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Introduction

When we examinc the classical set-theoretic foundations of mathe-
matics, we see that the only sets that play a role are sets of restricted
type; at the risk of understatement, only szts of rank < w + w. Further
examination reveals four fundamentai principles about sets used: the
existence of an infinite set; the existence of the power set of any set;
every property determines a subset of any set; and the axiom of choice.
The theory based on these four principles is known as Zermelo set
theory together with the axiom of choice. and is written Z in this paper.
Theu: Z adequately formalizes mathematical practice (excluding modern
set theory) in an elegant ind straightforward way.

In modern set theory, however, the object of study is the notion (or
notions) of set of transfinite rank. Whether or not there is a single
meaningful notion of set of transfinite type, rather than, insvead only a
multitute of notions of set obtained by prescribing a definite ‘number”
of iterations of the power set operation, remains a controversial issue.
In any case, what is completely clear is that no notion of’: set >f arbi-
traiy transfinite type, or even notions of set obtained by some definite
iteration (beyond w + w) of the power set operation, is relevai t, as of
now, to mathematical practice, or even understood by mathen aticians.
We refer to this characteristic aspect of modern set theory, the consider-
ation of sets of transfinite rank, or of sets obtained by more than finite-
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ly many iterations of the power set operation applied to-the hereditarily
finite sets, as highcr set theory.

What is the significance of this sociology for us? It suggests to us con-
sideratiorn: of the following coniecture:

*) every sentence of mathematical discourse (excluding, of course,
higher set theory) which can be decided using fundamental pri-ci-
ples about sets of transfinite rank (like: Z consists of fundamenial
principles about sets of rank < w + w), can already be decided in
mathematical practice.

It is beyond the scope of this paper to thoroughly discuss whether
certain formal systems do or do not codify fundamental principles
about sets of trarsfinite rank, but certain cases are clear cut. (it is, of
course, the case that no one today knows how to provide a theoretical
description of what is a fundamental principle and what is not; a gen-
eral theory of notions and principles is nowhere in sight). That Z codi-
fies fundamental priaciples about sets of transfinite rank is clear, even
though it was intended to codify only fundamental principles :bout
sets of rank < w + w. That the theory Z(Q) = Z together with “‘there is
a rank function defined on every countable well-ordering” does, is
fairly clear cut. That, say. Zermelo-Fraenkel set theory together with
the existence of a measurable cardinal, or, say, Zermelo-Fraenkel to-
gether with the existence of nonconstructible set: of natural nu mbers
does not is also fairly clear cut. There is nothing i1 the phrase “set of
transfinite rank” which even remotely suggests that all sets are con-
structible or that all cardinals are nonmeasurable.

With these rough guidelines in mind, the reader can appreciate the
following important open question, which has turred out to be con-
nected with attempts at settling *):

**) are there fundamental principles about sets of transfinite rank
which refute or prove the axiom of constructibility?

No answer to **} is in sight.

Perhaps some more rough guidelines may be useful in helping the
reader appreciate *). Clearly Con(Z) can be proved in Z(Q2) but not in
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Z itself. Does this constitute a refutation of *)? No, because Con(Z) is
really about (formal systems of) set theory of rank < w + w, and to
understand what a set of rank < w + w is, one has to go beyond use of
sets of rank < w + w, and so, go beyond (our model of) mathematical
practice. Thus Con(Z) is considered outisde of mathematical discourse.

The main obstacle in obtaining a genuine negative solution to ¥} is
that the only sentences of mathematical discouse which are known to
be independent of Z at the same time which have proofs in higher set
theory (even using, say, the existence of a measurable cardinal) are also
kno./n to imply, within Z, the existence of nonconstructible sets; so, if
one wishes to solve *) using such seniences, then one wil! also have to
solve **),

Our approach avoids this nonconstructible trouble by producing a
sentence of mathematicai discouse about Borel sets which is Il g (hence
provably relativizes to constructible sets) and giving a proof of indepen-
dence of this Hg sentence from Z 2.ad conjecturing that this n; sentence
is >rovable within Z(Q). That the ;1! sentence is provable within Z(£2)
seems like a reasonable conjectuire brcause of
1) examination of the proofs cf independence given here;

2) the Hg sentence is known to be provable using the existence of Ram-

sey cardinals D.Martin [4]);

3) this proof of Martin uses partition properties of cardinals directly,

and the cardinal of V() is the first cardinal satisfying certain im-

portant weaker partition properties.

The llg sentence under investigation here is Borel determinateness.
written here as (Va) (D(a)), (see Definitions 1.4 and 1.5). Our indepen-
dence result from Z is given in the Corollary to Theorem 1.6. Actually,
the independence proofs work equally well for the following conse-
quence of Borel determinateness, which reads like (but by our indepen-
dence proof is not) a standard Theorem in the classical theory of the
Borel hierarchy: to every Borel set Y € 2¢ X 2 there is a continuous
function F which either uniformizes Y or uniformizes [ (f, g):

(g, )¢ Y], see Section 4 for elaboration.

The paper is organized as follows. In Section 1 we proceed directly
to the many independence result which is Theorem 1.6 (and Corollary),
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making use of detailed information about the model, Lw*«  (see Dci-
nition 1.16) of Z used in the independence proof. Section 2 is entire'y
devoted to an outline of a proof of this detailed information. Thus Ssc-
tion 1 comprises the body of the independence proof, and Section 2
comprises the routine detailed machinery needed. Section 3 considers
various refinements, including the independence from 2nd-order
arithmetic of determinateness for G5, 5, sets; this is to be compared
with M.Davis [2], which gives a mathematical practice type proof of
determinateness for G, sets (easily formalizable in 2nd-order arith-
metic). Neither our independence methods nor the methods of [2] (or
any other mathematical practice methods) seem to apply to Gy -

Apparently, determinateness was first introduced by Gale and
Stewart in [3]. Determinateness in various forms (for analytic sets,
projective sets, ordinal definable sets, all sets, to mention some divi-
sions) have been under intensive investigation in recent years. For a
recent survey, see A.Mathias [5].
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Section 1

The purpose of this Section is to prove Theorem 1.6 and its Corol-
lary.

Weletw be [0, 1, 2, ...1, 2% be the set of all functions from w into
[0, 1], and © be the first uncountable ordinal.

The Borel subsets of 2 are the least o-algeora containing all open
and closed subscts of 2% . It is well known that the Borel subsets of 2%
are just those subsets which lie in some B, a < 2, as defined below.
But first we define tlie open subsets of 2.

Definition 1.1. We say Y C 2“ isopen if and only if (Vx}(x € Y ~
+>(3Ane w)Vye2(Vm< n)(y@in)=x(m))~» y € Y)). We say
Y € 2% is closed if and only if 2% — Y is open.

Definition 1.2. Define B; =[Y C 2*: Y isopen or Y is closed],
By 4y =Y C 2¥:Y is the intersection of some countable (or finite)
subset of B, or Y is the union of some countable subset of By, |,

B, = U B,,wherea, A <, \ is a limit ordinal.
a<A

We can associate in informal terms, to each Y C 2%, a discrete two-
person game of infinite duration. The players are designated I, II. The
players alternately produce (or play) either O or 1, starting with I. If
the resulting element of 2% isin Y then I is considered the winner; if
not, then Il is. The question arises as to whether there is a perfect
strategy for winning available to one of the two players.

We now wish to give the well known formal analysis of the atove.

Definition 1.3. A 0, 1-sequence is a function s whose domain is an
initial segment (possibly empty) of w and whose range is a subset of
[0, 1]. We write In(s) to be such that Dom(s) == [i: i< In(s)].Ifs, ¢
are 0, I-sequences then we say ¢ extends s if and only if In(s) < In(¢)
and (Vi < In(s))(s(i} = t(i)). If s is a 0, 1-sequence and f€ 2“ then f
extends s means that (V) (i < In(s) » s(@) = f(i)).

Definition 1.4. Let Y C 2%, We write S(Y, I, f) if and only if
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1) sis a function from the 0, 1-sequences into [0, 1],

2) (Vge2“°)ang((n-1)/2)ifnisodd; f(gt [i:i<n/2]D)ifnis
even)€ Y).

We write S(Y, II, g) if and only if

1) gis a function from the 0, 1-sequences into [0, 1]

D (VFe2)YAn(f(nf2)ifniseven; g(f t lizi<(n+1)/2))ifnis
odd) e 2¥ -Y).

We write D(Y) if and only if (3 )(S(Y, L, /) vS(Y, I1, ).

Thus S(Y, 1, j°) expresses that f is a winning strategy for I in the game
associated with Y; S(Y. 11, y) for II. And D(Y) expresses that either I or
II has a winning strategy.

In this paper we are only oncerned with D(Y) for Borel Y.

Definition 1.5. Let 1 < «a < Q. Then D(a) means (VY € By )(D(Y)).
We use some notions from ordinary recursion theory.

Definition 1.6. For f€ 2 we write gpef for the eth partial function of
one argument on w that is partial recursive in f, according to some cus-
tomary enumeration. We write g <, f for (3 e)(g = ¢ef). We write g =4 f
forg<,;f& f<rg, and we write f<rgforf#,g& f<rg.

Thus g < fis read “g is partial recursive in /. The T stands for
Turing.

Definition 1.7. We write J(f) for the Turing jump of f € 2%. Define
Jrri(fy=JUJ"(f)), 0< n. Define JY(f)=am((Je(fN(b)if0< a,
0< b and m = 243%; 0 otherwise).

Definition 1.8. A Turing setisa Y C 2% such that (VA(V((fe Y &
f=rg)>g€Y) ATuring coneisa Y C 2 such that (3f€ 2“)(Vg)

geY=f<rg).

Unless we specify otherwise, wher.cver we quantify over functions we
are quantifying only over 2¢.
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We now present a theorem of D.Martin moditied and specialized to
suit our purposes.

Thearem 1.1. Suppose (Va)(D(a)). Then for all «, every Turing set
Y € R, either contains or is disjoint from a Turing cone.

Proofi’ Take X as [,: An(f(2n)) € Y & An(f(2n + 1)) < an(f(2r))].
IfS(X,1,8), then [e€2¥: A<, a]C Y. IfS(X, IL, g), then [c: € 2¢:
h ST d] N Y=¢.

Definition 1.9. LST is the language of set theory;i.e. the predicate cal:
culis with equality (=) and membership (€).

Definition 1.10. Z is Zermelo set theory, a theory in LST, whose non-
logical axioms are

D @yN(Vz)zey=zCx)

2) (A2 (Vw)(wez=(w=xvw=Yy))

I x=y=(V2)zex=zey)

4) (Ix)(VYy)Y(y € x=(y €a & F)), where F is a formula in LST which
does not mention x free

) (AIy)V2Icey=(3WZEWEWEX))

6) (Ix)pex&(VVI(yeEXx—>(A2)zEX & (VW)(WEZE (WE Y YV
w = p))))). Here z C y is «n abbreviation for (Vx)(x €z + x & ),
and ¢ € x is an abbreviation for (Iy)(Vz)(z¢y &y € x)

Nx#tEo>BNPeEx&(VYzEX>2EY))
8) the Axiom of Choice.

We now describe the model of Z we will use in this Section, and
which we analyze in Section 2. '

Definition 1.11. If x is a set then e, is the binary relation cn x given
bye,(@a,b)=@€x & beEx & acb).
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Definition 1.12. Define V(0) = ¢, V(a + 1) =P(V(a)), V)= U V(a),
a<a
where P(x)is [ y: ¥ C x] and A is a limit ordinal.

Definition 1.13. A structure is a system (4, R), where A is a nonempty
set, R is a binary relation on 4. An assignment in (4, R) is a function
f: w— A with finite range. We write Sat((4, R), F, f) to express that
the formula F of LST holds in the structure (4, R) when € is inter-
preted as R, = as equality, and zach free variable v; in F is interpreted as
Sf@@). If F has no free variables taen we may write Sat((4, R), F).

Definition 1.14. For structures (4, R), (B, S) we write Inj(f, (4, R),
(B,S))toexpressthat f: A~ B, f1-1,and (Vx,y € A)(R(x,») =
S(f(x), (). We write Iso(f, (4, R), (B, S)) if the above holds and ;"is
onto. We write (4, R)~ (B, S) or (A fH(Iso(f, (4, R), (B, S)).

Definition 1.15. For structures (4, R) we take FODO({(4, R)) =
{x C A: for some formula F and assignment f we have x =
[ y: Sat((4, R), F,ff)] 1, where f()) = fG) if i # 0; y if i = 0.

FODO stands for ‘“‘first order definable over”.
Often we abbreviate (x, €, ) by (x, €).

Definition 1.16. Define L(0) = V(w), L(a + 1) = FODC((L(a), €;(a))),

L(A)= U L(a), where A is a limit ordinal. Define Lw*w(0) = o,
a<A
Lwt@(a +1)=FODO((L¥*%(a), €)) N V(w + w), Lwtw(d)=
U Lw*w(a), where A is a limit ordinal. Define Lw*w =
a<A
[x: (Ja)(x € L¥*t¥(a))].

Thus our L is the usual constructible hierarchy.

Lemma 1.2.1. Each L«**w(a) is transitive. In addition, Lw*w is rransi-
tive.

Lemma 1.2.2. For all transitive sets x and all f: w ~ x with finite range
we have Sat((x, €),vg C vy, )= (0 F(1).
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Lemma 1.2.3. V(w + w) is closed under subset and power set and
union.

Theorem 1.2. L“*% satisfies Z.

Proof. There is an « such that L“**(a) = L“*“(a + 1). Chcose « least
with this property. 3), 5), and 6) follow from the lemmas; to check 1),
2), and 4), note first that L«w*w(a) = Lw*w For 1), note that

[xe Lw*w(a):x Cyl € Let®(a+ 1) forany y € Lw*w(a). For 2),
note that [x € L@*w(a): x =yvx=y] € L¥tw(a+ 1) for any y,

2 € Lw*w(a). For 4), note that [ y € a: Sat((L«“*%(a), ¢€), F,J;’)] €
Lwtw(a + 1) forall g € Lw*w(a), all assignments f, all formulae F in
LST.

Definition 1.17. We assume a fixed primitive recursive total one-one
onto Goédel numbering of the formulae in LST. We let ‘p’ be the Godel
number of ¢. Let (4, R) be a structure. We write Def((4, R), n, x) if
and only if n is the Godel number of the formula F(v) with only the
free variables shown and x is the unique element of 4 with Sat((4, R),
F(vp), An(x)), and furthermore n is the least integer with this property
that x is the unique element of 4 with Sat((4. R), F(vy), An(x)).

Definition 1.18. Let (4, R) be a structure. Then we let Th((4, R)) be
[n: n is the GOdel number of the sentence F and Sat((4, R), F)].

Definition 1.19. If x C w then we write Chi(x) for An(l if n € x; 0 if
ne¢E x).

We need to draw on one fact about the construction of Lw*w ; Sec-
tion 2 is devoted to a detailed cutline of a proof of the following.

Theorem 2. There are formuise ¢ (vgy, v,), ¢; (vg, v;), and ¢3(vg, vq)
in LST with only the free variables shown such that for eact x C w,
x € Lw*w  there is a limit ordinal \ such that

1) x € Lwtvd)
2) (Vy e L@« ())(In)(Def((Lwr(a), e)n, y))



334 H.M_Friedman, Higher set theory and mathematical practice

3) Th((Lw*®(A), €)) € Lw*w (A +2)

4) Sat((L«*“(A), €), v (vg, vy), f) if and only if (uB)(f(0) € Lwtw (8))
< (uB)(f(1) € Lwrw(g))

5) Sat((L«*“ @), €), 93 (vg, vy), ) if and only if (uB)(f(0) € L« (p))
= (uB)(f(1) € Lw*e (8))

6) Sat((L«**(\), €), v3(vg, vy), f) if and only if f(1) = (un € w)(f(0)
€ V(w +n)).

We make the following Definition 1.21 modelled after Theorem 2,
using the v, , v,, and ¢; of the statement of that Theorem.

Definition 1.20. We fix a structure (49, R%) such that A? = [j:iis
odd], RO is a recursive relation, and (49, R9) is isomorphic to
(V{w), €). By 7 we mean that element of 40 which is satisfied, in
(A9, R9), to be n.

Definition 1.21. A fowered structure is . structure (4, R) such that

1) A C w and the relation x ~ y = Sat((4, R), ¢,({vg, vy ), An(x if n = 0;
y if n # 0)) is an equivalence relation on A

2) the relation x < y = Sat((4, R), | (vg,vy), An(x if n=0;y if n # Q))
has that (Vx, y € A)((x <y &~y <x)v(y<x &~x<y)v
x~y&~x<y&~y<x)Pand(Vx,y,z€A)((x~z&x<y)
»>2z2<y)&({(x ~z &y <x)-»y<z)), and < has no maximal ele-
ment

3) A0=[i:i€c A& (V)(~j<D],RO=R1t AO

4) we have (Vx € 4)(3 ! y)(Sat((4, R), v3(vg,vy), An(x if n = 0;
y if n # 0)), and so we let F be given by (V x € 4)(Sat((4, R),
v3(vg,v), Anx if n = 0; F(x) if n # 0)). Then we want
(Vx € A)(In)(F(x) =), and (V x & A0)(F(x) = 0)

5) (Vx € A— A0 (F(x) = n where n is the least integer greater than
every 7 such that (3Y)(R(y, x) & F(y) =1))
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6) suppose x € A. Then FODO(([i:i<x],Rt' [i:i<x]))=
[zCliti<a):(ANG<xVj~x)&z={k:R(k,D1)]

7 (Vx.y € A)R(x,y)>x<y)

8) (A4, R) satisfies the axiom of extensionality

9) (Vi€ A—A%(3))(Def((4, R), j, 2)) & i =2j)
10) [i: i€ Th({(4, R))] € FODO(FODO((4, R)), €)

11) for all nonempty x C 4 with Ch(x) <y J(J*(Ch(Th((4, X)))))
there exists a y = x such that forallz € x we have ~ 2 < y.

We presume know'!edge of the effective Borel hierarchy. In particular,
we will make use of the notion oi: being in B, , with recursive code.

Lemma 1.3.1. [ f& 2«: fcodes Th((4, R)) for some towered structure
(4,R)] isin B, , with recursive code. In other words, 3 = [ f€ 2%

f = Ch(Th((4, R))) for some towered structure (4, R)) isin B, , with
recursive code.

Proof. A more detailed proof of a more deli:ate version of this is given
as Lemma 3.2.2; we will only mention some basic points for this present
version. To “test” whether f€ & first construct the relational structure
(4,R) givenby AP C 4, RO =Rt A0, A — A = [2i: i is the Gbdel num-
ber of some formula F(vg) such that ‘(3! vg)(F(vg)) € (k: f(k)=1]
and (Vj <) (if j is the Gddel number of some formula G(v,) then
(310} (Gg)) & (Fv)(G o) & Fog)Y € Lk: f(k)= 011, R(2i, 2)),
for 2i, 2j € A, holds if and only if for the corresponding F, G we have
‘(Fug)(Flvg) & Bv )G & vpev))) € [k: f(k)=1],R(2i,2/+ 1)
is always false, R(2i + 1, 2/) holds if and only if ‘(3vy) (Pvy) &
(Fv)(GW,) & vg €v;)) € Lk: f(k)=1]), where P is the canonical
definition of 2i + 1 in (4, R?). Then check whether clauses 1) — 11)
hold for this (4, R). It is clear that if there is any (4, R) with

Th((4, R))= [k: f(k)= 1] it must be this (4, R) above.

Lemma 1.3.2. If Y C 2% isin B, , with recursive code then Y N L¥*w
must be in L¥*« cnd L«** must satisfy that Y 0 Lw* isin B, , with
recursive code.
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Proof. This is a well known absoluteness property of the effective Borel
hierarchy.

Theorem 1.3. I N Lwtw ¢ | wtw gnd is satisfied in LYY to be an ele-
ment of B, , with recursive code.

Theorem 1.4. Forallfe 2« N Lwtw thereisa g € 3 N LYtw such
that f<r g.

Proof. Take thisf Letx =[%:f(k)=1]. Choose A according to Theo-
rem 2. We must choose the appropriate towered structure (4, R) =
(Lw*«@(a), €). We will define a g such that Iso(g, (L«*“(0), €), (4, R)).
Take g} V(w) to be the isomorphism from (V(w), €) onto (49, R?). For
y € LYtw(A) — F(w) take g(») to be 2n where Def((L«*«w (X)), €), n, »).
Take R to be the relation on Rng(g) induced by g. Conditions 1) — 10)
in the definition of towered structure are easily verified. Condition 11)
also is satisfied since < will be a well-founded relation.

Definition 1.22. Let f, g € 2«. The join of f, g, written (f, g), is
an(f(n/2) if n is even; g((n — 1)/2) if n is odd).

Lemma 1.5.1. Suppose (A, R), (B, S) are towered structures such that
Ch(Th((4, R))) <y J(Ch(Th((B, 5)))) and Ch(Th((B, $))) <r
J(Ch(Th((A4, R)))). Then either (3 H(Iso(f, (4, R), (B, SN) or

(AN Unj(f, (4, R), (B, S))and {Ix € B)(Rng(f)=[yE€B:y<x],
where < is as in (B, S) as in Definition 1.21)), or (3 Inj(f, (B, S),
A, R))and (Ax€ A)(Rng(f)=ly€A:y<x],where<isasin

(A, R) as in Definition 1.21)).

Proof. Let T'; = Th((4, R)), T, = Th((B, S)). Let ~;,<;, F, beasin
Definition 1.21 for (4, R); ~,, <,, F, be as in Definition 1.21 for
(B, S).

Define the predicate P(n, i, j) by recursion on n. P(0,i,j)= i € A0 &
i=j. Pin+1,i,j)= Fi()=Fy()=n+1&(Va)R(a, i)~
(3 b)(AK)(Sb,)) & P(k,a,b) & Fy(a)=F,(b) = k)) & (Va)(S(a, )~
(3BY(IK)(R(D, i) & Pk, b,a) & F,(a) = F (b) = k)). It is easily seen
that, uniformly, for each &, the relation P(k, a, b) is recursive in
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J¥((Ch(T,), Ch(T,))). Hence, uniformly, for cach k, the relation
P(k, a, b) is recursive in both J*+1(Ch(T,)) and J¥*1(Ch(T,)).

We now wish to prove by induction on n that for each i there is at
most one ; such that P(n, i, j). The case n = 0 i3 trivial. Suppose true for
all k < nand let P(n + 1,1, ), P(n + 1,1, a). Let S(x, j). Then Fy(x) =k
for some k£ < n. Then for some xy € 4 we have P(k, xq, x) and R(xg, i).
Hence by P(n + 1, i, @) we must have for some y € B, P(k, xg, y) and
S(», a). But since k < # We must have x = y. So S(x, ). Hence
(Vx)(Six, j) = S(x, a)). Symmetrically, (Vx)(S(x, a) > S(x, j)). So
a =j, and we are done.

Symmetrically, for each j there is at most one i such that P(n, i, j).

Clearly (P(n,i,7) & R(a, i)~ (3b)(3 k)(P(k,a, b} & S(b,J])); the
only nontrivial case is when j € 4V, in which case a € A0 by clause 7)
of Definition 1.21. Also ‘P(n, i,j) & S(a,j))~» (3b)(Fk)(P(k,b,a) &
R, 1)).

Thus roughly speaking, P defines a partial isomorphism between
(A, R)and (B, S).

Consider K= [i€ A: (Vj)(G~, i~ (3n)(I3m)(a)(3b)(Pin,i,a)
& P(mn,j,b)& a~, b& (V) e~y b~ (33 r)d~, i& Pir,d,c)))
& (Vo) e<, b~ (33N <, i& P(r,d,c))))]. Then clearly
Ch(4 — K) <; JU“(Ch(T}))). We now break into cases.

Case 1. A-K=¢,(Vjs B EM(A)(P(n,Ii,j)). Then obviously (4, R)
~ (B, S), given by F.

Case 2. A -K=¢,(3j€ BYVn)(Vi)(~ P(n,i,j)). Note that then
Ch(lj€ B: (Vn)(Vi)(~ P(n,i,/))]) <y JJ“(Ch(T,))) and is non-
empty. Choose x € B with (Vn)(Vi){~ P(n,i,j)) &

(Vy <x)(3n) 3P0, i, )). Then since K = 4 we must have that
(VHIEAn(3 DHPM, i, )~ j<, x]. Hence set (i) to be the unique j
such that (3n)(P(n,i,j)). Then Inj(f, (4, R), (B, S)) & Rng(f) =
[jiij<xl.

Case3. A-K+#¢,and(Ix)x€A-K& (Vy)y<; x>yeK)&
x ¢ A0). Fix this x. Note Ch([j € B: (Vn)}(V)({i<; x >

~ P(r,1,)]) <y J*(Ch(T,)). (Vi€ B)(An)(INi<; x &

P(n, i, j)) then take f(j) to be the unique i such that (In)(P(r, i, j)).
Then Inj(f, (B, S), (A, R) & Rng(N=[y:y<; x]1.1f
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(/€ BY(Vn)(Vi)(i<; x>~ P(n,i j)), then choose y € B such that
(V)(V(E<; x>~ P(n,i,y))and (Vj <, »)(An)(3DN{E<, x &
P(n,i,j)). Now note that ([ i: iI<;x],Rt[iti<; x])=~
(17:7<3¥1,8t [J:J<; y])and let f be the isomorphism given by
f(@@) = the unique j such that (In)(P(n, i, j)). We obtain a contradiction
by showing that x € K. It suffices to show that (Va)(a ~p x> ’
(3n)(3b)(P(n,a,b) & b~, y)) & (Va)a~, y » (3In)(3b)(P(n, b, a)
& b ~; x)). By symmetry it suffices to obtain the first conjunct. Let
a~; x.Then [i: R(i,a)] € FODO([i:i<; x], Rt [i:i<;x]). In
particular let G be a formula and g an assignment such that

[i:RG, @) = [i: Sat(([i:i<; x], Rt [i1i<; x]),G.g°]. Now
there must be a k such that F;(a) = k + 1. Choose the unique a* € B
such that [j: SG,x*)) = [j: Sat(({j:7 <, »1, St [j:j<; ¥]), G,
(fo g)}’)] . Then since f is an isomorphism we must have a* ¢ [j:
j<pylsinceaé¢ [i:i<, x].Buta*€ FODO([;:j<, ¥], St [j:

i <3 ¥1), and so we have a* ~, y. Also since f is an isomorphism, we
have that Rng(ft [i: R(,a)))=1j: S(j,a*)], and hence by the way f
is defined, we have P(k + 1, a, a*).

Case 4. A — K+ ¢,and (4 -~ K) N A% # ¢. But this is obviously impos-
sible since 49 C K.

Lemma 1.5.2. Let (4, R), (B, S) be towered structures, Inj(f, (4, R),
(B,S)), x€ B, Rng(f)=[i:i<; x], where <, refers to (B, S). Then
J(Ch(Th((4, R)))) <y Ch(Th((B, 5))).

Proof. We use the notation of the proof of Lemma 1.5.1. Fix f, x. Ncte
that - {, has no maximum element. Let x; = any <,-least element of
li:x <, i].Letx, =any <,-least element of [i: x <, i]. Then [i:

i € Th((4, R))] € FODO(FODO((A4, R)), €) as in 10) of Definition
1.21. Hence there is a y ~, x, with S(z, y) = z is some { with

i € Th((4, R)). Next it is easy to find a formula P(v,, v,) such that
Sat((B, S), P(vy, vy ), fyl) = £(0) is some j with J2(Ch(Th(4, R))(j) = 1.
Hence clearly J2(Ch(Th((4, R)))) < Ch(Th(B, 5)), since

(3n) Def((8, S), n, y). Since J(Ch(Th({4, R)))) <y J2(Ch(Th(4, R)))),
we must have J(Ch(Th((4, R)))) <7 Ch(Th((B, S)).
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Lemma 1.5.3. Suppose (A, R), (B, S) are towered structures such that
Ch(Th((4, R))) <7 J(Ch(Th((B, $5)))) and Ch(Th((B, $))) <¢
J(Ch(Th((4, R))). Then (A R)=(B,5).

Proof. Assume hypotheses. Then either (3 f)(Iso(f, (4, R), (8, 5))) or
AN Uni(f, (4, R), (B,S) and (3x € B)(Rng(f) = [y € B:y <, x1])),
Or Vice versa. The latter two cases contradict our hypothesis by Lemma
1.5.2. Hence Iso(f, (4, R), (B, S)) for some f. Hence Th((4.R) =
Th((B, S)), and so obviously for all i, Def((4,R) i. x) = Def((5&, S), i,
f(x)). Hence by clause 9) of Definition 1.21, f must be the identity.
Hence (4, R) = (B, S), and we are done.

Theorem 1.5. Forall f€ 2% n L°*Y there is a g such that f <. g and
(Vaee2¥)(g=ra>a€E QY -52N Lw*),

Proof. Fix f€ 2« N L¥*¥ By Theorem 1.4, choose h € § N L¥*
with f<p h,endlet [i: h()=1]= Th((4, R)), where (4, R) is a tow-
ered structure. Then J(h) € L' and so (V a)(a =5 J(h) » ¢ = L«*).
Clearly f <, J(h). Now J(h) <y J(h) and A <7 J(J(h)), and so by
Lemma 1.5.3 there must not be a towered (B, §) with J(#) =r

Th((B, S)). In other words, (V a)(g =y a > a € 2% — J).

Theorem 1.6. L“*% satisfies that there exists an element of B, , with
recursive code which is a Turing set but does not contain nor is disjoint
from a Turing ccne. In particular, L*** satisfies ~ D(w + w) by Theo-
rem 1.1,

Proof. Take the Turingset X tobe [f€2“:(3g€ S )(f=8)]. Then
using Theorem 1.3 it is easily seen that X N L“*w g Lw*® and is satis-
fied to be an element of B, , With recursive code and to bc a Turing
set. From Theorem 1.4 one has that X is satisfied to intersect every
Turing cone, because of the absoluteness of Turing reducibility. By
Theorem 1.5, X is satisfied to not contain any Turing cone.

Corollary. By Theorem 1.2, D(w +w) is not provable in Z.
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Section 2

We have defined Z in Definition 1.10, and L“**(a), L*** in Defini-
tion 1.6, and have remarked that each L“*%(a) is transitive and that
Sat((L«*%, ¢), F, f) for all F € Z and assignments 1" (see Definition
1.13). Furthermore, we have the special structure (49, R9) of Defini-
tion 1.20.

The purpose of this Section is to give a detailed outline of a proof of
the fact about the L“*“ (a) needed in Secticia 1; namely, Theorem 2.

Definitioca 2.1. We let(x,y>=[x,[x,y]]. We write Fen(x) for
(Vyex)3a(3b)(y=(a, b)) & (Va)(Vb)(Vc)((la.rex &

(a, c) € x) = b =c). We write Dom(x) for [a: (3 b)({a, Y E X)],
Rng(x)for [a: (EB)(b,a)E x)]. Welet ()=¢, (x)=1[¢0,x)],

(xg5 - ¥5) = [, x): 0< i< k. We write In((xg, ..., Xg 1)) =&,

(g5 s Xg 1)@ = x;, 1 < k. We take Seq(x) =[y: Fen(y) &

(Fk€ w)k# ¢ & Dom(y)=k) & Rng(y) C x]. We takeay *a; * ...
* a; , for a; € Seq(x), to be the resuit of concatenation.

Definition 2.2. We assume a one-one Gociel numbering from formulae
onto . A formula is a formula using V, 1, &,v, ~, €, =, v, vy, .. .
For fcrmulae F we let ‘F’ be the Godel namber of F. For n € w we let
|z#| be that formulz with Godel number n.

Definition 2.3. We write LO(x), (x is a linear ordering) for x = (4, R)
andA#¢andRC [, b):acA&beA] andA N V(w)=¢ and
(A4, R constitutes a linear ordering on all of A. We write A = Field(x),
R = Relj (x).

Definition 2.4. If LO(x) we take O(x,y)=Sy€ A & (Vz){z,» ¢

Rel; (x)), Suc(x, y,z)=(z, ) ER; & ~ Balz,a)eR; &

(@, )€ R;), Lim(x,y)=y€A & (V2)(z, )ER, > (3a)(z,®>ER,
& (a,y) € Ry)).

Definition 2.5. We write CS(x). (x is a coded structure), for x = (4, R)
andA+¢andRC [{a,b):a€ A& b€ A]. We write 4 = Field(x),
and whenever we write CS(x), we write Rel, for R.



Section 2 341

Definition 2.6. We write SLO(x), (x is a structured linear ordering), for
x=(F,(A,R;),{4,Ry)and LO(A, R}) and CS{{A4, R,}), and

F: A > w. We write Field(x) = 4, Rel; (x) = K, Rel, @) = R,,
Fn(x)=F.

Definition 2.7. We write Sati(x,n,y) forCS(x) & n€ w & y € Seq(x)
& y=(ag,....a;), 0< k, & x =(A4,R) & Sat((4, R), Inl, f), where
f@O=y@fori< in(y), y(In(y)—1)ifori= In(y).

Definition 2.8. Let K be the least class satisfying
1) A0 c K. See Definiticn 1.20

2) wheneveray, ...,q; € K,0< k,n € w, x ¢ V(w) we have (x, n,
ag, ..., a;) € K. Let F be the function on K given by Fy(n) = n if

ne A% Fy((x,n, ay, ...,a;), = ([ 1], x,n) * Fy(ag) * ... * Fy(ey) *
*([21).

Lemma 2.1. F, is a one-one function on K.

Proof. We prove by induction on In(s) that if Fp(y,)=s, Fy(y:)=53,
theny, =y,. Assume Fy(y,) =s, Fy(y,) = s. Then if s is not 2 s¢e-
quence then s = n for some n € A0, in which case y; =y, =n. Sosisa
sequence. Clearly s must be of the form ([ 1], x, n) * Fy(ay) * ... *
Fytap) * ([2]1). Now we must show that the q, ..., a;, x, n above are
unique. Let s = ([ 11, y, m) x Fo(by) * ... * Fy(b,) * (121). Obviously
x=y,n=m.If Fy(ay) € AC then obviously Fy(by) € A? and Fy(ay) =
Fo(bg). If Fy(ay) & A then Fy(ag) starts with [ 1] and ends with [2],
and no [ 1] or [2] occurs in between. Therefore Fy(ag) = F(bg ), and
so on. So we obtain that k = r and each F(a;) = F;j(b;). Since each
F(a;) has shorter length than s, we are done by induction hypothesis.

Definition 2.9. We write < (x, a, b) for LO(x) & a, b € Seq(Field{x))
& a comes before b in the lexicographic ordering on Seq(Field (x)) in-
duced by x.

Definition 2.10. We write Defn(x, a, k) for SLO(x) and a = (n, by,
wes by ), 0 < m, and each b; € Field(x) and Y = [ b: Sati((Field(x),
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Rel, (x), n, (b, by, ..., b,, )] satisfies the following conditions:

a) the range o» Fn(x) I Y contains k — 1 as an element and is a subset
ofkandk€ w — [0].

b) Y+ [b: (b, c)€ Rel,(x)] for all ¢ € Field(x) ,
c) Y [b: Sati((Field(x), Rel, (x), 7, (b, by, ..., b, )] forallr<n,

d) Y # [b: Sati((Field(x), Rel, (x)», n, (b, ¢y, ..., ¢,)) } whenever
<(x,(cgs s €;)s (Bg, -0 b)) .

Definition 2.11. We write CHY (x, f) for
1) LO(x)

2) Fen(f) & Dom(f) = Field(x) & (V y)(y € Field(x) -» (SLO(f(»))
& Field(f(¥)) € A% U Seq(V(w) U x)))

3) 0(x,¥) > f(¥)=(F,(4A,R;),{4, R,)), where 4 =40, R, =R0O,
Ri=et AV, F(a)=0forallac A

4) Suc(x,a, b) > f(a)= (F,(A4, R, (4, R,)), where A = Field(f(b)) U
(([11,8,n) *bg * ... * b, *([2]): Defn(f(d), (n, 59, .... by,), k)
for some k], R; = Rel; (f(0)) V [(a, $): a € Field(f(b)) &
s€ A-Field(f(b)] V [(a,s :a,s € A-Field(f(b)) & a= ({11, b,n)
*by *..xb, *([2])&s=([1],b,m)*cy*..*c,([2]) &
(n < mv < ((Field(f(b)), Rel, (f(B))), (bg, --.s bpy), (Cgy ooes N ],
R, =Rel, (f(b)) U [{a, 5): a € Field(f (b)) & s € A-Field(f(»)) &
s=([1],b,n)*by *...*b, *([2]) & Sati((Field(f(b)),

Rel, (f(B)), n, (a, by, ..., b D], F(a@) = Fn(f(b))(a) ifa €
Field(f(b)); if a € A-Field(f (b)), a=([1},b,n) * by * ... * b, *
([21]), then F(a) = k where Defn(f(b), (n, by, ..., b,,), k)

5) Lim(x,a) - f(a@) = (F,(A,R),(4,Ry)), where F, A, R{, R, are the
unions, over those b with (b, a) € Rel, (x), of Fa(f (b)), Field(f(d)),
Rel; (f(b)), Rel, (f(b)), respectively. CHY (x, f) reads *f is a coded
hierarchy on x”°.

Definition 2.11. A limit ordinal A is an ordinal > 0 with no immediate
predecessor. Whenever we write A we mean a lir-it ordinal.
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Lemma 2.2. There is a formula Py(vy, v, v,) and a sentence Q, such
that for all X we have Sat((Lw*w(0), €), Q,), and for ail transitive sets A
such that Sat((4. ¢), Q) we have : Sat((4, €), Py, 1) = Sati(f(0), f(1),
F(2)), for ail assignments f in A, and Sat((4, ¢), (V v (FxNVY)(yEX
=(y =y, v, & Py(vg, vy, v3)))).

Lemma 2.3. There is a formula Py (vy,v,,v,) and a sentence Q, such
that for all X\ we have Sat((L“*“(A), ¢), 0,), and for all transitive sets
A such that Sat((A4, €), Q,) we have Sat((4, e), P,, /)= < (f(0), f(1),
F(2)), for all assignments f in A, and have alsc Sat((4, ¢),
(Vog)@x)Vy)yex=(y=(v,vy) & Fy(vy. vy, v))))

Lemma 2.4. There is a formula P3(vy. v, v, ) and a sentence Q5 such
that for all X we have Sat((Lw*®()\), €), Q3), and for all transitive sets A
with Sat((A, €), Q3 ) we have: Sat((A, ), Py, f) = Defn(f(0), f(1),
f(2)), for all assignments fin A, and Sat((4, €), (Vv )(Ax)N(VY)(y € x
= (y =(vy, v & Py(vg, vy, 0,3)))).

Lemma 2.5. There is a formula P4 (vy, v;) and a sentence Q4 such that
for all X we have Sat((Lw**(}), €), Q4) and for all transitive sets A with
Sat((A4, €), Q4) we have Sut((4, €), Py, f) = CHY (f(0), f(1)), for all
assignments f in A.

Definition 2.12. We write WO(x) for LO(x) & (Vy C Field(x))(y # ¢
» (Jacy)(VbeE y)(b,a)¢ Rel,|(x))). We write (4, R) =~ (B, S) for
(3N Uso(f, (4, R), (B, S)). 1. LO(x) and a € Field(x), then we write
x, for [b:(b,a)€ Rel; (x)].

Lemma 2.6. Forall x € V(w + w) with WO(x) there is a unique f such
that CHY (x, ) & f€ V(w+ w). Furthermore,

1) for all a € Field(x) we have that (3 'g,)(Iso(g,, (Field(f(a)),
Rel, (f(@))), (Lw*w(B), €))), where (x,, Rel; t x,) = (B, €)

2) for all a € Field(x) and for all b € Field(f(a)) we have that
Fn(f(a))(b) = un(g,(b) € V(w +n))

3) for all a € Field(x) we aave WO ((Field (f(a)), Rel; (f(a)))).
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Lemma 2.7. Let LO(x), (Field(x), Rel, (x)) = (a, €), x € LYY (B).
Then (i f)(CHY (x, f) & f€ LY@ (8 + a + w)). Furthermore for each
a € Fieid(x) and k there is a g;‘ € LYt (B8 + a + w) such that lso(ga",
(Field(f(@) " [b: Fn(f(@))(b) < k], Rel, ( f(a)) t Field(f(a)) N

(b: Fn(f@)(B) < k), (Lwre(y) N V(w + k), ), and LY (y) N
V(w+k)E€ L* (B +a + w), where (v, €) ~ (x, Rel, (x) I x,) .

Proof. Fix 8. Then argue by induction on a. The basis case is trivial.

Argue the limit case through use of Lemma 2.6, which gives unicity

below the limit and which assures that the types needed are bounded

below by V(w + ng), and by Lemma 2.5, which gives a first-order de-

scription below the limit. Argue the successor case by Lemma 2.4,
The g;" are developed by induction on k.

Definition 2.13. We say Lw*«(a) is pure just in case w < « and for all
B < « there is an x € L«*«(a) with LO(x) and (8, €) = (Field (x),
Rel, (x)), and for all § < a we have Lw*w(B) # Lo*w (8 + 1).

Lemma 2.8. Let L«“*“(a) bhe pure, (VB < a)(B +8 < a), Sat((Lw*(a),
€), WO(vy), Ak(x)). Then either WO(x) or for all 8 < « there is an

a € Field(x) with (8,¢) =~ ({b:(b,a) € Rel; (x)}, Rel; (x) t [ b:

(b,a) € Rel;(x)]).

Proof. Letx € Lw*w(a), Sat((Lw*w(a). €), WO(vy), Nk(x)), and assume
B < a.~ WO(x), and 8 is the order type of the maximal well-ordered
initial segment of (Field (x), Rel; (x)). We wish te obtain a contradic:
tion. By purity, let y € L(a) have LO(y) & (8, ¢) = (Field(»), Rel;(»)),
and choose v < a with x, y € Lw*«(y). Then a straightforward induc-
tive argument will reveal the existence of an isomorphism from the
ordering defir~d by y onto the maximal well-ordered initial segment of
the ordering defined by x, which lies in L«*w (y + 8 + w). But then
Sat((Lw*w(y + B + w), €), -~ WO(vy), Ak(x)), and hen:ce Sat((Lw*w (a),
€), ~ WO(vy), Ak(x)), which is a contradiction.

Lemma 2.9. Let Lwtw(a) be pure, L¥*«(a) # LwW*%(a + 1),
(VB < a)(B+B < a),and Sat((Lw*w(a), €), WO(vq), An(x)). Then
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(3f€ Lore(a))(CHY (x, 1)) if and only if (3 8 < a)((Field (x),
Rel, (x)) =~ (B, €)).

Proof. Suppose ~ WO(x). Then by Lemma 2.8 the maximal well-
ordered initial ssgment of x must be at least a. Note that we can define
gf € L“"“(a) as in Lemma 2.7, for each a € Field(x), even though

~ WO(x). In fact, Jet x € LY*“(8). Then the g‘f are in LYt (8 + w).
Consider S = [e¢ € Field(x): (3 k)(3b e Rng(gf NV)e,a) €

Rel) (x) > (Vp)(b ¢ Rng(g?)))]. Then clearly S contains the initial
segment of x of type a. Now, S is in Lw*w (8 + w + w). If « is the type
of the maximal well-ordered initial segment of x then, since WO(x)
holds in L«*« (a), we must have (3a € S) (a is beyond the maximal
well-ordered initial segment of x). If there is a well-ordered initiaf seg-
ment of x of type o+ 1 then since Lwtw(a) # [w@*®(a + 1), we muist
again have (3a € §) (g is bevond the maximal well-ordered initial seg-
ment of x). Fixing this @, form gf € Lw*9(8 + w). Then by definition
of S. we will have a y € Lw*w (g8 + w) which does not lie in L«*« (a),
which is a contradiction. The converse is by Lemma 2.7.

Lemm. 2.10. There is a sentence Qs such that

1) for all pure L«“*< (a) with (V3 < o)(B +8 < a)and Lw*w(a) #
Lo*@(a + 1) we have Sat((L«*«(a), €), Q5)

2) if A is transitive and Sat((A, €), Qs ) and for all assignments fin A,
Sat((4, €), (Fv)(Py(vg,vy)), ) > WO(f(0)), then
(F)A =L@ & (Vy)(y<B—>7y+v<B)).

Lemma 2.11. There is a formula P5(vy, v,) such that for all pure

Letw (@) with (V< a)(B+B < a)and LwWHw (o) # L@tw(a + 1) we have
WO((A4, R)), where A = L*(a)and R = [«a, b): Sat((Lw*¥(a), €), Ps,
M@ifn=0;bifn+0))].

Proof. We will just define the R. Take R :: [(g}'f(a), g;’ bB):

Ax) 33BN WOMX)& fe Lwrw(a) & CHY(x,f) & y € Field(x) &
a, b € Field(f(y)) & (a, b) € Rel, (f(¥)) & Fn(f(y) @)=k &
Fn(f(y)(b)=p)].0f course,gk,g}’f depend on x, fas in Lemma 2.7.
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Lemma 2.12. Let Lw*%(a) be pure, (VB < a)(B +8 < a), L¥w*¥(a) #
Lete(e+ 1), x € Lwtw(a + 1), where x = [a: Sat((Lw*¥ (a), €), F,
An(a))l. Then there is a transitive set A C Lw*w(¢) such that

1) Sat((4,¢€), Q4 & Qs)

2) TCx)C A & x€Aand (Vae x)(Sat((Lwtw(a), €), F, Ar(@)) =
Sat((4, €), F, An(a)))

3) Sat((4, €), (Vvg)(Iv;)(P4(vg,v1)) > WO(vy)))

4) forall y € A we have [Sat((4, €), WO (vy), An(y)) = Sat((Lw*«(a),
€), WO(vg), \n(¥))} & [Sat((4, €), (3P4 (¥, ), Aa(¥)) =
Sat((Lw*“(a), €), (3 1) (F4 (¥, ), \i(¥))]

S) there is a partial function G which is from the cartesian product of
w with TC(x) onto A and a formula Pg(vg, vy, v,, v3) such that
G(a, ») = c if and only if Sat(L¥*%(a), €), Pg(vg, vy, v;3,03),
a@ifn=0piftn=1;cifn=2;xifn> 2)).

Proof. Using Lemma 2.11, employ a standard closure of TC(x) U [x]
under the Skolem functions for the finite number of formulae needed.
This can be deicribed in Lwtw{o) because of the bound in complexity
of the formulae. Then perform the isomorphy onto the transitive set 4.
This isomerphism can also be described in L«*« (a), and will result in a
subset of Lwtw(q). This isomorphism will carry well-orderings into well-
crderings.

Lemma 2.13. Let Lw™w{a) be pure, (VB < a)(B + B < a). Furthermore,
suppose Lw*«(a + 1) — Lw*w(a) # ¢. Then there is a partial function G,
and Pg such that S) in Lemma 2.12 holds and A = Lwtw(a).

Proof. Choose A asin Lemma 2.1Z, using any x € L«*@(a + 1) —
Lw*w () of the form [a: Sat((L«*«(a), €), F, An(a)}] . Such an x can
be found by Lemma 2.11. It suffices to prove that 4 = L«@*<(a). Note
that by Lemma 2.10 we have 4 = Lw*@(g) for some g. Note by 2) of
Lemma 2.12 that x € Lw*«w (g + 1). Hence a = 8.

Lemma 2.14. Let Lw*w(a) be pure, (¥ < a)(8 + B < a), Lw*w(a) #
Lwtw(a + 1). Then L¥*«(a + 1) is pure.
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Proof. We use the G, Pg of Lemma 2.13, for some x € Lwtw(a + 1) —
Lw*tw(a), and P, of Lemma 2.11. It suffices to produce a linear order-
ingy € Lw*w(a + 1) with (a, €) = (Field(y), Rel; ()). Take y = (4, R),
where A = Dc(G), R=[Gx1, 1), (X3, a0 (x, ¥1), (x3,¥,)EA &
Sat((Lw*w(a). €), P5(vg, vy), \(GC:y, ¥ if n=0; G(x,, y,) if

n> 0))]. If this (4, R) is longer than (a, €) then take the appropriate
initial segment; this (4, R) must be 3 well-ordering.

Lemma 2.15. If Lwtw (o) # Lwtw(a + 1)and w < a then L¥*w (o + 1)
and Lw*« (a) are pure.

Proof. Straightforward from Lemma 2.14 by transfinite induction.

Lemma 2.16. Suppose Lw*w(a)# L¥*w(a+ 1). Then Lw*w(a X w)#
Lete((a X w)+ 1).

Proof. Suppose Lw*w(a X w)=L**%((« X )+ 1). By Lemma 2.15,
there is a well-ordering in L@*w(a + 1) of type a. Hence there is a well-
ordering y € Lw*@(a X w) of type (a X w)+ 1. Since (Lw*«(a + w), €)
satisfies Z, there must be an f € Lw*w(a X w) with CHY (, f). Hence
TC(f) € Lwtw (¢ X w)sinve (L¥tw(a X w), €) sati ies Z. In addition
(Lwtw(a X w), ¢) must satisfy that every set has sn.aller cardinality than
TC{f}. But (Lww(a X w), €) satisfies the power set axiom and Cantor’s
Theorem, and <o we have a contradiction.

Lemma 2.17. Loty C w, y € Lwtw, Then there is a \ such that
Lete(\)# LYt (W + D and y € L@t (\) and a forinula P;(vg, vy, v;)
such that Sat({L«@*@ (X)), (Vv) 3 1vg) (g € w & Pyvg, vy, 7)),
An(2), for some z € LWHw (>,

Proof. Choose a least such that y € L9*w(a), w < a. Thena =8+ 1.
Set A == 8 X w. Note that by Lemma 2.16, L«*«(7) satisfies thc hypoth-
eses of Lemma 2.12, using y for x. Using Lemma 2.10, the resulting A
must be L@« ()). Using the Pg of Lemma 2.12 one easily constructs
iie desired Py since TC(y) = w, or y is finite.

Lemma 2.18. Lety € w,y € Lw*«“, Then thereis a \ such that
Lwre(\y# Lwrw(x + 1)and y € L**“(A) and a formula Pg(vy, vy)
such that Sat((L¥**(\), (Vv ) (3 vy € w & Pglvg, v))).
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Proof. Take A, P, asin Lemma 2.17. Note that Lwtw()) satisfies the
hypotheses of Lemma 2.11. Using the P; of Lemma 2.11, take
Pg(vg,vy) tobe (3v))(Vu ) (3 vy € w & Py(vg,vy,v) &
(Vo )(Ps(vg. 7)) >~ (Yo )(3ug)vg € w & Py(vg,v1,04))) &
P;(vg,vy,02))

Lemma 2.19. Suppose Py(v,, v,) is a formula such that Sat((L«*“ (\),
€), (Vv)(3 'vg)vg € w & Py(vg, vy ). Then Th((LY*(A), €)) €
Letw(} +2).

Proof. Note that there must be an (w, R) = (Lw*«@ (1), €) such that

R € Lwtw (A + 1). In addition, every set of natural numbers arithmetical
in R will be in Lw*«(\ + 1). Hence straightforwardly, Th((L«** (), €))
S Lwrw () +2).

Combining Lemmas 2.17 and 2.18, we immediately have:

Theorem 2. There are formulae ¢, (vg, vy), 5 (vg,vy), and ¢3(vg,v)) in
LST with only the free variables skown such that for each x C w,
x € Lwtw there is a limit ordinal \ such that

1) x € Lwtw(d)
2) (Vy € LY**(A)(3n)(Def((Lw*(a), €), n, ¥))
3) Th((Lw*“(Q), €)) € L@tw( + 2)

4) Sat((Lw**(A), €), v (vg, vy), f) if and only if (uB)(f(0) € L« (B))
< WB(f(1) € Lw*«(B))

5) Sat((L@*“(\), €), vy (vg, vy), ) if and only if (uB)(f(0) € L«*(B))
= (uB)(f(1) € L*(p))

6) Sat{((L®*@ (), €), ¢3(vg, vy), ) ifand only if f(1) = (un € w)(f(0)
€ V(w + n)).
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Section 3

In this Section we discuss various refinements of Theorem 1.6 and
its Corollarv.

We assume familiarity with the hierarchy of numerical formulae with
one function parameter ranging over w*.

Definition 3.1. A towered * structure is a structure (4, R) such that
clauses 1) — 10) of Definition 1.21 hold and in addition, for each n‘l’
predicate Q(n, f) we have (3n)(n€ 4 & ~ Q(n,J* (Ch(Th(4, R»N)))) -
@Anned & ~Qn,J(Ch(Th(4,.R)H)) & (Vm)(m<n->

Q(m,J¥ (Ch(Th((4, ROMON. Define S * = [Ch(Th((4,R))): (A, R) is
a towered * structure] .

Lemma 3.1.1. Lw*w satisfies that S* N Lw*w is an element of B .3
with recursive code.

Proof. Routine counting of quantifiers and comparison with the Borel
hierarchy.

Lemma 3.1.2. Suppose (4, R), (B, S) are towered * structures such that
Ch(Th((4, R))) <4 J(Ch(Th((B, $)))) and Ch(Th((B, $))) <
J(Ch(Th(A, R)))). Then either (3f)(iso(f, (4, R), (B, S)) or
@NAnj(f, (A4, R)(B, ) and (Ix € B)(Rng(f)=[ye€B:y<x],
where < is as in (B, S) as in Definition 3.1 (which refers back to Defini-
tion 1.21Y), or (3 HUnj(f, (B, S), (4,R))and (Ix € A)(Rng(y) =
[yed:y<x],where<isasin (A, R)in Definition 1.21)).

Proof. This is the analogue to Lemma 1.5.1, and is proved exactly the
same way, moticing that, for instance, the K of that proof is defined by
a 19 predicate Q(n, J*(Ch((4, R)))).

Arguing as in Section 1, we have
‘theorem 3.1. Lw*w safisfies “there exists an element Y € B, , with

recursive code, such that ~ D(Y)”. Hence the assertion in quotes is con-
sistent with Z.
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Proof. Consider the game given by Y € 2% where Y=[f€ 2w
An(f(2n)) € S & an(f(2n + 1)) <; An(f(2n))].

Definition 3.2. Define L#(0) = V(w), L% + 1) = FODO((LY(B8), e N

V(e), L*(\) = U L%(B), where A is a limit ordinal. Define L& = [x:
<A

(3B)(x € L2(B)] .
For the moment, let us concentrate on the casea =w + 1.

Now we cannot directly speak of Borel subsets of 2« and determin-
ateness within L«*1. What we do is to consider formulae P(vy) and
associate the sentence P* which naturally formalizes the assertion that
DUS:fe 2% & P(f)]). In particular we shall construct a numerical
formula P(f) which is in prenex form and has 5 quantifiers (numerical,
of course) such that the corresponding sentence P* fails in (L«*!, €).
Thus we can say that, in the appropriate sense, Lw*1 satisfies that
“there is a Y € B with recursive code such that ~ D(Y)”. However,
with L&, where w + 1 < a, no such devices of expression are needed.

Lemma 3.2.1. There are formulae ¢ { (vy, v,), and ¥ 5(vg,vy) in LST
with only the free variables shown such that for each x C w, x € Lw*1
there is a limit ordinal \ such that

1) x € Lw*l())
2) (Vy € LYt1())(2n)(Def (LN (w), €), 7, ¥))
3) Th((LY*I(\), e)) € LwtI(A +2)

4) Sat((L«*1(\), €), v (vg, vy), f) if and only if (up)(f(0) €
Lt () < (uB)(f(1) € Lw*1(8))

5) Sat((L@'1(N), €), w3 ((vg,vy), f) ifand only if (uB)(f(0) €
Le*1(B)) = (up)(f(1) € Lw*1(B))

6) (Vx & LYtI(A)(x € V(w)).

Proof. The proof is like the procf of Theorem 2. One uses standard
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pairing and inverse pairing functions on V(w) to code everything as a
subset of V(w).

In the following, we use v, , and ¢, as in the statement of Theorem
3.2.1.

Definition 3.3. A rowered ™ structure is a structure (4, R) such tha:

1) A C w and the relation x ~ y = Sat((4, R), ¢, (vg, vy), Anlx if n = 0;
y if n # 0)) is an equivalence relation on A

2) the relation x < y = Sat((4, R), ¢, (vg,vy), An(x if n=0; y if n# 0))
hasthat (Vx, y €4 (x <y &~y <x)v(y<x & ~x<y)v
X~y & ~x<pyp&~y<x))and (Vx,y,z€A)((x~z & x<y)
»z2<pP)& ((x ~2z & y <x)-y<2)), and < has no maximal ele-
ment

3)40=1i:i€e A& (V)(~j<iD],RO=Rt AO
4) we have (Vx € AN VYIR(,x)—»>y € A9)

5) suppose x € 4. Then FODO(([i:i<x]}, Rt [iii<x] )=
fzc{i:i<x]:(3NG<L<xvj~x)&z=[k:RKk,DI)]

6) (A4, R) satisfies the axiom of extensionality
7) (Vie 4 —A%)(Def((A4, R), i, 21))

8) for scme k we have that for all x € A there exists a prenex formula
¢ with only frze variable vy and with only k alterations of quanti-
fiers such that Sat((4, R), (3 'vy)(¢) & ¢, An(x))

9) for each ng’ predicate Q(n, f) we have (32)(n€ 4 &
~ Q(n, Ch(Th((4,R)) ~» (In)(n€ A & ~ Q(n, Ch(Th((4, R))))
& (Vm)(m < n—- Q(m, Ch(Th((4, R)))))). Define S~ =
[Ch(Th((A4, R) is a towered™ structure].

Lemma 3.2.2. [f€ 2« f codes Th((4, R)) for some towered™ struc-
ture (A, R)} is in Bs with recursive code. In other words § — =
[fe2w: f=Ch(Th((4, R))) for some towered ™ structure (A, R)) is
in Bs with recursive code.
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Proof. We define f€ & = P, (f) & P,(f) & P3(f) & Py (f) & Ps() &
Pg(f) & P;(f) & Pg(f) & Py(f), where P, (f) is ‘(Vx)(p,(x,x)) &
(Vx)(Vy)er(x, )= 0y(3, X)) & (VXU V2)((py(x, ¥) & ¢3(y, 2)) -
pa(x,2)) € [it f()=1]; Py(f)is (VXN p)((p, (x,») &
~o1 (Vs xXDV1 (0. X)& ~ 0 (5, DV, (6,0 & ~ o (3, 1) &
~ e (¥, x) & (VX)VY)V2)(((0y(x, 2) & 01 (X, ¥)) > 0, (2. ¥ &
(o206, 2) & (¥,2) & (¥, X) > 0, (¥, 2))) & ~ (3x)(VY) (e (v, X)V
¢, ¥)) ELitfD)=1]; P3(N)is (Vx)(x € V(w) = (Vy)(wy (x, ¥V
0206, ) & (Ax)(x = V(@)Y € [i:f@)=11; Py(f)is
XNV Iy ex>rveViw) eli:f)=11; Pg(f)is
(Yx)IVy)V2)zex=zey)>x=yY eli:f@=1]. P;if)is
“for each sentence Jvy(p) such that f(*(3 'vy)(¢)’) = | we have that
fcr some formula ¢ with only the free variable vy, ‘Jva(e & V) &
(o)WY eli:fO=11"&[F:‘F’€ [i: f@i)=1] is a consistent
set of sentences in LST”; Py (f) is “for each formula ¢ with only the
free variable v; such that f(‘(3'v;)()’) = 1 we have that
‘(Bog) (v Moy & Y (v)) & (01 (vy,v9)veyavy,09))) €
[i:f@)= 1] if and only if there exists a formula ¥, with free variables
Uy, ooy Vg Vg4 SUCh that ‘(Jvg)(3v,)(Fvy) .. (Fup) (Vg )plvg) &
\lz(vl)‘& 01y, 00) & .. &0 (Wi, 00) & Wiy EVy = (01 (Wg 4y, ) &
v*¥Ny e li: f@)=11, where ¥ * is the result of relativizing the quanti-
fiers in ¢ to those y with ¢, (¥, vg)”: Pg(f) is “for some k we have that
for all formulae P with only the free variable vy such that
FC(31vg)(P)) = 1 there is a formula ¢ with free variable only vy and
which is prenex and only has k& alterations of quantifiers such that
@By )P &Y)Y)=1; Pa(NHis(VK)[(In)(a(n) & ~ Q(k,n, )~
(A (An) & ~ Qk, n, f) & (Ym)(B(m, n) > Q(k, m, f))], where Q is
a complete ﬂg predicate, A(n) is “n is odd or (n is even & |n/2| is P with
only free variable vy and f(‘(3 vy} (P)) =1 & (VYm < r/2) (~(Im| has
only free variable v and is, say, ((vg), and f(*(V v )(Q(vy) = Plvy)) &
(FvX @)= D))", B(m, n)is “A(m) & A(n) & Im/2| is P & |n/2} is
Q & (Fvy)(Fv;) (Plrg) & Q) & 91 (g, v))Y € i1 f()=11".

To show that this is the desir2d conj..nction, we must show that, for
the corresponding (4, R) to f. 1s in the proof of Lemma 1.3.1, that
(4, R) is a towered™ structure. 1o do this, one proves by induction on
the complexity of a formula ¥ -h.t for all assignments g in (4, R), we
have Sat((4,R), F,g)= ‘(av,.l)(a v,-z) .. (3 "i,-)(Gin(”in) &..&
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Gi; (i) & FY € [i: J() = 1], where G; (vg) is 18(y) iv v is even; G (vgy)
is the canonical definition of g(i; ) in (40, R0) if g(i;. ) is odd; and
Viy 5 +ee Vi is a complete list of the free variables in F.

Theorem 2.2. Lw*1 :atisfies “there exists an element Y € Bg, with

recursive code, such that ~ D(Y ).

Proof. Proceed as in Section |. The predicate defining the set K of the
proof of Lemma 1 5.1 is replaced by aﬂg predicate since one needs to
consider P(n, i,j) only forn=0, 1.

We can state an independence result corresponding to Theorem 3.2.

Definition 3.3. We let Z(2) be

D (3x)x = V(w))

) (Vy)(y C V(w)

3 (Vz)zex=zEy)>x =Yy

4 x#Fo~> (I EX&(V2)zEX>2¢EY))
) (INV2YzeEYy=3w)zE W& WE X))

6) (Vx)(Ay)N(Vz)(z € y=(F &z € x)), where F is a formula not con-
taining y free

7 (V)@AWPE, N> (Vx)(3NUn: (3O, k)=n)] =x &
(Vm)P([n: (FK)(fCn, )=n)], [n: (3K)(Fn+ 1,k)=n)] ),
where P is a formula which does not mention f free.

It is well known that Lw*! satisfies Z(2). The dependent choices
principle 7) can be seen to h«.ld using the definable well-ordering of
Lw*! For a discussion of the ramified analytical hierarchy, Lw*1, see
Boyd, Hensel, and Putnam [ (1].

Theorem 3.3. Z(2) is consistent wi’h “there exists an element Y € .3,
with recursive code, such that ~ D(Y)”.
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Extensions of these independence results can be obtained for certain
stronger theories than Z. Rather than give a systematic formulation, we
given an example of what can be done.

Definition 3.4. We let Z(L) be Z together with (3x)(Fa)(c = QL &
x = V(a), where QL is the first constructible uncouutable ordinal).
Naturally, we assume some standard formulation of the constructible
hierarchy appropriate to Z.

Theorem 3.4. Z(L) is consistent with ‘(3 a)(~ L(c))”.

Proof. Using the Skolem-Lowenheim theorem, chocse 8 countable such
that L8 possesses a well-ordering of type g and nc well-ordering of w of
type g8 and a well-ordering on ¢« of type any a < 3. That is, 8 is count-
able and is  in LA, It is not known whether (3 a)(~ D(a)) holds in L58.
But instead pass to ihe generic extension of Lf obtained by adjoining a
generic well-ordering y of w of type 8. In this extension we have Z(L).
In acdition, we can carry out the independence techniques of this paper
using L8 (y) instead of L#, where LE(y) is the same as L# except that
LA(0) = V(w) VU [y]. The resulting Borel set will have code recursive in

Y.

We can turn Theorems 3.1 — 3.4 into proofs of consistency from de-
teminateness. We make use of the usual way of formalizing the con-
structible hierarchy within set theories, such as the ones being consid-
ered, based on sets of restricted type. This formalization is done by
means of the predicate CHY™ (x, f), which is the same as the CHY (x, f)
of Section 2 except that no type restrictions are placed in the successor
case. In addition we shall use CODE(f, y), CODE" (f, y) to mean, re-
spectively, that (3 x)(CHY (x, f) & y is coded by f), (3x)(CHY' (x, f)
& y is coded by f). Thus, Lw*w was [ y: (3f)(CODE(f, ¥))], and
L=[y:(3f)(CODE*(f,y)].

Lemma 3.5.1. The following can be proved respectively, in Z(2) and in
Z without the power set axiom: (CHY(x, f) & CODE(f, y)) »
(3g)(CHY* (x, g) & CODE* (g, »)), (CHY(x, f) & CODE(f, y) &

f€ V(w+w))~ (3g)(CHY (x, g) & CODE* (g, y .
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Lemma 3.5.2. Shoenfield’s absoluteness theorem, (see Shoenfield [7])
is provable in Z without the poer set axiom,

Theorem 3.5. Z without the power set axiom + D(w + 3) proves the
consistency of Z.

Proof. The assertion that D(Y) holds for all ¥ € B, ; with recursive
code is 2‘2 in the analytical hierarchy, and is therefore subject to Shoen-
field’s theorem. Hence in Z without power set + D(w + 3) we can prove
that every Y € B_,; with recursive code has a constructible winning
strategy. Now we can formalize the proof of Theorem 3.1, so that we
obtain within Z without power set, that (3x)(3 (3 y)(CHY* (x,f) &
CODE*(f, y) & (Vg)(~ CODE(g, +})). Fix such a well-ordering x.
Then, arguing in Z without power .et, we have that all of Lw*w is codzd
in the f with CHY™ (x, f). Vsing tkis f, we can straightforwardly give a
model ot Z and hence derive the consistency of Z.

We may similarly obtain
Theorem 3.6. Z(2) + D(5) proves the consistency of Z(2).

The level of the Borel hierarchy jumps up by one if we want to con-
sider sets of Turing degree.

Theorem 3.7. Z without the power set axiom + “‘every Turing set

Y € B_,,, cither contains or is disjoint from a Turing cone” proves the
consistency of Z. Z(2) + “‘every Turing set Y € B¢ contains or is dis-
joint from a Turing cone™ proves the consistency of Z(2).

In fact Theorems 3.5, 3.6, and 3.7 can be sharpened in the following
way: our proofs actually produce specific subsets Y of 2, and so the
respective hypotheses may be weakened in the respective theorems by
using the respective Y instead of using all Y at the respective level of
the Borel hierarchy.
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Section 4

Here we wish to mention some possibilities for future research.

What is the formal relation between the questions about the Borel
hierarchy studied here and the commonly considered axioms and
hypotheses in set theory? At one extreme, as far as we know, even
D(5) may not be derivable from Morse-Kelley set theory together with
the 2nd-order reflection principle *. At another extreme, it may be
that Z together with (V x) (if x is a well-ordering on w then the cumu-
lative hierarchy exists up through x) is sufficient to derive (V a)(D(a)).

What is the relation between Borel determinateness, (writiten
(V a)(D(a))), and “every Borel set of Turing degrees contains or is dis-
joint from a Turing cone?”’

It is easily seen that the following can be derived from Berel deter-
minateness: for every Borel Y C 2% X 2% either Y can be uniformized
by a Borel function or [ (f, g): (g, f) ¢ Y] can be uniformized by a
Borel function. A Borel function is just a subset, ., of 2« X 2% such
that (Vfe€ 2¥)(3 g€ 2¥)((f, g) € X). A Borel function X uniformizes
Y justin case (Vfe€2«)(A!'g)((fL,Le)EX & (f,g)€ V). Infact,a Y can
be found which is continuous. So we have

I. to every Borel set Y C 2« X 2% there is a Borel functior F which
either uniformizes Y or uniformizes [ (f, g): (g, /)¢ Y |

11. there is an ordinal @ <  such that to every Borel set Y C 2% X 2%
there is a Borel function F € B, which either uniformizes Y or uni-

formizes [(f, 8): (&, /)¢ Y]

1I1. to every Borel set Y C 2* X 2“ there is a continuous furction F
which either uniformizes Y or uniformizes [(f, 2): (g, /)¢ Y ]

IV. Borel determinateness.

What is the relation between I -1V? Of course we have IV > 11] »

* D.A.Martin has recently derived D(4) from MK + 2nd-order reflector principle (unpublished).
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I1 - 1. It seems reasonable to hope for a mathematician’s proof of I, but
beware of 11! Our results can be seen to carry over to obtain the inde-
pendence of II from Z(L) using a-degrees, a < Q.
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