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It was the work of Biichi [2] that first showed how to use certain formulas of 
mathematical logic in order to describe properties of languages recognized by finite 
automata. These formulas (known as monadic second-order formulas) are built up 
from variables x, y ,..., set variables X, Y ,..., a binary relation symbol -C and a set 

II= {7c,lUEA} 

of unary relation symbols in one-to-one correspondence with the alphabet A. 
Starting with atomic formulas of the type 

x< Y, =n,x, xx, x = Y, 

formulas are built up in the usual way by means of the connectives -I, v , A and 
the quantifiers 3 and V bounding up both types of variables. 

Now, we say that a word w on the alphabet A satisfies such a sentence 4 if 6 is 
true when variables are interpreted as integers, set-variables are interpreted as set of 
integers and the formula X,X is interpreted as “the letter in position x in w is an a.” 

McNaughton [3] was the first to consider the case where the set of formulas is 
restricted to first-order, that is, when set-variables are ignored. He proved that the 
languages defined in this way are precisely the star-free languages, that is, all 
languages obtained from finite languages by boolean operations and concatenation 
product. 

Later on, star-free languages have been considerably studied. First, a fundamen- 
tal result of Schiitzenberger shows that star-free languages are exactly the languages 
recognized by an aperiodic finite monoid (i.e., a monoid all of whose groups are 
trivial). Further on, a great number of subclasses of star-free languages have been 
studied [6]. Among the most famous, let us quote the locally testable languages 
studied by McNaughton and Brzozowski and Simon and the piecewise testable 
languages, introduced by Simon. 

Star-free languages are defined by two types of operations: boolean operations on 
one hand and concatenation product on the other hand. This naturally defines a 
hierarchy based on the alternative use of these operations. The hierarchy was 
originally introduced by Brzozowski who showed with Knast [ 11 that the inclusion 
was proper on each level. Furthermore the class of locally testable languages 
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appears as the starting point of a natural subhierarchy inside the level 1. However 
many problems are still open and especially the decidability problem of each level, 
which is solved for the level 1 only. 

Coming back to logical formulas, Thomas [9] showed that this hierarchy of 
languages corresponds in a very natural way with a classical hierarchy of first-order 
logic based on the alternation of existential and universal quantifiers. 

The aim of this paper is to give a substantially different proof of the result of 
Thomas together with a generalization to the case of infinite words. In Sections 1-3, 
we give a proof of his theorem (Theorem 1.1) which does not rely on any previous 
knowledge in logic. This should make the proof more accessible to all those who 
feel more comfortable with automata and formal languages than with logical for- 
mulas. As a matter of fact, we use for technical reasons a hierarchy of aperiodic 
languages which is slightly different from the Brzozowski hierarchy. This hierarchy 
has been introduced by Straubing in [7]. Its level 0 is composed of the trivial 
Boolean algebra, and its level 1 is the family of piecewise testable languages. These 
will therefore correspond to Boolean combinations of existential formulas. In the 
last section, we prove an extension of the Thomas result to infinite words. The 
interpretation of logical formulas over infinite words instead of finite ones was, by 
the way, considered since the early paper of Biichi [2]. The correspondence 
between first-order formulas and star-free languages of infinite words was 
established by Thomas [8]. Among several possible equivalent definitions for star- 
free languages of infinite words (see [S, 51) we choose the following one: it is the 
closure of the trivial family reduced to the empty set by Boolean operations and left 
product by star-free languages of finite words. We prove (Theorem 4.1) that, with 
these definitions, an exact analog of Theorem 1.1 holds for infinite words. We finally 
prove an extension to the case of two-sided infinite words (Theorem 4.5) also con- 
sidered in [4]. 

1. THE FIRST-ORDER LOGIC ON WORDS 

Let A be a fixed finite set called the alphabet. We denote by A* the set of words 
on the alphabet A. A subset of A* is called a language. For a word w in A *, we 
denote by 1 WI its length. We define a set of logical formulas by considering the set 

where < denotes a symbol of binary relation and for each letter a E A, n, is a sym- 
bol of unary relation. 

Atomic formulas of 2 are formulas of the type x < y, x = y, and X,X, where 
a E A and x, y are variables. 

Formulas of 3 are then constructed from atomic formulas by using connectives 
1, “3 A and quantifiers V, 3 bounding variables. For convenience, we also con- 
sider the formulas 0 (false) and 1 (true). 
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To each sentence (i.e., closed formula) 4 of 2’ is associated the set L(b) of all 
words w of A* such that 4 is satisfied when variables are interpreted as integers on 
the set (I,..., (WI }, the relation < is interpreted as the usual relation on integers and 
the formula rcn,x is interpreted as: “the letter of index x in w is an a.” 

EXAMPLE. Let A = {a, h) if d is the formula 

3x n,x 

then L(d) is composed of all words containing at least an occurrence of the letter a. 

Observe that L(0) = /25 and L( 1) = A*. 
We define by induction two sequences s8,(A*) and gn(A*) of sets of subsets of 

A* as follows 

dJA*)=q)(A*)= {G?, A*}. 

Then, for n>O, an+,(A*) is the polynomial closure of &(A*), that is the 
smallest class C of subsets of A* such that 

(i) ,%(A*) c C. 
(ii) C is closed under union and intersection. 

(iii) For every X, YEC and UE,~, XUYEC. 

Finally, &j+ ,(A*) is the boolean algebra generated by &$,+ ,(A*) (with respect to 
the usual operations: intersection and complement). 

Similarly, we define classes of formulas C, and r,, by setting 

C, = f, = {quantifier-free formulas of .2}. 

Then for n>,O, Zn+, is the smallest set A of formulas of ~3 such that 

(i) r,,c A. 

(ii) if q, $EA, then q v $, cp A *EA. 

(iii) If 4 E A and x is variable, then 3x $ E A. 

Finally r,,, , is the closure of C,,, , by the connectives 1, v , A. 
We can now state a slightly different version of a theorem of Thomas [91. 

THEOREM 1.1. For every n 2 0 and for all XC A*, we have X E s$(A *) (resp. 
an(A*)) iff there exists a sentence C$ E r, (resp. C,) such that X= L(4). 

It is easily proved that the set &(A*) = Un2,, &,(A*) is the set of all star-free 
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languages of A*, that is, the smallest set of subsets of A* containing finite subsets 
and closed under boolean operations and concatenation product. Therefore we 
have 

COROLLARY 1.2 [3]. A language X is star-free zff there exists a first-order sen- 
tence 4 such that X= L(4). 

In the next two sections, we shall give a proof of Theorem 1.1. In the sequel we 
shall use the notation [k] for the set {l,..., k). 

2. FROM LANGUAGES TO FORMULAS 

In this section, we prove by induction on n >/O that for every language 
XE.$~(A*) (resp. CBJA*)) there exists a sentence $ET, (resp. Z,) such that 
X= L(4). We first need a preliminary result. 

PROPOSITION 2.1. For every n 2 0 and for each sentence I$ E C,, there exist two 
formulas d,(x), 4?(x) EC, in which x is the unique free variable and such that for 
every k, for every word w = a, *. . ak of length k and for every integer s such that 
1 <s<k, we have 

(1) wEL(~,(s))oal...a,-,EL(~) 
(2) wEU4h))+a,+l ...akE44). 

Proof We define 4, and 4r for every formula 4. We treat the case of d! (the 
other case in dual). 4, is constructed by induction as follows: 

If rj is quantifier-free, then tiI = 4. Otherwise, we set 

Then one can verify by induction on n 2 0 that if cp E C,, then qPIe C,. n 

We are now ready to prove the property announced at the beginning of this sec- 
tion. If n =O, then SZ&(A*) =SY,-JA*) = ((21, A*}. But we have L(O)= @ and 
L( 1) = A *, proving the result for n = 0. 

Assume that the property is true for some n 3 0. Denote by C the class of all sub- 
sets X of A* such that there exists a sentence 4 E Z,, 1 with X = L(d). Then 
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dn(A*) c C by induction, since f, c C, + i. Next if X, YE C, there exist sentences 
49 *gz,+1 such that X= L(d) and Y= L($). Now for each UEA, the language 
XuY is defined by the following sentence, which uses the previously defined for- 
mulas 4, and d,, 

Since this sentence is in 2, + 1, we have XuY c C. Furthermore, we have for any 
sentences cp, * 

Hence C is closed under union and intersection. Thus gn+ ,(A*) c C. Finally any 
element of 2Jn+,(A*) is a boolean combination of languages in B,, + I(A *) and 
therefore definable by a f n + ,-sentence. 1 

3. FROM FORMULAS TO LANGUAGES 

In this section we shall prove that for every sentence 4~2, (resp. r,,) and for 
every n 2 0, L(#)E&JA*) (resp. BJA*)). We first need to define L(d) for every 
formula and not only for a sentence. 

Let V be a finite set of variables of 9. We denote by A $ the set of all pairs 

m = (24, a) 

where u E A* and (T is a mapping from V into [lull. 
Therefore Al! is a set of “marked words.” Each variable of V marks a position in 

theword.Form=(u,o)EAZandn=(u,z)EA*,suchthat VnW=@.Weset 

mn = (2.411, p) 

where p is the application from Vu W into [ ]uul ] defined by 

P(Z) = i 
a(z) if ZE V, 

ez) + IUI if ZE W. 

The set A& can be identified to A* without confusion. Observe, for further use, 
that every marked word m E A c admits a unique decomposition of the form 

(&,a,) (4, g*)... (a,, a,) 

where a , ,..., a, are letters of A. Let in fact m = (u, a), u = u1 u2 . . . a, and Vi = 0 ~ ‘(i). 
Then bi maps Vi to [ 11. 
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We shall also denote by A y the set of all marked words (a, 0.) E A *y such that 
a E A. Finally for every set of variables V, we define a hierarchy of subsets of Al? as 
follows 

Then, for n 20, g,,, ,(A c) denotes the smallest class C, of subsets of A *v such 
that 

(0 4V 3 c G. 
(ii) C, is closed under finite unions and intersections. 

(iii) For every XEC”,, YeCV, and (a, ~)EA, with UEA such that v’, I”‘, 
and W are pairwise disjoint and I’ is their union, we have 

X(a, (T)YE c, 

Finally dE+ i(A 2) denotes the boolean algebra generated by a,,+ ,(A $). 
We first establish some elementary properties of this hierarchy. First we have the 

obvious 

LEMMA 3.1. For every n>O, SSQA&)=&~(A*), and B&(A~)=BJA*). 

In the sequel we shall need the following notation, that extends to AC the usual 
notation for residuals. Let W and lV’ be two disjoint subsets of V such that 
Wu IV’= V. For mEA*, and XcA*,, we set 

m-IX= {m’EA&SImm’EX} 

Xrn--‘= {m’EA&Im’mEX}. 

The following lemma shows that the sets SIJA ;) and s&(A$) are, in some sense, 
closed under taking residuals. 

LEMMA 3.2. Let XE&I,,(A~) (resp. &‘,,(A~)) and let V= Wu W’ with 
Wn W’= a. The set of sets of the form m-‘X or Xrn- ’ (where m E A*,) is a finite 
subset of S?JA*,.) (resp. JzJ~(A$)). 

Proof: By symmetry, it suffices to prove the property for the sets rn-‘X. The 
property is clear for n = 0. Suppose now that the property is true for G?JA 2) for 
some n 2 0. That is, suppose that for every X E SY,JA *y) the set 

E&V = (m -‘XlrnEA*,} 

is a finite subset of ?.#,,(A&). Now if XE &*(A F), X is, by definition, a boolean com- 
bination of a finite family (X,)r <i < k of elements of B,JA F). Since the operation 
X+ rn-‘X commutes with boolean operations, the set E,(X) is contained in the 
boolean algebra generated by the union lJ1 <i<k E&X,). It follows that E,(X) is a 
finite set contained in s$(A*,,) and this pro‘;es the property for a&(A*,). 
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To conclude the induction we have to show that if the property holds for SB,(A *y), 
then it also holds for a,,+ l(A 2). Let YE gn+ i(A *y). Then Y is a boolean com- 
bination of sets Yi, where each Yi has the form 

x,(u,,a,)X,...(uk,~k)Xk (*) 

with xo~40*Y,), X1 ~ddA*V,h..., xk~4(A*V,), (aI, o,)EA w,,..., (a,, ~,)EA,,, 
and where V is the disjoint union of the sets V,,, V ,,..., V,, W ,,..., W,. 

It s&ices to show that for each i, the set E,( Yi) is a finite subset of %$+ ,(A*,,). 
Therefore we may assume that Y is a set of the form (*) above. ’ 

Denote by F, the set of all finite unions of subsets of the form 

with 0 < i< k, A’: E E,+,,(X,) and where W is the disjoint union of the sets 
V 0 ,..., Vi-,, WI ,..., Wi-l, and W:. 

By the induction hypothesis, each of the sets X,! is in zJ~(A $,, ,+.;). Hence Fw is a 
hnite subset of a,,+ ,(A&). We claim that for every set W, E,(Y) c Pw, and this 
claim will prove the proposition. To prove the claim, we show by induction on t 
that if ~=(a,, (~,)...(a~, a,)eA$ then rn-lY~F,+,. If t=O, then m= 1, W=@, 
and m ’ Y = YE F@. Suppose that the result holds for all m of length 6 t and let 
(a, r~) E A r. Then we have 

[m(u, o)]~’ Y=(a, a)p’(mp’Y) 

and by induction hypothesis, m - ’ YE F,. Therefore m - ’ Y is a finite union of sub- 
sets of the form (**). Now we have with the previous notations 

with 

J-i+l(ai+*> ~i+J...(&, Ck)Xk if W,! = Vi (and hence Xi c A$) 

R= if 1 E X,! and if 
la3 c)=(ui+19 or+l)~ 

1zI otherwise. 

It follows that (a, a)-‘(m-‘y) E F,, T and this concludes the induction. 1 

Let us come back to formulas. Let $ be a formula of L and let V be a set of 
variables containing all free variables of 4. We denote by Ly(#) the set of all 
(u, (r) E A $ such that 4 is true when one substitutes to each free variable x of 4 the 



400 PERRIN AND PIN 

value a(x) and when the sentence obtained in this way is interpreted as usual in 
Cl4 I. 

The following result concludes the proof of Theorem 1.1. 

PROPOSITION 3.3. Let 4 be a formula of L and let V be a set of variables 
containing all free variables of q5. Then we have for every n 2 1: 

(1) ?fti~z, then L~$)E%(A*V). 
(2) Ifb~r, then Lv(~)E~(A*Y). 

We first need two lemmas to prove this proposition. 

LEMMA 3.4. Let 4 E r, and let V be a set of variables containing the free variables 
of 4. Then L.(q5)~2&(,42). 

Proof: Every formula 4 E r, is equivalent to a conjunction-disjunction of for- 
mulas of the form 

‘II,= or Y<Z 

(for y, z E V and a E A) or their negation. For instance y = z is equivalent to 
(~(Y<z)) A (~(z<Y)). But 

L,(n,z) = u A$(a, 0) A*,. 

where (a, 0) E A ,+, and the union runs over all triples v’, V”, W such that z E W and 
V is the disjoint union of V’, V”, and W. Similarly 

L,(lq,z) = u A*,.(b, a) A$, 

where (b, o) E A w, and where the union runs over all triples (b, a), v’, V” such that 
b #a and such that V is the disjoint union of V’, V”, and W. We also have 

with (a,a)EAw,, (6 T)EA~~, and where the union runs over all quintuples (a, a), 
(b, r), VO, VI, V, such that y E W, , z E W2, and V is the disjoint union of V,,, W, , 
V, , W,, V,. Finally, 

iJ A$(a,o)A*V- uL.(z< y) 1 
with (a, o) E A*,, a E A and where the union runs over all triples (a, CJ)., V’, V” such 
that y, z E W and such that V is the disjoint union of V’, V”, and W. 
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Since I,,(# v $)=L.(#)uL.(tj) and Ly(4 A $)=L,(qS)nL,($) and since 
g,(AF) is closed under union and intersection, this concludes the proof of 
the lemma. 1 

LEMMA 3.5. Let ~+6 be a formula and let n 2 1 be an integer such that L.(4) E 
S?,,(A*,), where V contains all free variables of 4. Then for every free variable z of 4, 
Lv\{zl (WW%M\~z,)~ 

ProoJ Let X = L V(d). Then we have 

X= LJ Y(u)(a, a) Z(u) 

where the union runs over all u E A$ and all (a, 0) E A, such that v’ c Vj{z}, 
{z} c WC UV and with 

Z(u) = [u(a, a)]-‘X, Y(u) = n X[(a, a)~]-‘. 
VEZ 

By Lemma 3.2 the union above is finite and each term Y(a, a) Z satisfies 
YEB,JA$), ZES?~J(A$,). We then have 

Lv,(zjPz 4) = U Y(4 0 Z 

where O’ is the restriction of CJ to the set w\(z) and this proves the lemma. u 

We are now ready to complete the proof of Proposition 3.3. For every n 2 1, set 
F,, = { 4 1 for every V containing all free variables of 4, L,,(d) E BJA ;) }. We shall 
prove by induction on n B 1 that 

For n = 1, we have TO c F, by Lemma 3.4. Next if 4 E F, , we have, by Lemma 3.5, 
Lv,&z 4) E %(A& ) and thus ~z+~EF~. Thus C,cFl. 

Assume now that Z, c F,, for some n > 1. Then for every formula 4 E r,, , we have 
L,(4) E J&(A 2) for every set V containing all free variables of 4. Since zz&(A*,) is 
contained in Z& + l(A 2), we have r,, c F, + , . Finally if 4 E Fn + , , then by Lemma 3.5 

for every free variable z of 4 and hence (32 4) E F,, + , . Consequently C,, , c F,,+ 1 
and Proposition 3.3 follows immediately. m 
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4. FIRST-ORDER LOGIC ON INFINITE WORDS 

In this section we shall extend the previous results to the case where the set A* is 
replaced by the set A” of infinite words on the alphabet A. We shall see that, up to 
natural modifications in the definitions, the same results hold. 

An infinite word is a sequence IV + A usually denoted aOa, . a, .... Just as 
before, to each (first-order) sentence of 9 is associated the set L(b) of all words w 
of A” such that 4 is true when variables are interpreted as integers, the < relation 
is the usual relation on integers and the formula X,X is interpreted as “the letter of 
index x in w is an a.” 

Nevertheless, the two following examples will emphasize the difference between 
finite and infinite words. The formula 

t$=3xVy(7rr,x A 1(x<y)) 

defines the language of all finite words whose last letter is an a. However, no infinite 
words satisfy this formula. 

In contrast, consider the formula 

ti = v’x 3Y((X < Y) A r/l Y). 

No finite word satisfies this formula, but + defines the set of infinite words 
(u*6)“. We define by induction two sequences cc4,(,4”) and ~27~(A”‘) in the following 
way 

&(A”) = a?()(A”) = {@, A”}. 

Next, for n 2 1, we denote by aD + ,(A”) the set of all finite unions and intersec- 
tions of sets of the form Xu Y where XE 9$, + ,(A *), a E A and YE .&(A”‘). Finally 
dn+ ,(A”) denotes the boolean closure of LZ$+ ,(A”). Then we can state 

THEOREM 4.1. For every n 3 0 and for every XC A”, one has XE dn + , (A”) (resp. 
$l,,(A”) iff there exists a sentence ~+3 E r, (resp. r,,) such that X= L(4). 

Notice that the set G’(AO) = U, a o a&(A”) can be directly defined as the smallest 
set of subsets of A” containing the empty set and closed under boolean operations 
and left concatenation with a language of &!‘(A*). 

COROLLARY 4.2 [S]. One has XE &(A”) iff there exists a sentence 4 of 3 such 
that X= L(d). 

The proof of Theorem 4.1 requires some modifications with respect to the proof 
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of Theorem 1.1. To pass from languages to formulas, that is, to show that for every 
XEC?#,,(AO) (resp. &‘,(AO), there exists a formula C$ EC, (resp. r,) such that 
X = L(4), we need to modify the property of c$~ (Proposition 2.1) as follows: 

for every infinite word w = aOal ... and for every sa 0, w ~L(d,(s)) iff 
a,+ la.y+2 . . . EL(4). 

Next we can mimic the proof given in Section 2 with the formula 

where X (resp. Y) is the set of finite (resp. infinite) words defined by 4 (resp. $). 
To pass from formulas to infinite words, that is, to prove that for every sentence 

~E,Z’~ (resp. r,), L(b) E~#JA~) (resp. &*(A”), we need first to introduce the set A”, 
of all pairs (w, a), where w is an infinite word of A* and CJ is a mapping from V into 
N.Ifm=(u,o)~A$andn=(u,s)~A;with VnW#@,weset 

mn = (uv, p) E A”,, w 

where p is the mapping from Vu W into k4 defined by 

p(x)= i 
4x1 if XE V, 
t(x) f IUI if XE W. 

If 4 is a formula of L and if I/ is a set of variables containing all free variables of 
4, we define again L,,(b) as the set of all (u, a) E AZ such that, if one substitutes to 
each free variable x of 4 the value a(x), the sentence obtained in this way is satisfied 
by u. 

Next we define the sequences (d,(A”,)),,, and (.BH(A’;)),20 by setting 

(1) B&4”,) = &(A”,) = (0, A:). 
(2) For n B 0, 4?,,+ ,(A”,) is the set of all finite unions and intersections of sets 

of the form X(a, a) x”. 

with X’ E BH+ l(A*,), (a, a) E A,, X” E 5;4,(A”,.), and where V is the disjoint union of 
V’, W, and V”. 

(3) For n>O, dn+,(A;) is the boolean closure of i&,+,(A”,). 

Observe that, for every II > 0, JB,(A”,) = JZ$(A”) (resp. 9YlJA;) = B,,(A”)). 
Let Wand IV’ be two disjoint subsets of V such that Wu IV’= V and let Xc A”,. 

If meA*,, we set 

m-IX= (m’~A”,,Imm’EX} 

and if m E A”,,, we set 

Xm-‘= (m’EA$(m’mEX}. 
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Lemma 3.2 can now be modified as follows. 

LEMMA 4.3. Let XEBJA”,) (resp. &JA;)) and let I/= Wu W’ with 
Wn W’ = 0. Then 

(1) The set of all subsets of the form m- ’ X (where m E A*,) is a finite subset of 
C!dn( A”,.) (resp. s$( A”,,). 

(2) The set of all subsets of the form Xm - ’ (where m E A”,) is a finite subset of 
GYJA*,) (resp. dn(A&). 

Proof. For the first assertion it suffices to mimic the proof of Lemma 3.2. For 
the second assertion, one argues by induction on n just like in Lemma 3.2, but a dif- 
ficulty arises. Indeed if we assume the result for XE s&(A$), one cannot prove the 
property for a,, + I(AF) simply by induction on the length of m as we did for finite 
words. 

Thus, let XE 9Y,, + l(A *y ). Then X is a finite boolean combination of sets 

X’(a, 0) x” 

with X’ E&J+ 1(A2), (a, a) E A,, X” E &n(A$), and where I/ is the disjoint union of 
v’, U, and I”‘. 

By an argument already used in the proof of Lemma 3.2, we may assume that 
X=X’(u, 0) A?‘. Now, we have 

Xm-‘=X’(a,o)(X”m-‘)uR 

with R = U X’n-‘, where this last union runs over all n E A$, such that there exists 
a factorization m = n(a, a) n’ with n’ E A?’ and W is the disjoint union of IV”, U, and 
v. 

By induction, the set of all X”m- ’ is a finite subset of sB,(A”,..,,). Furthermore, 
by Lemma 3.2, the set of all X’n-’ is a finite subset of BI,JA*,,,). It follows that X 
satisfies property (2) of the statement. The rest of the proof is easily adapted from 
the proof of Lemma 3.2. 1 

The last part of the proof of Theorem 4.1 is the same as the proof given in Sec- 
tion 3. We first show, as in Lemma 3.4, that for every formula 4 E r,,, 

LY($) E .%(A”,). 

Next we show, as in Lemma 3.5, t@t if L,,(c$)E~$(A;) then for every free 
variable z of $, 

by using this time Lemma 4.3. Finally we deduce, as in Proposition 3.3 that if 4 E Z, 
then L.(d) E BJA$) and if 4 E r,, then L.(4) E s&(A;). This concludes the proof of 
Theorem 4.1. [ 
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Let us mention a last extension of Theorem 1.1. We consider the set Az of all 
applications from 27 into A, also called “biinfinite words,” in reference to the 
notation U= ~~~u-~u,u~ ..* (where USE A for all iE h) used to represent these 
words. Then one can generalize the previous results as follows: To each sentence 4 
of 9 is associated the set L(d) of all biintinite words u such that 4 is true on U. 
Observe that since 9 does not contain any constant symbol, every subset of AZ of 
the form L(q5) is shift-invariant. 

Denote by “A the set of all “left-infinite” words u = . ’ . u _ I a,. To each sentence q5 
of 9, one associates in the same way the set of all left-infinite words u E “A such 
that 4 is true on u (by interpreting 4 in the set of all negative or nul integers). We 
define the hierarchies dR(“A) and S&,(“A) (n 30) analogous to dn(A”) and BJA”). 

For Xc”A and YcA”, we denote by XY the set of all biinfmite words 
u= . ..u_.a,a,.. . such that there exists an integer ie Z with 

. ..Ll-.U,EX, U ,+1ai+2 ... E Y. 

Next we define 

&$(A”) = PiqA”) = (0, A”) 

and for n >, 0, we define 9,, + i (AH) as the set of finite unions and intersections of sets 

XUY 

with XEBJ”A), UEA, and YEBJA”). Finally, we denote by saZ,+,(Az) the 
boolean closure of J?&+ ,(A”). We can now state 

THEOREM 4.4. For every n 2 0 and for all XC A”, one has XE &,(A”) (resp. 
PJ,,(A”). Iff there exists a formula 4 E r, (resp. 2’,,) such that X= L(d). 

If we set d(A”) = U z&(A”), we have, just as in the previous cases, the following 
corollary. 

COROLLARY 4.5. For every XC A” one has XE &(Az) ifs there exists a formula q5 
of .Y such that X= L(d). 

There is no particular problem to show that for every XE &‘,,(A”), there exists a 
formula q5 E r, such that X= L(d). Indeed let Y (resp. Z) be the set of all left- 
(right-) infinite words satisfying a sentence J,G (rep. T) of L’,,. Then 

XaY= L@z(ll/,(z) A 71,(z) A z,(z))). 

Conversely, to show that I$ E r, implies L(b) EJzZJA”), one needs of course to 
introduce the set A”, and the families (sz$(AS)),~~ and (gJA$)),>,, whose 
definition mimics the previous definitions. The remainder of the proof is the 
same. 1 
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