breast cancer
(MCF-7), ovarian (OVCAR-5), brain tumor (U-251), leukemia (HL-60),
pancreatic (BxPC-3) and liver cancer (SK-HEP-1) cells. Activation of
caspase-3 and apoptosis was observed in addition to cell cycle arrest
at the sub-G1 level. Three cycles of treatment with this adamantane
(40 mg/kg doses administered on 3 consecutive days per week during
a period of 3 weeks) resulted in more than 3-fold inhibition of the
growth of BxPC-3 xenografts in SCID mice. A different chemotherapy
ployed for drug targeting purposes.
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protocol (two cycles of treatment, 55 mg/kg doses administered on 5
consecutive days per week during a period of 3 weeks) resulted in sig-
nificant but smaller growth reductions of PC-3, DU-145 and OVCAR-5
tumors [80]. These adamantane phenylalkylamines may therefore be
considered as potential antitumor agents, although rather high drug
doses were required for the inhibition of tumor growth.

Selective sigma-1 or sigma-2 receptor ligandsmay also be employed
for therapeutic purposes. High affinity sigma-1 receptor ligands derived
from spipethiane with sigma-1 subtype selectivities of 2630- and
29512-fold showed significant cytostatic effects in the human breast
cancer cell lineMCF-7/ADR [81]. A series of indole-based sigma receptor
ligandswas recently prepared, and the cytotoxicity of these compounds
was tested in liver (HUH7), breast (MCF-7) and colon (HCT-116) cancer
cell lines. Themost promising ligand bound to both sigma-1 and sigma-
2 receptors with affinities in the submicromolar range (Ki values 126
and 130 nM, respectively). It showed similar (MCF-7) or significantly
(2- to 8-fold) greater cytotoxicity than 5-fluorouracil in the tested cell
lines. Thus, indole-based sigma ligandsmay be useful for cancer therapy
[82]. High-affinity fenpropimorph-derived sigma-1 receptor ligands
[83], conformationally restricted sigma-1 receptor ligands with 7,9-
diazabicyclo[4.2.2]decane scaffold [84] and hydroxyethyl substituted
piperazines [85] have also shown considerable cytotoxicity in various
tumor cell lines.

A publication of our own group examined the impact of daily intra-
peritoneal injections of rimcazole (26 mg/kg bodyweight) in nudemice
bearing A375M humanmelanoma xenografts [86]. This treatment regi-
men resulted in a greater than 4-fold reduction of tumorweight in com-
parison to controls after 2 weeks. A transient increase of the tumor
uptake of the glucose analog [18F]FDG was observed after the first
week of treatment. Rimcazole treatment was not associated with any
significant adverse side effect [86]. In murine models of pancreatic
cancer, sigma-2 ligands are accumulated preferentially in the tumor
cells where they are internalized by both receptor-mediated and
caveolin-mediated endocytosis. In preclinical studies, such ligands are
capable of inducing apoptosis in the tumors with limited toxicity at
non-target sites. The animal and in vitro data raise hope that sigma-2
ligands may be used to induce apoptosis in pancreatic tumors when
resistance to traditional chemotherapies has developed [87]. At least
half of the samples of human pancreatic adenocarcinoma appear to
show overexpression of sigma-2 receptors.

Sigma ligands can not only kill tumor cells and inhibit tumor growth,
but they can also significantly enhance the pharmacological action of
other anticancer drugs. At concentrations of the individual agents hav-
ing hardly any cytotoxic effects, combined administration can result in
potent killing of tumor cells. In a preclinical model of pancreatic cancer
(Panc02 tumors in C57BL/6 mice), combination treatment of the ani-
mals with gemcitabine and the novel sigma-2 receptor ligand SW43
was superior to single agent treatment and resulted in the stabilization
of tumor volume during the treatment period with no significant ad-
verse effects [88]. In an in vitro model of melanoma, the sigma ligand
rimcazole synergistically enhanced the inhibition of A375M tumor cell
growth induced by anti-MCSP:TRAIL [89]. During in vitro studies of
colon and breast cancer cells, the P-glycoprotein inhibitor and sigma-1
receptor ligand MC70 strongly enhanced the effectiveness of doxorubi-
cin [90].

6. Mechanisms underlying inhibition of tumor growth

Although it had been known for a long time that small-molecule
ligands targeting sigma-1 and/or sigma-2 receptors can inhibit cancer
cell proliferation, induce tumor cell death and suppress tumor growth
in pre-clinical models, the cellular pathways activated by sigma ligands
and the mechanisms involved in cell death had not been well-defined.
Early studies in this area have been reviewed previously [2], thus only
more recent and novel findings will be discussed here. Recently pub-
lished reviews have focused on the interaction of sigma-1 receptors
with ion channels [91,92] and sigma-2 receptor-mediated tumor cell
death [74].

Ion channels and G-protein coupledmembrane receptors have been
identified as the main clients for the sigma-1 chaperone protein. Pro-
tein–protein interactions are known to occur between sigma-1 recep-
tors and voltage-gated potassium channels (Kv1.2, Kv1.4 and Kv1.5)
[93–97], small conductance Ca2+ activated K+ current (SK) channels
[98], voltage-gated sodium channels (Nav1.5) [99–101], voltage-gated
L-type calcium channels [102], acid-sensing ion channels (ASIC1a)
[103,104], volume-regulated chloride channels (VRCC) [105], the
GluN1 subunit of the NMDA receptor [106], dopamine D1 receptors
[107,108], dopamine D2 receptors [109], and histamine H3 receptors
[107]. Moreover, the sigma-1 receptor regulates the expression of the
human ether-a-gogo (HERG) channel by stimulating channel subunit
biosynthesis [110]. This channel promotes the progression of many pri-
mary human cancers through the modulation of extracellular matrix
adhesive interactions [110]. The mentioned protein–protein interac-
tions and effects of sigma-1 receptors on channel subunit biosynthesis
may be involved in the antitumor effects of sigma-1 ligands, since ion
channels are important actors in the control of cancer growth and inva-
siveness [91,95,105,110–112].

American investigators noticed that treatment of tumor cell lineswith
certain sigma-1 ligands visibly diminished cell size. Based on this observa-
tion, they performed a study in various cell lines (T47D, MDA468 and
MCF-7 human breast carcinoma, PC-3 and LNCaP prostate adenocarcino-
ma) which were treated with putative sigma-1 agonists (PRE084, (+)
SKF-10047) and antagonists (IPAG and haloperidol). Antagonists but
not agonistswere found to reduce cellular protein synthesis by repressing
the cap-dependent initiation of translation and phosphorylation of the
translational regulator proteins p70S6K, S6 and 4E-BP1. Knockdown of
sigma-1 receptors in the cells with specific siRNA had the same effect as
treatment of cells with sigma-1 antagonists, confirming that the observed
translational repressionwas indeed related to diminished sigma-1 recep-
tor function. Thus, sigma-1 receptors appear to play a role in protein syn-
thesis and sigma-1 ligands may be used to reversibly modulate the
cellular synthetic machinery [113]. In a subsequent publication from the
same group, MDA-MB-468 and T47D (breast adenocarcinoma) cells
were treated with 10 μM concentrations of the previously mentioned
sigma-1 agonists and antagonists. Evidencewas nowobtained suggesting
that autophagy is involved in sigma ligand-induced decreases in cell size.
Antagonists (but not agonists) induced ER stress and activated theunfold-
ed protein response in a dose-dependent, time-dependent and reversible
manner, with the extended treatment resulting in autophagy and finally
in apoptosis. Knockdown of sigma-1 receptors suppressed these effects
of sigma-1 antagonists, suggesting that these responses are indeed
sigma-1 receptor-mediated [114].

A recent paper has indicated that the sigma-1 receptor is a key
mediator of interleukin-24 (IL-24)-induced cancer-specific apoptosis.
IL-24 generated from an adenovirus expressing this cytokine induces
endoplasmatic reticulum (ER) stress, production of reactive oxygen spe-
cies and calciummobilization resulting in the apoptosis of cancer cells.
Treatment of cancer cells with the sigma-1 agonist (+)-SK-10047
blocks these responses. A direct interaction between IL-24 and sigma-
1 receptors is suggested by the fact that these two molecules co-
localize in immunocytochemical studies and co-immunoprecipitate
after the application of either a sigma-1 receptor or an IL-24 antibody.
Thus, the ER stress response, ROS production and calcium mobilization
appear to be triggered by IL-24 via a sigma-1 receptor-dependent path-
way and IL-24 appears to induce apoptosis through a sigma-1 receptor
antagonistic mechanism [115].

The sigma ligand [3H]PB28 was found to accumulate up to 5-fold in
nuclear compared to cytosolic fractions of neuroblastoma (SK-N-SH)
and breast cancer (MCF-7) cells, probably due to the fact that it binds
with high affinity (0.5 nM) to histoneH2A/H2B dimers [116]. Apparent-
ly, some sigma ligands can directly interact with nuclear material and
may thus exert antiproliferative and cytotoxic effects.
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Sigma-2 induced apoptosis can be caspase-independent and may
therefore also occur in cells with caspase dysfunction [117]. SW43, a
sigma-2 subtype-selective ligand, was shown to induce apoptosis in
BxPC-3 andAsPC-1pancreatic cancer cells by the permeabilization of ly-
sosomal membranes and increasing cellular oxidative stress, but inde-
pendent of caspase-3 activation, since the caspase-3 inhibitor z-DEVD-
fmk did not counteract these effects and did not protect cells against
the antitumor drug [118]. Siramesine, which has been classified as a
sigma-2 receptor agonist, caused apoptosis and secretory granule per-
meabilization in mast cells also in a caspase-independent manner
[119]. However, the effect of siramesine appears to be cell-type depen-
dent. In human keratinocytes (HaCaT), cell death induced by siramesine
was accompanied by caspase activation and triggered by destabilization
of mitochondria rather than lysosomes. The divergent effects of
siramesine in different cell lines may be due to the fact that siramesine
is not a selective sigma-2 receptor ligand, but interacts withmultiplemo-
lecular targets inside cells [120]. The cytotoxic and DNA-fragmenting ef-
fects of sigma-2 subtype-selective ligands other than SW43 or
siramesine (WC-26, SV119 and RHM-138) were dependent on
caspase-3 since they were counteracted by the caspase-3 inhibitor z-
VAD-fmk. These ligands induced autophagy and decreased the activity
of the mTOR (mammalian target of rapamycin) pathway [121]. The
sigma-2 receptor/PGRMC1 has been shown to bind to key components
of the autophagy machinery (microtubule-associated protein 1 light
chain 3, UV radiation resistance associated gene) and to be required
for the degradative activity of autophagy. The inhibition of PGRMC1
by RNAi or small molecule antagonists results in the accumulation of
autophagy substrates and of aberrant mitochondria [122].

In summary: multiplemechanisms appear to underlie the inhibition
of tumor growth and cell death after the administration of sigma
ligands, and the signaling pathways are dependent both on the type of
ligand and the type of tumor cell, resulting in conflicting reports in the
oncological literature.

7. Conclusions

Novel, potent and subtype-selective radioligands for PET imaging of
sigma receptors have become available. In vivo studies with these
ligands may provide important information about the biology of sigma
receptors and may lead to the application of PET imaging for tumor
detection, tumor staging, evaluation of therapeutic strategies and anti-
tumor drug development. The treatment of preclinical in vitro and
in vivomodels of cancerwith target- and subtype-selective, nonradioac-
tive sigma ligands may result in a greater understanding of the mecha-
nisms underlying sigma ligand-induced cell death and may lead to
clinical applications.
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