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Introduction 

When we examine the classical set-theoretic foundations of mathe- 
matics, we see that the only sets that play a role are sets of restricted 
type; at the risk of understatement,  only s~ts of rank < 6o + ~ .  Further  
examination reveals four fundamental  principles about sets used: the 
existence of an infinite set; the existence of the power set of any set; 
every property determines a subset of any set; and the axiom of choice. 
The theory based on these four principles is known as Zermelo set 
theory together with the axiom of choice, and is written Z in this paper. 
Theu Z adequately formalizes mathematical practice (excluding modern 
set theory) in an elegant md straightforward way. 

In modern set theory, however, the object of study is the not ion (or 
notions) of set of transfinite rank. Whether or not there is a single 
meaningful notion of set of transfinite type, rather than, ins~:ead only a 
multi tute of notions of set obtained by prescribing a definite "number"  
of iterations of the power set operation, remains a controversi al issue. 
In any case, what is completely clear is that no notion of: set 9f arbi- 
t rmy transfinite type, or even notions of set obtained by some definite 
iteration (beyond ~ + ~o) of  the power set operation, is releval t, as of 
now, to mathematical practice, or even understood by mather-aticians. 
We refer to this characteristic aspect of modern set theory,  the consider- 
ation of sets of transfinite rank, or of sets obtained by more than finite- 
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ly many iterations of the power set operation applied to-the hereditarily 
finite sets, as !fighcr set theory. 

What is the significance of this sociology for us? It suggests to us con- 
st.deration of  the following conjecture: 

::') every sentence of  mathematical discourse (excluding, of course, 
higher set theory) which can be decided using fundamental pri',ci- 
pies about sets ef  transfinite rank (like: Z consists of fundam~.ntal 
principles about sets of  rank < to + to), can already be decided in 
mathematical practice. 

It is beyond the scope of  this paper to thoroughly discuss whether 
certain formal systems do or do not codify fundamental principles 
about sets of  trarsfinite rank, but certain cases are clear cut. ( i t  is, of 
course, the case that  no one today knows how to provide a theoretical 
description of  what is a fundamental principle and what is not; a gen- 
eral theory of  notions and principles is nowhere in sight). That Z codi- 
fies fundamental prkaciples about sets of transfinite rank is clear, even 
though it was intended to codify only fundamental principles ,.bout 
sets of rank < to + to. That the theory Z(~2) = Z together with "there is 
a rank function defined on every countable well-ordering" does, is 
fairly clear cut. That, say, Zermelo-Fraenkel set theory together with 
the existence of  a measurable cardinal, or, sax, Zermelo-Fraenkel to- 
gether with the existence of  nonconstructible set: of natural nt tubers 
does no t  is also fairly clear cut. There is nothing i.a the phrase "set of  
transfinite rank" which even remotely suggests that all sets are con- 
structible or that all cardinals are nonmeasurable. 

With these rough guidelines in mind, the reader can appreciate the 
following important  open question, which has tun~ed out to be con- 
nected with attempts at settling *): 

**) are there fundamental principles about sets of  transfinite rank 
which refute or prove the axiom of constructibility? 

No answer to **) is in sight. 

Perhaps some more rough guidelines may be useful in helping the 
reader appreciate *). Clearly Con(Z) can be proved in Z(~2) but  not in 
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Z itself. Does this constitute a refutation of *)? No, because Con(Z) is 
really about (formal systems of) set theory of rank < ~ + ~ ,  and to 
understand what a set of rank < a~ + ~ is, one has to go beyond use ot 
sets of rank < ~ + ¢0, and so, go beyond (our model of) mathematical 
practice. Thus Con(Z) is considered outisde of mathematical disc.ourse. 

The main obstacle in obtaining a genuine negative solution to *) .;s 
that the only sentences of mathematical discouse which are known to 
be independent of Z at the same time which have proofs in higher set 
theory (even using, say, the existence of a measurable cardinal) are also 
known to imply, within Z, the existence of nonconstructible sets; so, if 
one wishes to solve *) using such sentences, then one will also have to 
solve **). 

Our approach avoids this nonconstructible troub!e hy producing a 
sentence of mathematical discouse about Borel sets which is lI~ (hence 
provably relativizes to constructib!e ~ets) and giving a proof of indepen- 
dence of this 1-1~ sentence from Z a ad conjecturing that this II~ sentence 
is provable within Z(s2). That the ~1~ sentence is provable within Z(~2) 
seems like a reasonable conjectvre b.rcause of 
1 ) examination of the proofs cf  independence given here; 
2) the II~ sentence is known to be provable using the existence of Ram- 

sey cardinals ~D.Martin [4] ); 
3) thi3 proof of Martin uses partition properties of cardinals directly, 

and the cardinal of V(f~) is the first cardinal satisfying certain im- 
portant weaker partition properties. 

The !1~ sentence under investigation here is Borel determinateness~ 
written here as (Va)(D(~,)), (see Definitions 1.4 and 1.5). Our indepen- 
dence result from Z is given in the Corollary to Theorem 1 6. Actually, 
the independence proofs work equally well for the following conse- 
quence of Borel determinateness, wh'ch ,'eads like (but by our indepen- 
dence proof is not) a standard Theorem in the classical theo~" of the 
Borel hierarchy: to every Borel set Y c 2 ~' × 2 ~ there is a continuous 
function F which either uniforrnizes Y or uniformizes [ (f, g) : 
(g, f )  ~ Y ] ; see Section 4 for elaboration. 

The paper is organized as follows. In Section 1 we proceed directly 
to the many independence result which is Theorem 1.6 (and Corollary), 



328 HJt£Friedman, Higher set theory and mathematical practice 

making use of detailed information about the model, L '°+~° , (see Dc:i- 
nition 1.16) of Z used in the independence proof. Section 2 is entire!y 
devoted to an outline of a proof of this detailed information. Thus Sec- 
tion 1 comprises the body of the independence proof, and Section 2 
comprises the routine detailed machinery needed. Section 3 considers 
various refinements, including the independence from 2nd-order 
arithmetic of determinatene~ for G6o ~o sets; this is to be compared 
with M.Davis [ 2], which gives a mathematical practice type proof of 
determinateness for G~o sets (easily formalizable in 2nd-order arith- 
metic). Neither our independence methods nor the metfiods of [ 2] (or 
any other mathematical practice methods) seem to apply to G~o ~ . 

Apparently, determinateness was first introduced by Gale and 
Stewart in [3].  Determinateness in various forms (for analytic sets, 
projective sets, ordinal definable sets, all sets, to mention some divi- 
sions) have been under intensive investigation in recent years. For a 
recent survey, see A.Mathias [5].  
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Section 1 

The purpose  of  this Sect ion is to prove Theorem 1.6 and its Corol- 

lary. 
We let ~ be [ 0, 1, 2, ... ] ,  2 w be the set o f  all funct ions  f rom w in to  

[ 0, 1 ] ,  and ~2 be the first uncoun tab le  ordinal.  

The Borel subsets o f  2 ~ are the least o-algeora conta in ing  all open  

and closed subsets of  2 ~° . It is well k n o w n  that  the Borel subsets o f  2 w 

are just  those subsets which  lie in some B a ,  a < s2, as def ined below. 

But first we define tile open  subsets o f  2 ~ .  

Def ini t ion 1.1. We say Y c 2 "  is o p e n  if and only  if ( V x ) ( x  ~ Y 

-~ (3  n E ~ ) ( V y  ~ 2 ~ ) ( ( V  m _< n ) ( y ( m )  = x ( m ) )  -~ y ~ Y ) ) .  We say 

Y c 2 '~ is c losed  if and only  if 2 '~ - Y is olden. 

Defini t ion 1.2. Define B 1 = [ Y c 2 °~ : Y is open  or Y is c l o s e d ] ,  

Ba+ 1 = [ Y c 2 ~° : Y is the in tersect ion o f  some coun tab le  (or  f ini te)  

subset o f  B a or Y is the un ion  o f  some countab le  subset o f  Ba ] ,  

Bx = U B a , w h e r e a ,  X < S 2 ,  X is a limit ordinal .  
0 t<h  

We can associate in informal  terms, to each Y c 2 ̀ 0 , a discrete two- 

person game of  infinite dura t ion.  The players are designated 1, II. The  

players a l ternate ly  p roduce  (or  play) e i ther  0 or  1, start ing wi th  I. If  

the result ing e lement  of  2 ̀ ° is in Y then I is ~:onsidered the winner ;  if 

not ,  then  I1 is. The ques t ion  arises as to whe the r  there  is a per fec t  

strategy for  winning available to one  of  the two players. 

We now wish to give the well k n o w n  formal  analysis o f  the  alzove. 

Def ini t ion 1.3. A 0, 1-~equence is a func t ion  s whose  domain  is an 

initial segment  (possibly e m p t y )  of  ¢o and whose range is a subset o f  

[ 0, 1 ] .  We wri te  In(s) to be such tha t  Dom(s )  --- [ i:  i < I n ( s ) ] .  If  s, t 

are 0, l -sequences  then we say t ex tends  s if and only  if In(s) <_ In( t )  

and (V i < In (s))(s(i)  = t(i)).  If s is a 0, l - sequence  and f ~  2 t° then  f 

ex tends  s means  tha t  (V i ) ( i  < In(s) -~ s(i) = f ( i ) ) .  

Defini t ion 1.4. Let Y c 2 " .  We wri te  S ( Y ,  l , f )  if and only  if 
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1 ) f is a function from the 0, l-sequences into [ 0, 1 ] ,  
2) ( V g ~  2~')(?,n(g((n - 1)/2) i f n  is odd ; f (g  t [ i :  i <  n/2]  ) i f n  is 

even) ~ Y). 
We write S(Y, II, g) if and only if 
1) g is a function from the 0, 1-sequences into [ 0, 1 ] 
2) (Vf~_ 2~°)(Xn(f(n/2)ifn is even; g ( f  t [ i :  i <  (n + 1)/21 ) i f n  is 

odd) E 2 ~ ' -  Y). 
We write D(Y) i f  and only if (:1 f)(S(Y,  I, f ) v  S(Y, II, f)) .  

Thus S(Y, I, j:) expresses that f is a winning strategy for I in the game 
associated with Y; S(Y, ll, f )  for II. And D(Y) expresses that either I or 
II has a winning strategy. 

In this paper we are only c;oncerned with D(Y) for Borel Y. 

Definition 1.5. t et 1 < a < ~2. Then D(a) means (V Y ~ Ba)(D(Y)). 

We use some n:)tions from ordinary recursion theory. 

Definition 1.6. F o r f ~  2 ~ we write ~e "f for the eth partial function of 
one argument on w that is partial recursive in f ,  according to some cus- 
tomary enumerat ion. We write g _< T f for ( :! e) (g = eel). We write g = r f  
for g <-rf & f<-r g, and we write f < T  g f°r  f ~ r  g & f<--T g" 

Thus g <-7" f i s  read "g is partial recursive in f " .  The T stands for 
Turing. 

Definition 1.7. We write J ( f )  for the Turing jump o f f ~  2 ~.  Define 
jn+l (f) = j( jn( f)) ,  0 < n. Define J~( f )  = Xm((Ja(f))(b) if 0 < a, 
0 <_ b and m = 2a3 b ; 0 otherwise). 

Defmition 1.8. A Turing set is a Y C 2 ~ such that (V f ) (Vg ) ( ( fE  Y & 
f=Tg)  ~ g ~  Y)" A Turing cone is a Y c  2 °~ such that ( 3 f ~  2~) (Vg)  

(g~ Y-- f<-Tg)" 

Unless we specify otherwise, wher.cver we quantify over functions we 
are quantifying only over 2 ̀ 0 . 
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We now present a theorem of  D.Martin modif ied  and specialized to 
suit our purposes. 

Theorem 1.1. Suppose ('9'0t)(D(t~)). Then for all t~, every Turing set 
Y c t ~  either contains or is disjoint f rom a luring cone. 

P r o o f  Take X as [j~: ~n ( f (2n ) )  ~ Y & ~n( f (2n + 1.)) <-T ~ ,n ( f (2~) ) ] .  
If  SO~, I, g), then  [t~ E 2 ̀ 0 : h <-T ~ ] C Y. If S(X, If, g), then  [c:: ~ 2 ~° : 

h < _ r a  ] n Y=ck. 

Defini t ion 1.9. LST is the  language o f  set theory; i.e. the  predicale  c a l  
cul'~s wi th  equali ty (=) and membersh ip  (E). 

Defini t ion 1.10. Z is Zermelo set theory, a theory  in LST, whose  non-  

logical axioms are 

l )  ( 3 y ) ( V z ) ( z ~  y - ~ z C x )  

2) ( 3 z ) ( V w ) ( w ~ z  = (w = x v w = y ) )  

3) x = y - ( V z ) ( z ~ x = z ~ y )  

4) ( : l x ) ( V y ) ( y  ~ x = (y  E a & F ) ) ,  where  F i s  a formula  in LST which  

does not  me n t i on  x free 

5) ( 3 y ) ( V z ) ( z  ~ y - (3w) (z  ~ w & w ~ x)) 

6) (:]x)(q~ ~ x & ( V y ) ( y  E x"* (~lz)(z  E x & ( V w ) ( w  E z ~ (w E y  v 
w = y))))) .  Here z c y is an abbreviat ion for ( V x ) ( x  ~ z ~. x ~ y),  
and ~ E x is an abbreviat ion for ( 3 y ) ( V z ) ( z  ~ y  & y  ~ r )  

7) x 4: ep ~ (~ly) (y  ~ x & ( V y ) ( z  E x ~ z q~ y) )  

8) the Axiom of  Choice.  

We now describe the  mode l  o f  Z we will use in this Section, and 
which  we analyze in Sect ion 2. 

Def'mition 1.11. If x is a set then  e x is the binary relation e'a x given 

b y e x ( a , b ) = ( a ~ x  & b ~ x  & a ~ b ) .  
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Definition 1.12. DeFine II(0)= $, V(a + 1)= P(V(a)), V(X)= u 

where P(x) is [ y : y c x ] and X is a limit ordinal. 

V(a), 

Definition 1.13. A stn.,cture is a system (A, R),  where A is a nonempty  
set, R is a binary relation on A. An assignment in (A, R)  is a function 
f :  co -* A with f'mite range. We write Sat((A, R),  F, f )  to express that  
the formula F of LST holds in the structure (A, R)  when e is inter- 
preted as R, = as equality, and each free variable o i in F is interpreted as 
f ( i ) .  l f F  has no free variables t aen we may write Sat((A, R), F) .  

Definition 1.14. For structures (,4, R), (B, S) we write lnj (f, (A, R), 
(B, S)) to express that  f :  A -* B, f 1 - 1, and ( V x ,  y H A ) ( R ( x ,  y )  

S(.f(x),  f (y) ) ) .  We write Iso(f,  (4 ,  R),  (B, S)) if the above holds and f is 
onto. We write (A, R)  ~. (B, S) "or (::1 f ) ( I so ( f ,  (A, R), (B, S))). 

Definition 1.15. For structures (A, R)  we take FODO((A, R}) = 
Ix  c A: for some formula F and assignment f we have x = 
[ y:  Sat((A, R), F, ¢ )  ] ] ,  where f~y (i) = f ( i )  if i =/= 0; y if i = 0. 

FODO stands for "first  order definable over". 
Often we abbreviate (x,  e x ) by (x, e). 

Definition 1.16. Define L(0) = V(~),  L(a + 1) = FODO((L(a) ,  eL(a))) , 
L(X) = u L(cz), where X is a limit ordinal. Define L"+w(0) = ~, 

L'~+~(a + 1) = FODO((L~÷~(a) ,  e)) n V(co + co), L~+~(~,) = 
u Lt°+"(a) ,  where ?, is a limit ordinal. Define L ~+~' = 

a < x  

[x: ( 3a ) (x  e L'°+0'(~))] .  

Thus our L is the usual constructible hierarchy. 

Lemma 1.2.1. Each L'~+oJ(a ) is transitive. In addition, L "J+" is transi- 

tive. 

Lemma 1.2.2. For  all transitive sets x and all f." to -, x with f in i te  range 

we have Sat((x, e), o o c o 1 , f )  - f(0~ c f(1) .  
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I.emma 1.2.3. V(to + w)  is closed under subset and power set and 
union. 

Theorem 1.2. L "*'~ satisfies Z. 

Proof. 1here is an ~ such that  L~+'°(a) = L'~+°'(,~ + 1 ). ChGase a least 
with this property. 3), 5), and 6) follow from the lemmas; to check 1), 
2), and 4), note first that Lw÷~'(a) = L w÷~. For 1), note tha~ 
[x ~ L"÷~(a ) :  x c y ] ~ L'"+w(t~ + 1 ) for any y ~ L°'+'°(a). For 2), 
note that Ix ~ L '÷~ ' (a) :  x = y v x = y ] ~ L~÷~(a  + 1) for any y ,  
z E Lo'÷w(a). For 4), note that [ y ~ a: Sat((L~'+~'(a), e), F,.f~y) ] 
L~'÷°'(a + 1) for all a ~ L~+~'(t~), all assignments f ,  all formulae F in 
LST. 

Definition 1.1 7. We assume a fixed primitive recursive total one-one 
onto G6del numbering of the formulae in LST. We let '~' be the G6del 
number of ~. Let (A, R) be a structure. We write Def((A, R),  n, x) if 
and only if n is the Godei number of the formula F(o o) with only the 
free variables shown and x is the unique element of A with Sat ((A, R), 
F(o o), Xn(x)), and furthermore n is tile least integer with this properl:y 
that x is the unique element of A with Sat ( (A R),  F(Oo), Xn(x)). 

Definition 1.18. Let (A, R)  be a structure. Then we let Th((A, R))  be 
[ n: n is the Gtidel number of the sentence F aad Sat((A, R),  F ) ] .  

Definition 1.19. I f x  c to then we write Ch(x)  for Xn(l i f n  ~ x ;  0 if 
n ~ x ) .  

We need to draw on one fact :Lbout the con: truction of L '~+t° ; Sec- 
tion 2 is devoted to a detailed c utline of a proof of the following. 

Theorem 2. There are formulae ~01 (v0, 01 ), ~: (v0, ol)  , and ~0 3 (v 0, o l)  
in LST with only the free variables shown such that for  eac'.~ x c to, 
x E L t°+W , there is a limit ordinal k such that 

1) x ~ L~'÷'°(X) 

2) ( V y  ~ L W÷" (X))(3n)(Def((L'o÷'~(a),  e)n, y))  
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3) Th((L'o+'~(X), e)) e L 'o÷., (X + 2) 

4) Sat((L'-'+to (X), e), ~o I (Oo, o l ) , f  ) if  and only / f  (ta/3)(f(0) ~ L'~+~'~)) 
< (Ufl)(f(1) e Lto+~o(3)) 

5) Sat((L~°+~°(),), e), ~o2(t,o, O l ) , f  ) if  and only if (tafl)(f(O) ~ L~°+~°~)) 
= (Ufl)(f(1) e L ~+w (3)) 

6) Sat((L~°+'°(X), e), ~o3 (Uo, v l ) , f  ) if  and only i f  f (1)  = (tan E oo)(f(O) 
e V(~o + n)). 

We m a k e  the  fo l lowing  Def in i t ion  1.21 mode l l ed  af ter  T h e o r e m  2. 

us ing the  ~o 1 , ~o 2 , and  ~o 3 o f  the  s t a t e m e n t  o f  tha t  T h e o r e m .  

Def in i t ion  1.20. We fix a s t ruc tu re  (A ° , R o) such tha t  A ° = [ i: i is 

o d d  ] ,  R ° is a recursive re la t ion ,  and  (,4 ° , R o) is i s o m o r p h i c  to  

(V(co), e). By ~ we m e a n  tha t  e l e m e n t  o f A  o wh ich  is satisfied,  in 

(A° ,  R ° ) ,  to  be 3. 

Def 'mit ion 1.21. A towered structure i s . ,  s t ruc tu re  (A, R )  such tha t  

1) A c co and  tile re la t ion  x ~ y = Sa t ( (A,  R) ,  ~o 2 (%,  01 ), •n(x if  n = 0; 

y if n :g 0))  is an equiva lence  re la t ion  on  A 

2) the  re la t ion x < y -- Sa t ( (A,  R) ,  ~o I (v 0 , 01), ),n(x if n = 0; y if n ~ 0))  

hasthat  ( V x ,  y ~  A ) ( ( x  < y &'~ y < x ) v ( y  < x &" .  x < y ) v  
( x ~  y &" .  x < y &" .  y < x ) ) a n d  ( V x ,  y , z ~ A ) ( ( ( x ~  z & x  < y )  

z < y )  & ((x "- z & y < x)  -* y < z)), and  < has n o  max ima l  ele- 

m e n t  

3) A ° = [ i ' i E A  & ( ~ j ) ( - ~ / < i ) ] , R  o = R  t A  o 

4) 

5) 

we have ( V x  E A ) ( 3  ! y ) ( S a t ( ( A , R ) ,  ~o3(o o, o l ) ,  Xn(x i f n  = 0; 

y i f n  4: 0)), and  so we let F be given by ( V x  ~ A ) ( S a t ( ( A ,  R) ,  

~3 (Oo, vl),  Xn(x i f n  = 0; F(x) i f n  4: 0)). T h e n  we w a n t  
( V  x ~ A ) ( 3 n ) ( F ( x )  = ~i), and  ( V  x ~: AO)(F(x)  = O) 

( V x  ~ A - A° ) (F (x )  = ~ where  n is tile least in teger  grea ter  t han  

every i such  tha t  ( 3 y ) ( R ( y ,  x)  & F(y )  = i')) 
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6) suppose x ~ A. Then  FODO (([  i :  i < x ] ,  R t [ i: i < x ] )) = 

[z c [ i :  i < :, ] : (3])((/"  < x v ]  ~ x)  & z = [ k: R(k , ] ) ]  )]  

7) ( V x . y ~ _ A . ) ( R ( x , y ) ~  x <  y )  

8) (A, R)  satisfies the axiom of  extensional i ty  

9) ( V i E  A - A ° ~ . ( 3 j ) ( D e f ( ( A , R ) , j ,  2j) & i  = 2j.) 

10) [ i :  i E Th( (A,  R) ) I  ~ F O D O ( F O D O ( ( A ,  R)) ,  e) 

11) for all n o n e m p t y  x c A with  Ch(x)  <-r 'I(Jo~(Ch(Th((A, R))) ) )  
there exists a y ~ x such that  for all z ~ x we have -" z < y.  

We presume know!~edge of  the effective Borel hierarchy.  In part icular,  
we will make use o f  the ao t ion  oi :  being in B,.,+o~ with  recursive code. 

Lemma 1.3.1. [f~_ 2 t° : f codes Th((A,  R))  for some towered s t ructure  
( A , R ) ]  is in B~+,~ with recursive code. In other words, d = [ f ~  2 ' ° :  

f =  Ch(Th( (A ,  R) ) )  for some towered s t ructure  (A, R ) ]  is in Bo~+,~ with 
recursive code. 

Proof. A more detailed p roof  of  a more del i :a te  version of  this  is given 
as Lemma 3.2.2: we will only men t ion  some basic points  for this present  
version. To "test." whether  f ~  c~ first cons t ruct  the relat ional  s t ructure  
(A, R)  given by  A ° c A, R ° = R t A ° , A - A ° = [ 2i:  i is the  Gbdel  num- 

ber o f  some formula  F(o o ) such tha t  '( :1 ! Oo)(F(oo) )' E [ k: f ( k )  = 1 ] 
and ( V j  < i) ( i f ]  is the G6del  number  of  some formula  G(o o) then  

' (3  ! Oo)(G(vo)) & (30o) (G(o  o) & F(oo))' E [ k : f ( k )  = 0 ] ], R(2i ,  2/'), 
for 2i, 2] ~ A, holds  if and only  if for the corresponding F ,  G we have 

' (3  Oo)(F(oo) & (3  ol)(G(o 1) & o o ~ ol))' ~ [ k: f ( k )  = 1 ] ,  R(2i ,  2] + 1) 
is always false, R(2i  ÷ 1, 2.,;) holds  if and only  if  ' ( : !  Oo)(P(oo) & 
( 3 Vl)(G(v 1) & o 0 E v I ))' E [ k: f ( k )  = 1 1, where  P is the  canonical 
def ini t ion of  2i + 1 in (A e , R0) .  Then  check whe the r  clauses 1) -- 1 1) 
hold for this (A, R).  It is clear tha t  if  there  is any  (,4, R )  wi th  
Th( (A ,  R))  = [ k: f ( k )  = 1 ] it must  be this (A, R )  above. 

Lemma 1.3.2. / f  Y c 2`0 is in B`0+~ with recursive code then Y n L ~,'+`0 
must  be in L °~+~" .:nd L `0+t° must  satisfy that Y tq L `0+°~ is in B~+u with 
recursive code. 
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Proof. This is a well known absoluteness property of  the effective Borel 
hierarchy. 

Theorem 1.3. ~5 n L ~+., ~ L ~÷,~ and is satisfied in L ~+'° to be an ele- 

ment  o f  Bo~+~ with recur~ive code. 

Theorem 1.4. For all f E 2"  n L o~+,o there is a g E c5 n L t~+°, such 

that f<_ r g. 

Proof. Take this f. Let x = [ ~: f ( k )  = 1 ] .  Choose I according to Theo- 
rem 2. We must choose the appropriate towered structttre (A, R) 
(L~+~(a), e). We will define a g  such that Iso(g, (L'~÷~"(X), e), (A, R)). 
Take g t V(~) to be the isomorphism from (V(~o), e) onto (A °,  R°). For 
y E L ' ~ ÷ ' Q , ) -  V(~) take g(y)  to be 2n where Def((L~÷~(~,), e), n, y). 
Take R to be the relation on Rng(g) induced by g. Conditions 1 ) - 10) 
in the def'mition of towered structure are easily verified. Condition 11) 
also is satisfied since < will be a well-founded relation. 

Definition 1.22. Let f,  g ~ 2 w . The join o f f ,  g, written (f, g), is 
~n(f(n]2) i f n  is even; g((n - 1)/2) i f n  is odd). 

Lemma 1.5.I. Suppose (A, R), (B, S) are towered structures such that 

Ch(Th((A, R))) S T J(Ch(Th((B,  S)))) and Ch(Th((B, S))) -<T 
J(Ch(Th((A,  R)))). Then either ( 3 f ) ( I s o ( f ,  (A, R), (B, S))) or 

( 3 f ) ( In j  (f, (A, R), (B, S)) and ( :ix E B)(Rng(f )  = [y E B: y < x ] ,  
where < is as in (B, S) as in Definition 1.21)), or ( 3 f ) ( I n j ( f ,  (B, S), 
(A, R)) and (3 x E A ) ( R n g ( f )  = [ y E A : y < x ] ,  where < is as in 

(A, R)  as in Definition 1.21)). 

Proof. Let T 1 = Th((A, R)), T 2 --- Th((B, S)). Let ~ l ,  < l ,  Fl  be as in 
Defmition 1.21 for (A, R); ~2 ,  <2,  F2 be as in Definition 1.21 for 
(B, S). 

Defhle the predicate P(n, i, ]) by recursion on n. P(0, i, ]) - i E A 0 & 

i =]. P(n + 1, i , ] ) -  FI( i )  = F2(J) = n + I & (Va)(R(a ,  i) 
(gb)(::l k)(S(b,])  & P(k, a, b) & Fl(a) = F2(b) = k)) & (Va)(S(a,/) 
(3  b ) (3  k)(R(b,  i) & P(k, b, a) & F2(a) = F l (b)  = k)). It is easily seen 
that, uniformly, for each k, the relation P(k, a, b) is recursive in 
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Jk( (Ch(Tj . ) ,  Ch(T 2 ))). Hence, uniformly, for each k, the relation 
P(k, a, b) is recursive in both .I k + I (Oh ( T l )) and J k ÷ l (Ch ( T 2 )). 

We now wish to prove by induction on n that for each i there is at 
most one i such that P(n, i, j). The case n = 0 53 trivial. Suppose true for 
all k _< n and let P(n + 1, i, 1~, P(n + I, i, a). Let S(x ,  1). Then F 2 (x) = 
for some k <_ n. Th~ a for some x o E A we have P(k,  x o, x )  and R ( x  o, i). 
Hence by P(n + 1, i. a) we must have for some y ~ B, P(k,  x o, y )  and 
S(y ,  a). But since k <_ ff ~e  must have x = y. So S(x ,  t,~). Hence 
( V x ) (S(x  , j)  --,. S(x  , a ) ). Symmetrically, ( V x ) (S(x , a) --* S(x, j)). So 
a = ], and we are done. 

Symmetrically, for each j there is at most one i such that P(n, i, 1). 
Clearly (P(n, i, i)  & R (a, i) ) ~ ( 3 b )(::l k )(P(k,  a, b) & S(b,  j)); the 

only nontrivial case is when ] ~ A ° , in which case a ~ A ° by clause 7) 
of Definition l. 21. Also ~.P(n, i, ]) & S(a, j)) -4, ( 3 b)(  :i k ) (P(k ,  b, a) & 
R(b ,  i)). 

Thus roughly speaking, P defines a partial isomorphism between 

(A, R) and (B, S). 
Consider K = [ i ~ A : ( V j ) ( j  " t  i --, ( 3 n ) ( : l m ) ( 3  a)( : l  b)(P(n,  i, a) 

& P(m, j ,  b) & a " 2  b & (Vc) (c  " 2  b -~ ( 3 d ) ( 3 r ) ( d "  1 i & P(r, d, c))) 
& ( V c ) ( c  <2 b -* (3 d ) ( 3  r)(c! <l  i & P(r, d, c))))] • Then clearly 

Ch(A -- K) -<T J(Jt°(Ch(Tl )))" We now break into cases. 

Case I. A - K = ¢~, ( V /  ~ B ) ( 3 n ) (  3 i ) (P(n ,  i , j )) .  Then obviously ( A , R )  
(B, S), given by P. 

Case 2. A - K = ~ , ( q j ~ B ) ( V n ) ( V i) ( "  P(n, i, j ) ). Note that then 

C h ( [ i  c B: ( V n ) (  V i)(-" P(n, i, j))  ] ) <- r J ( J " ( C h ( T 2  ))) and is non- 
empty. Choose x e B with ( V n ) ( V i ) ( " .  P(n, i , j ) )  & 
( V y  < x ) ( 3  n) t  ~t i)(P(n, i, j)). Then since K = A we must have that 

( V j ) ( ( 3 n ) ( 3  i)(P(n, i , j ) )  -* j <2 x l .  Hence set f ( i )  to be the unique j 
such that (3n) (P(n ,  i, j)). Then Inj(f,  (A,  R ), (B, S)) & Rng(f )  = 

[ l : j < x l .  

Case 3. A - K ~ ~, and ( 3 x ) ( x  ~ A - K & ('V y ) ( y  <1 x -* y ~ K) & 
x ~ A°).  Fix this x. Note Ch( [ j ~ B: ( V n ) ( V  i)(i <1 x -: 
~ P(",  i,J)) ] ) <-r J'° (Ch(r2)) .  If ( V j  E B ) ( 3 n ) ( 3  i)(i  <~ x & 
P(n, i, j)) then take fU)  to be the unique i such that (3n)(P(r . ,  i, j)). 
The~. Inj(f,  (B, S), (A,R))  & Rng(f )  = [ y : y  <1 x ] .  If 
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(=l j ~ B ) ( V n ) ( V  i)(i <I x -~ -~ P(n, i j)), then choosey  H B such that 
( V n ) ( V i ) ( i  <1 x -~ ~ P(n, i, y ) )  and ( V j  <2 y ) ( 3 n ) ( 3  Off <l  x & 
P(n, i, j)). Now note that  ( [ i: i < 1 x ] ,  R t [ i: i < l x } ) 
( [ / :  J <2 Y ] ,  S t [ j :  j <2 Y ] ) and let f be the isomorphism gi:en by 
f ( i )  = the un ique / such  that (3n ) (P(n ,  i, j)). We obtain a contcadiction 
by showing that x H K. It suffices to show that (Va) (a  "~l x -~ 
( q n ) (  =tb)(e(n, a, b) & b ~2 Y)) & (Va)(a  ~2 Y "~ (=i n ) ( 3  b)(P(n, b, a) 
& b ~ l  x)).  By symmetry it suffices to obtain the first conjunct. Let 
a ~ l  x. Then [ i: R( i ,a ) ]  ~ F O D O ( [ i :  i<1  x l ,  R t [ i: i <  1 x]  ). In 
particular let G be a formula and g an assignment such that 
[i: R( i ,a )]  - [ i: S a t ( ( [ i :  i <  1 x l ,  R t [ i :  i <  l x ] ) ,  G,g°i].  Now 
there must be a k such that Fl(a)  = k + 1. Choose the unique a* E B 
such that [ j :  S ( j , x * ) ]  = [ j :  S a t ( ( [ / : j < 2  Y i ,  S t [ j : j < 2  Y] ) ,  G, 
( fo  g)O)] .  Then s ince f i s  an isomorphism we must have a* 6 [ j :  
J < 2  Yl s i n c e a 6  [ i :  i <  1 x ] .  Bu ta*  ~ F O D O ( [ I : j < 2  y l ,  S t [ j :  
J <2 Y ] ), and so we have a* ~2 y.  Also since f is an isomorphism, we 
have that R n g ( f  t [ i: R(i,  a)]  ) = [ j :  S(j, a * ) ] ,  and hence by the way f 
is defined, we have P(k + 1, a, a*). 

Case 4. A - K ~ $, and (A - K) n A o 4: $. But this is obviously impos- 
sible since A ° c K. 

l .emma 1.5.2. Let  (A, R ), (B, S) be towered structures, lnj (f, (A, R), 
(B, S)), x ~ B, Rng( f )  = [ i: i <2 x 1, where <2 refers to (B, S). Then 
J ( C h ( T h ( ( a ,  R))))  < r  Ch(Th((B, S))). 

Proof. We use the notation of  the proof  of  Lemma 1.5.1. Fix f ,  x. NGte 
tha t .  ~2 has no maximum element. Let x 1 = any <2-1east element of  
[ i: x <2 i ] .  Let x 2 = any <2"least element of [ i: x <2 i ] .  Then [ i': 
i ~ Th((A, R) ) ]  ~ FODO(FODO((A,  R)),  e) as in 10) of Definition 
1.21. Hence there is a y " 2  x2 with S(z,  y )  - z is some fwi th  
i ~ Th((A, R)). Next it is easy to find a formula P(o o, v 1) such that 
Sat ((B, S), P(o o, 01 ), fyl ) -__ f(O) is some ] with J2 (Ch(Th(A, R )))(j) = 1. 
Hence clearly j2  (Ch(Th((A,  R)))) <-T Ch(Th(B, S)), since 
(3.n) Def((B, S), n, y).  Since J (Ch(Th( (A,  R))))  < r  j2  (Ch(Th (A, R)))),  
we must have J (Ch(Th( (A,  R))))  < r  Ch(Th((B, S))). 
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l.emma 1.5.3. Suppose (A, R), (B, S) are towered structures such that 

Ch(Th((A, R))) -<T J(Ch(Th((B,  S)))) and Ch(Th((B, S))) <-T 
J(Ch(Th((A,  R)))). Then (A R)  = (B, S). 

Proof. Assume hypotheses. Then either ( :l f )  (lso (f, (A, R), (B, S))) or 
( 3 f ) ( I n j  (f, (A, R), (B, S)) and (EIx ~ B)(Rng( f )  = [y  ~ B: y <2 x ] )), 
or vice versa. The latter two cases contradict our hypothesis by Lemma 
1.5.2. Hence Iso(f,  (A, R), (B, S)) for some f. Hence Th((A. R)  = 
Th((B, S)), .and so obviously for all i, Def((A, R) i. x) = Def((B, S), i, 
f (x)) .  Hence by clause 9 ) o f  Definition 1.21, f must be the ~dentity. 
Hence (A, R) = (B, 5), and we are done. 

Theorem 1.5. For all f ~ 2 ~ n L ~+`0 there is a g such that f S:r g and 
('0' a ~ 2 `0 ) ( g  =~.  ~ -~ a ~ ( 2  ``0 - 6 ) n L ~°+°° ). 

Proof. Fix f ~  2 ~ n L ~°+''. By Theorem 1.4, choose h E d c~ L ~°+~° 
with f <  r h, and let [ i :  h(i)= 1 ] = Th((A, R)), where ( A , R )  is a tow- 
ered structure. Then J(h)  ~ L ̀ 0+'° and so (V a)(a = r  J(h) -0, c ~ L ~°+°°). 

Clearly f < - r  J(h). Now J(h) <-7" Y(h) and h <- r J(J(h)), and so by 
Lemma 1.5.3 there m u s t  not be a towered (B, S) with J(h)  = r  
Th((B,S)) .  In other words, ( V a ) ( g  =T a -* a ~ 2 ̀ o -- 6) .  

Theorem 1.6. L ̀ 0+~ satisfies that there exists an element o f  B`o+,~ with 

recursive code which is a Turing set but does not contain nor is disjoint 

from a Turing cone. In particular, L ̀ o+~ satisfies "- D(~o + ~o) by Theo- 

rem I. 1. 

Proof. Take the Turing set X to be [ f ~  2 "  : (Elg ~ 6 )(f=~- g)] • Then 
using Theorem 1.3 it is easily seen that X n L ~÷~ ~ L t°÷~ and is satis- 
fied to be an element of  Bw+,o with recursive code and to bc a Turing 
set. From Theorem 1.4 one has that  X is satisfied to intersect every 
Turing cone, because of the absoluteness of  Turing reducibility. By 
Theorem 1.5, X is satisfied to not  contain any Turing cone, 

Corollary. By Theorem 1.2, D(~o + o~) is not  provable in Z. 
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Section 2 

We have def'med Z in Definition 1.10, and L ' * ' ( a ) ,  L ' '~ ' '  in Defini- 

tion 1.6, and have remarked that each L " + " ( a )  is transitive and that 
Sat((L ' '÷~,  e), F, f )  for all F ~ Z and assignments.t" (see Definition 
1.13). Furthermore, we have the special structure (A 0, R 0) of  Def'mi- 

tion 1.20. 
The purpose of  this Section is to give a detailed outline of  a proof of  

the fact about the L'~+'(tz) needed in SectiGn 1 ; namely, Theorem 2. 

DeFmitio n 2.1. We let i x , y )  = [x ,  [ x , y  ] ] .  We write Fcn(x) for 
( V y  E x)(=! a)(=! b ) ( y  = (a, b))  & ( V a ) ( V  b ) ( V  c)(((a,  b) ~ x & 

(a, c) ~ .'~') ~ b = c). We write Dom(x)  for [ a : (3 b)((a, b) E x) ] ,  
Kng(x) for [ a: (E b)((b, a) ~ x ) ] .  We let ( ) = ~, (x) = [ (0, x) ] ,  

(Xo, ..., ~k ) = [ (i, xi): 0 <_ i <_ k ] . We write ln((x 0, ..., Xk-l))  = k, 
(x0, . . . ,xk_l)( i )  = x i ,  i <  k.  We take Seq(x) = [ y :  Fcn(y)  & 
(=lk~_ to)(kd:  ~ & Dora(y)  = k) & Rng(v)  c x ] .  We take a 0 * a 1 * ... 
• ak,  for a i E Seq(x), to be the result of  concatenation. 

Definition 2.2. We assume a one-one GOdel numbering from formulae 

onto ~.~. A formula is a formula using V, ~t, &, v, "-, ~, =, v 0 , u l,  .... 
For fc.rmulae F we let 'F '  be the Godel namber of  F. For n ~ w we let 

I n I be that formula with G0del number n. 

Definition 2.3. We write LO(x), (x is a linear ordering) for x = <A, R) 
a n d A d = ¢ a n d R c  [ ( a , b ) : a ~ A  & b ~ A ]  andA n V(co)=~and  
(A, R, ~ constitutes a linear ordering on all of  A. We write A = Field(x), 

R = R e l  I (x ) .  

Def'mition 2.4. If LO(x) we take O(x,  y )  = y ~ A & (Vz)((z,  y) 

Rell (x)), Suc(x,y ,  z)  = <z ,y)  ~ - R 1 & ~ (=la) (<z ,a)E R 1 & 
( a , y )  E RI), L i m ( x , y ) =  y ~ A & ( V z ) ( ( z , y ) ~  R 1 -* ( 3 a ) ( ( z , a )  E R 1 

& ( a , y ) ~ R l ) ) .  

Definition 2.5. We write CS(x), (x is a coded structure), for x = (A, R ) 
andA # ~ a n d R c  [(a, b) : a E A & b ~ A ] .  We write A = Field(x), 

and whenever we write CS(x), we write Rel 2 for R. 
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Def'mition 2.6. We write SLO(x) ,  (x is a s tructured linear ordering),  for  

x = (F,  (A ,  R I ) ,  ( A , R 2 ) )  and LO((A,  R 1)) and CS((A, R2>), and 
F :  A -~ w. We write Fie ld(x)  = A, Rel I (x) = R 1 , Rel2 (x) = R 2 ,  

Fn(x)  = F. 

Defini t ion 2.7. We write Sati(x,  n,  y )  for CS(x)  & n ~ w & y ~ Seq(x)  

& y = (a O, . . . , a k ) ,  0<_ k ,  & x = ( A , R )  & Sa t ( (A ,R) ,  Inl, f ) ,  where  
f ( i )  = y ( i )  for i < In(y) ;  y ( l n ( y )  - 1) for i >_ In(y) .  

Defini t ion 2.8. Let K be the least class satisfying 

1) A ° c K. See Defini t ion 1.20 

2) whenever  ao, ..., a k ~ K ,  0 <_ k ,  n ~ ~ ,  x ¢ V (w)  we have (x, n, 
a o . . . . .  a k )  ~ K.  Let F o be the funct ion  on K given by F o ( n )  = n if 

n ~ A° ;  Fo ((x, n, a o . . . . .  a k )  ~, = ([ 1 ], x ,  n)  * F o ( a  o)  * ... * F o ( e  k )  * 

* ( [ 2 1 ) .  

[_emma 2.1. F o is a one -one  f u n c t i o n  on  K. 

Proof. We prove by induct ion  on In(s) that  if Fo(Y 1) = s, F o ( Y ,  ) - s, 

then Yl =3'2- Assume F0(Y 1 ) = s, F0(Y 2) = s. Then  i f s  is no t  :: ~e- 
quence  then s = n for some n ~ A °,  in which case Yl = Y2 = n. So s is a 
sequence.  Clearly s must  be o f  the form ( [ 1 ] ,  x,  n)  * F o ( a  o)  * ... * 
F o ta k ) * ( { 2 ] ). Now we must  show that  the a o,  ..., a k , x ,  n above are 

unique.  Let s = ( [ 1 ~, y ,  m )  * F o ( b  o)  * ... * Fo(b , . )  * ( [ 2 ] ). Obviously 
x = y ,  n = m. If Fo(a  O) E A 0 then  obviously F o ( b  o)  ~ A ° and Fo(a  o)  = 

F 0 (b o). If F o (a 0) 6 A 0 then F 0 (a 0) starts wi th  [ 11 and ends  wi th  [ 21,  

and no [ 11 or [ 2 ] occurs in be tween.  Therefore  F o ( a  o)  = F o ( b o ) ,  and 

so on. So we obta in  that  k --- r and each F o ( a  i) = Fo(b i ) .  Since each 
F(a i) has shorter  length than s, we are done  by induc t ion  hypothesis .  

Defmi t ion  2.9. We write < (x, a, b) for LO(x)  & a, b ~ Seq(F ie ld (x ) )  
& a comes before  b in the  lexicographic order ing on Seq~,Field (x)) in- 

duced  by x. 

Defini t ion 2.10. We write Defn(x ,  a, k) for SLO(x)  and a = (n, b o, 

..., b m ), 0 <_ m ,  and each b i E Fie ld(x)  and Y = [b" Sa t i ( tF ie ld(x) ,  
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Rel 2 (x)), n, (b, b O, ..., b m ))] satisfies the  fol lowing condi t ions:  

a) the range of  F n ( x )  t Y contains  k - 1 as an e lement  and is a subset 
o f k  and k E  co - [ 0 ] .  

b) Y ~  [b :  ( b , c ) ~  Rel2(x) ]  for a l l c ~  F i e l d ( x ) ,  

c) Y ~ i b :  Sat i ( (Fie ld(x) ,  Rel 2 (x)), r, (b, b o, ..., b m )) 1 for all r < n ,  

d) Y~: [ b :  Sat i ( (Fie ld(x) ,  Rel2(x)) , n, (b, c o . . . .  , cr))]  whenever  

< (x ,  (Co, ..., cr), (b O, ..., b m ) ) .  

Definition 2.11. We write C H Y ( x , f )  for 

1) LO(x)  

2) 

3) 

4) 

5) 

F c n ( f )  & D o m ( f )  = F ie ld(x)  & ( V y ) ( y  ~ Fie ld(x)  -+ ( S L O ( f ( y ) )  
& F i e l d ( f ( y ) )  c A o u Seq(V(co) w x) ) )  

O(x,  y )  .-* f ( y )  = (F,  ( A ,  R 1 ), (,4, R2)),  where  A = A ° , R 2 = R 0 , 
R 1 = e t A o, F(a)  = 0 for all a E A 

Suc(x,  a, b)  -+ f ( a )  = (F, (A, RI>, (A, R2)),  where  A = Field ( f (b ) )  u 

[ ( [  1 | ,  b, n)  * b 0 * ... * b,.  * ( [ 2 ] ) "  De fn ( f (b ) ,  (n,  b O, .... bin), k )  

for some k ] ,  R 1 = Rel 1 ( f ( b ) )  u [(a, s)" a ~ F i e ld ( f (b ) )  & 
s ~ A - F i e l d ( f ( b ) ) ]  u [ Ca, s' • a, s ~ A - F i e l d ( f ( b ) )  & a = ( [ 1 ] ,  b, n)  

• b 0 . . . .  * b m  * ( [ 2 1 ) & ~ ' = ( I 1 ] , b , m ) * c o  • ... * c r ( [ 2 ] ) &  

(n < m v < ( (F ie ld ( f (b ) ) ,  Re l l ( f (b ) ) ) ,  (b 0, ..., bin), (Co, ..., c r ) ) ) ] ,  
R 2 = R e l 2 ( f ( b ) )  u [ (a, s)" a E F i e l d ( f ( b ) )  & s E A - F i e l d ( f ( b ) )  & 

s = ( [ 11 ,  b, n)  * b 0 * ... * b m * ( [ 2]  ) & Sa t i ( (F ie ld ( f (b ) ) ,  
Rel 2 ( f ( b ) ) ) ,  n,  (a, b 0 , ..., bm))  ] ,  F(a)  = F n ( f ( b ) ) ( a )  i f a  E 
F ie ld ( f (b ) ) ;  i f a  ~ A - F i e l d ( f  (b)), a = ( [  1 ] ,  b,  n )  * b 0 * ... * b m * 

([  2]  ), then  F(a)  = k where  De fn ( f (b ) ,  (n, b O, ..., bin), k )  

Lim (x, a) -+ f ( a )  = (F, ( A ,  R 1 ), ( A ,  R2)), where  F,  A, R 1 , R 2 are the  
unions,  over those b with (b, a) ~ Rel 1 (x), o f  Fn ( f (b ) ) ,  F i e l d ( f  (b)), 
Rel I ( f ( b ) ) ,  Rel 2 ( f ( b ) ) ,  respectively. CHY (x, f )  reads " f  is a coded 

hierarchy on x" .  

Defmition 2.11. A limit ordinal X is an ordinal > 0 with no immediate 

predecessor. Whenever we write X we mean a lit'it  ordinal. 
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Lemma 2.2. There is a formula PI(oO, vl ,  o 2 ) and a sentence Q1 such 
that for all X we have Sat ((L ~+~ (~ ), e), Ql ), a~?d for all transitive sets A 
such that Sat((A, e), Ql) we have" Sat((A, e), PI , f )  - Sati(f(0),  f (1) ,  
f(2)) ,  for all assignments f in A, and Sat ((A, e), (V o o ) ( 3 x) ( V y) (y e x 
= (y = (o 1, v::> & PI(Vo, of,  02))))" 

Lemma 2.3. There is a formula P2 (Vo, vl , °2 )and a sentence Q2 such 
that for all X we have Sat((LW+~(~,), e), Q2 ), and for all transitive sets 
A such that Sat ((A, e), Q2) we have Sat((A, e), P2, f ) -  < (f(0), f(1) ,  
f(2)),  for all assignments f i n  A, and have also Sat((A, e), 

( V O o ) ( 3 x ) ( V y ) ( y  E x -:- (y = (v I , 02) & P2(V0, Ol, 02))) ). 

l .emma 2.4. There is a formula P3 (°o. ~Jl , 02 )and  a sentence Q3 such 
ttzat for  all X we have Sat((L'°÷~'(~.), e), Q3 ), and for all tram'itive sets A 
with Sat ((A, e), Q3 ) we hav~ : Sat ((A, ,-), P3, f )  =-- Defn (f(0),  f(1 ), 
f(2)) ,  for all assignments f in A, and Sat ((A, e), (V Vo) ( 3 x) (~' y) (y ~ x 

- (y = (ol,  o2) & P2(VO, ol ,  o2)))). 

Lemma 2.5. There is a formula P4 (Vo, v 1) and a sentence Q4 such that 
for all • we have Sat((LW+'~(),), e), Q4 ) and for all transitive sets A with 
Sat ((A, e), Q4 ) we have Sat ((A, e), P4, f )  - CHY (f(0),  f(1)) ,  for  all 
assignments f in A. 

Definition 2.12. We write WO(x) for LO(x) & (~ 'y  c Field(x))(y  ¢ 
( 3a e y ) ( V b  ~ y ) ( (b ,  a> q~ Rel I (x))). We write (A, R) ~ (B, S) for 

( :l f )  (lso (f, (A, R), (B, S)). I; LO(x) and a e Field(x), then we write 
x a for [b:  ( b , a ) e  R e l l ( x ) ] .  

Lemma 2.6. For all x E V(w + to) with WO(x) there is a unique f such 
that CHY(x, f )  & f E l/(w + to). Furthermore, 

1) for  all a e Field(x) we have that (:! ! ga)(Iso(ga, (Field(f(a)) ,  
Rel2(f(a))), (Lw+t°(/3), e))), where (xa, Rel I t x a) ~ (fl, e) 

2) for  all a e Fie ld (x)and  for all b ~ Field(f(a))  we have that 
Fn( f (a) ) (b)  -" tan(ga(b) E V(to + n)) 

3) for all a e Field(x) we have WO((Field(f(a)) ,  Rel 1 (f(a)))).  
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Lemma 2.7. Let LO(x),  (Field(x), Rel I (x)) ~ (a, c), x E L~+"'(/3). 

Then ( fi f )  (CHY (x, .f) & f ~ L'°+w (¢ + ~ + ,,~)). Furthermore for  each 
k a ~ Fie'M(x) and k there is a ga ~ L~+°~((3 + ~ + ~o) such that lso(ga ~, 

(Field(f(a))  n [b :  Fn( f (a) ) (b )  <_ k ] ,  Rel2~f(a)) t Field(f(a))  ta 
[ b: Fn( f (a) ) (b)  <_ k I ), (L~+'~(~ ,) n V(~ + k), e)), and L w+w (~) n 
V(~ + k ) ~  L~+~' (/3 +~  + w), where (7, ~) ~ (x a, Rel~ (x) ~ x a) 

Proof. Fix ~3. Then argue by induction on a. The basis case is trivial. 
Argue the limit case through use of Lemma 2.6, which gives unicity 
below the limit and which ass,ires that the types needed are bounded 
below by V(~o + no) , and by Lemma 2.5, which gives a first-order de- 
'~cription below the limit. Argue the successor case by Lemma 2.4. 

k The ga are developed by induction on k. 

Definition 2.13. We say L'~+"(~) is pure just in case co < a and for all 
< a there is an x ~ L'~+'° (c~) with LO(x) and (~, e) ~ (Field(x), 

Rel I (x)), and for all ~ < a we have L~+~°(~) ~ L"+~(fl  + 1). 

Lemma 2.8. Let L'~+'~(a) be pure, (V~ < a)(O + ~ < o0, Sa t ( (L"+"(~) ,  
e), WO(%), Xk(x)). T,~en either WO(x) or for all (J < ~ them is an 

a E Field(x) with ((3, e) ~ ( [ b : (b, a) E Rel I (x) ] ,  Rel I (x) t [ b : 
(b ,a>~ Rell ( x ) l ) .  

Proof. Let x ~ L'°+"(u) ,  Sat((L'~+"(~): e), WO(%),  Xk(x)), and assume 
< u, "~ WO(x), and fl is the order type of the maximal well-ordered 

initial segment of (Field(x), Rel I (x)). We wish to obtain a contradic- 
tion. By purity, let y E L(a) have LO(y)  & (fl, e) ~ (Field(y),  Rell(y)) ,  
and choose ~, < a with x , y  ~ L~+'°('t). Then a straightforward induc- 
tive argument will reveal the existence of an isomorphism from the 
ordering defip,;d by y onto the maximal well-ordered initial segment of 
the ordering defined by x, which lies in L '-'+'' (-/+ fl + ~o). But then 
Sat ( (U°+"(v  ÷ ~ + ~o), e), .- WO(v0), Xk(x)), and he~=ce Sat ((L','+'~(a), 
e), "- WO(v0), Xk(x)), which is a contradiction. 

Lemma 2.9. Let L~°+'°(a) be pure, L'°+'°(a) 4= L'~+~(a + 1), 
( V 3  < a)(# + ~ < a), and Sat ((L"+'~(a), e), WO(vo), ~n(x)). Then 
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( 3 r E  L'- '+"(a))(CHY (x, f ) )  i f  and only i f ( 3  3 < a)((Field (x), 
Re: l ( x ) )  ~ (t3, e)).  

Proof. Suppose .-- WO(x). Then by Lemma 2.8 the maximal well- 
ordered init,~l segment of x must be at least a. Note that we can define 

k LW+~ ga E (~) as in Lemma 2.7, for each a ~ Field(x), even though 
~ ~VO(x). In fact, let x ~ L'~+~(O). Then the ga k are in L'~+t°(3 + w). 
Consider S = [a ~ Field (x): (3  k)( 3b ~ Rng(ga k) ) (V c)((e,  a) 
Rel 1 (x) ~ ( V p ) ( b  ~ Rng(gcP))) 1. Then clearly S contains the initial 
segment o f x  of type a. Now, S is in L ' + " ( 3  + to + to). I f a  is the type 
of the maximal well-ordered initial segment of x then, since WO(x) 
holds in L '~÷'~ (a), we must have ( =I a c S) (a is beyond the maximal 
well-ordered initial segment of x). If there is a well-ordered initial seg- 
ment o f x  of type c~ + 1 then since L'~+'~(a) 4= l.t°+t°(~ + 1 ), we must 
again have ( 3 a ~ S) (a is beyond the maximal well-ordered initial seg- 
ment of x). Fixing this a, form gff ~ L'~+'~[(3 + w). Then by definition 
of S. we will have a y  6 L'°+'° (~3 + to) which does not lie in Lw+w (a), 
which is a contradiction. The converse is b v Lemma 2.7. 

Lemm.. 2.10. 

!) 

2) 

There is a sentence Q5 such that 

for all pure L '~÷'° (a) with ( V 3 < a)((3 + 3 < a) and Z ~+to (a) ¢ 
L'°+'(c~ + 1) we have Sat((L"'+~"(a), e), Qs)  

i rA  is transitive and Sat((A, e), Q5 ) and yor all assignments f in A. 
Sat((A, e), (3 ol)(P4(o o, o l ) ) , f )  -~ WO(I(0)),  then 

(3[s)(A = L"+,,((3) & ( 'q7) (7  < (3 -+ ~' + 7 < (3)). 

Lemma 2.1 I. There is a formula P5 (°0, o 1 ) such that for  all pure 
L~+~(u) with (~l(3 < a)((3 + (3 < a) and L~+"~(a) 4: L"+t° (a + 1 ) we have 
WO((A, R)), where A = L~'+'~(a) and R = [,:a, b) : Sat((L~°+~(a), e), Ps ,  
•n(a if n = 0; b if n :~ 0))1.  

k p Proof. We will just define the R. Take R :: [ (gy (a), g~ (b)): 
( 3 x ) ( 3 y ) ( 3 f ) ( W O ( x )  & f E  L~+t°(a) & C H Y ( x , f )  & y E Field(x ~ & 
a, b ~ F ie ld ( f (y ) )  & (a, b) E Re i l ( f (y ) )  & F n ( f ( y ) ( a )  = k & 
F n ( f ( y ) ) ( b )  = p) I .  Of course, g.yk, gyp depend on x, f a s  in Lemma :,.".7. 
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Lemma 2:12. Let  L'°+'°(t~) be pure, ( V  {3 < a)({J + {J < a), Lw+~(a) q: 
L'~+"( .  + 1), x ~ L°~+°~(a + 1), whe re x  = [a:  Sat((L"+~(a) ,  e), F, 
Xn(a))].  Then there is a transitive set A c Lo~+w(t0 such that 

1 ) Sat ((A, ¢), Q4 d¢ Qs) 

2) TC(x) c A & x ~ A and ( V a  ~ x)(Sat  ((L'~+~(t~), e), F, Xr(a)) = 
Sat((A, e), F, Xn(a))) 

3) Sat((A, e), (VOo) ( 3v l ) ( P4 ( v o ,  01)) ~ WO(t,o)) ) 

4) for  a l ly  ~-A we ha:,e [Sat((A, e), WO(oo), Xn(y))= Sat((L~+~(,*), 
e), WO(oo), Xn(y))l & [Sat((A, e), ( 3 f ) ( P 4 ( y , f ) )  , ;~n(y) ) -  
Sat((L"+~(a) ,  e), ( : l f ) ( P 4 ( y , f ) ) ,  Xn(y))] 

5) there fs a partial funct ion G which is from the cartesian product o f  
co with TC (x) onto A and a formula P6 (Vo, o l ,  02, v3 ) such that 
G(a, b) = c i f  and only i f  Sat((L~+"~(a), e), / '6(o0, o I , o 2 , 03), 
Xn(a f i n  = 0 ; b  i f n  = 1;c i f n  = 2 ;x  i f n  > 2)). 

Proof. Using Lemma 2.11, employ a standard closure of TC(x) u [ x ] 
under the Skolem functions for the finite number of formulae needed. 
This can be de-~cribed ha L~+'~(o) because of the bound in complexity 
of the formulae. Then perform the isomorphy onto the transitive set A. 
This isomorphism can also be described ha L ~+~ (a), and will result in a 
subset of L u+"~ (a). This isomorphism will carry well-orderings into well- 

orderings. 

Lemma 2.13. Let L~"~(a)  be pure, (V# < (~)(# + # < a). Furthermore, 
z'uppose Lu+~(a + 1) - L~+"J((~) :# ~. Then there is a partial function G, 
and P 6 such that 5) in  Lemma 2.12 holds and A -Lw+'~(a). 

Proof. Choose A as in Lemma 2.12, using any x ~ L'~+'~(a + 1) - 
L~+~(a) of the form [a:  Sat ( ( L o " ' ( a ) ,  e), F, Xn(a))] .  Such an x can 
be found by Lemma 2.1 1. It suffices to prove that A = L '~+" (a). Note 
that by Lemma 2.10 we have A = L ~ + ' ( ~ )  for some #. Note by 2) of 

Lemma 2.12 that x ~ L '+ '~(#  + 1 ). Hence a = #. 

Lemma 2.14. Let  L~+~(a) be p~'re, (V~ < a)(fl + ~ < a), L~+~(a)  4: 
L~+~(a + 1). Then Lw+"~(a + l)  is pure. 
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ProoL We use the G , P  6 of Lemma 2.13, for somex  ~ L~+~'(a + 1) - 
Lw+w(a), and P~ of Lemma 2.1 1. It suffices to produce a linear order- 
i ngy  E L u + " ( a  + 1) with (o, e) ~ (Field(y),  Rel I (y)). T a k e y  = ( A , R ) ,  

where A = Dc'r  tG), R = [¢tx 1 ,Yl ), (x2, Y2)) : ( x : , Y l ) ,  (x2,Y2) ~ A & 
Sat ((L ~'÷~ (a). e), P5 (°o, o~), Xn(GC: ~, y t) if n = 0; G(x 2 , Y2) if 
n > 0))1.  If this (A, R) is longer th~n (t~, e) then take the appropriate 
initial segment; tais (A, R) must be a well-ordering. 

Lemma 2.15. l f  L~+t~(a)~  L~°+w(, . + l ) a n d  to < a then L '°÷~ (a + 1) 
and L w÷w (a) are pure. 

Proof. Straightforward from Lemma 2.14 by transfinite induction. 

Lemma 2.16. Suppose  L ~+~ (a) ¢ L ~ ~ (~ + 1 ). Then L w+w (a × to) ¢ 
L w+'~ ((a X to) + 1 ). 

Proof. Suppose Lw+w(a X to) = L~+w((a X w) + 1). By Lemma 2.15, 
there is a well-ordering in L ¢~+'' (~ + 1 ) c f type o~. ttence there is a well- 
order ingy ~ L~°+'(a X to) of type (a X to) + 1. Since (Lw+w(a + to), e) 

satisfies Z, there must be a n f ~  L~÷~(t~ X to) with C H Y ( y , f ) .  Hence 
TC(f )  ~ Lw+w(t~ X to) sin,e (L~+~'(t~ X to~, e) sat'.: Yies Z. In addition 
(L~'+~'(a × w), e) must satisfy that  every set has sn:aller cardinality than 
TC(f) .  But (Lw~w(a × to), e) satisfies the power set axiom and Cantor's 
Theorem, and so we have a contradiction. 

l.emma 2.17. Let  y c to, y E l w+w. Then there isa X such that  

Lw+w(X) ~ L"+"~ (X + 1 ) and y E L w÷t° (~, ) and a formula  P7 (Vo , °1,02)  
such that Sat((Lw+~(X), ( V o l ) ~ i  ! Oo)(O o ~ to & PT(V0, ol~ 02)), 
Xn( z)) , for  some z ~ Lw+"(~,). 

Proof. Choose a least such that y ~ L '~+~ (e), to < a. Then a = ~ + 1. 
Set ~ :- ~ X w. Note that by Lemma 2.16, L"÷°J(X) satisfies the hypo~th - 
eses of Lemma 2.12, using y for x. Using Lemma 2.10, the resulting A 
must be L"~w(k).  Using the P6 of Lemma 2.I2  one easily constructs 
!he desired P7 since TC(y)  = to, or y is finite. 

Lemma 2.18. Let  y c to, y ~ L u+w. Then there i sa  X such that 

L w÷~ (X) 4: L w÷w (X ÷ 1 ) and y E L ~÷~° (~) and a formula  P8 (°o,  o 1 ) 

such that Sat((L~+w(X), ( V o l ) ( 3  ! t,o)(O 0 ~ to & Ps(v0, Ol))). 
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Proof. Take X, P, as in Lemma 2.17. Note that L¢°+'~O,) satisfies the 
hypotheses of Lemma 2.1 1. Using the Ps of Lemma 2.1 1, take 

Ps(oo,V 1) to be (3v2)((VOl)(:I  !o 0)(o 0 • ¢o & P7(Vo,O 1, o 2)) & 

( V o 4 ) ( P s ( u 4 ,  " I) ~ "" (VVl)(=i !Vo)(O 0 • ~o & P7(Vo,  V I ,O4) ) )  & 

PT(oo, vl;  v2)). 

Lemma 2.19. Suppose / '9 (o0 ,  v l) is a formula  such that Sat((U~+"(X), 
e), (VVl)(:I ! Oo)(V 0 • ¢o & P9(oo, Ol))). Then Th((L'°+'(X), e ) ) •  
L~+"(X + 2). 

Proof. Note that there must be a~. (¢o, R) ~ (Lw+'0,),  e) such that 
R • L'°+'(X + 1). In addition, every set of natural numbers arithmetical 
in R will be in L ~+'' (X + 1 ). Hence straightforwardly, Th((L"+'° (X), e)) 
,~ L"+~(X + 2). 

Combining Lemmas 2.17 and 2 18, we immediately have: 

Theorem 2. There are formulae  ~o~ (Oo, ol), ¢2(Vo, ol), and ~03(v o, v l) in 
LST with only  the free variables sL own  such that f o r  each x c w ,  
x • L '°+~ there is a l imit  ordinal X such that 

1) x • L"+w(X) 

2) (Vy • L'°+"(X))(::ln)(Def((L'°+"(a), e), n, y ) )  

3) Th((L~+'°(X), e ) ) •  Lw+w(). + 2) 

4) Sat((Lt°+t°(X), e), ~Ol(O 0, Vl),f) i f  and only  i f ( u 3 ) ( f ( O )  • Lt°+¢°(/3)) 
< ( ta3)( f ( l )  • L'°+t°(#)) 

5) Sat((U"+'~(X), e), ~o2(0 o, v l ) , f ) i f  and only i f( ta~)(f(O)• L'°+'(3)) 
= ( t a ~ ) ( f ( 1 )  • L'.'+'o (t~)) 

6) Sat((Lw+~0,), e), ~o3(v o, vl ) , f )  i f  and only /f f(1) = (tan • w)(f(O) 
• V(o., + n)).  
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Section 3 

In this Section we discuss various refineme-.ts of Theorem 1.6 and 
its Corollary. 

We assume familiarity with the hierarchy of numerical formulae with 
one function parameter ranging over to'". 

Definition 3.1. A towered  * structure is a structure (A, R) such that 
clauses 1) - 10) of  Definition 1.21 hold and in addition, for each 11 ° 1 
predicate Q(n, f )  we have (B n)(n ~ A & " Q(n, J'~ (Ch (Th(A, R)))))) + 
(::1 n)(n E A & .'~ Q(n, j,o (Ch(Th(A, R))))) & (Vm)(m < n -> 

Q(m,  j w  (Ch(Th((A, R))))))). Define 6 * = [ Ch(Th((A, R))) : (A, R) is 
a towered* struclure ].  

Lemma 3.1.1. L ~÷'° satisfies that c5 * ,~ L w+~° is an e lement  ofB~+ 3 
with recursive code. 

Proof. Routine counting of quantifiers and comparison with the Borel 
hierarchy. 

Lemma 3.1.2. Suppose (A, R), (B, S)are  towered*  structures such that 

Ch (Th((A, R))) -<7" J(Ch(Th((B,  S)))) and Ch(Th((B, S))) <-7" 
J (Ch(Th( tA,  R)))). Then either ( 3 f ) ( I s o ( f ,  (A , R ), (B, S))) or 

(3f ) ( In j ( ) ' ,  (A,  R )(B,  S)) and ( 3 x  ~ B)(Rng(f )  = [y E B: y < x ] ,  
where < is as in (B, S)  as in Definition 3.1 (which refers back to Defini- 
tio n I. 21 I)), or ( 3 f )  ( I nj (f ,  (B, S), (A,  R )) an d ( 3 x ~ A ) (Rng ( f~  = 
[ y ~ A:  y < x ] ,  where < is as in (A,  R )  in Definition 1.21)). 

Proof. Tilis is the analogue to Lemma 1.5.1, and is proved exactly the 
same way, moticing that, for instance, the K of that proof is defined by 
a rl ° predicate Q(n, Jt°(Ch((A, R)))). 

Arguing as in Section 1, we have 

' i l teorem 3.1. L t°+'~ satisfies "there exists an e lement  Y ~ B,~+3, with 

recursive code, such that ~ D(Y)".  Hence the assertion in quotes  is con- 

s i i tent  with Z. 
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Proof. Consider the game given by Y c 2`0, where Y = [ f ~  2`0 • 

Xn(f(2n)) ~ c5 & Xn(f(2n + 1))<-7" Xn( f (2n) ) ] .  

Definition 3.2. Define La(O) = V(w), Lt~(3 + 1) = FODO((LtZ(3), e)) n 

V(a), L~(h) = u La(3), where ~, is a limit ordinal. Define L ~ = [x : 
#<x 

(:1 #)(x ~ Lt~(3)) ] .  

For the moment ,  let us concentrate on the case ~ = ~ + 1. 

Now we cannot directly speak of Borel subsets of  2 ̀0 and determin- 

ateness within L ̀ 0+1. What we do is to consider formulae P(o o) and 
associate the sentence P* which naturally formalizes the assertion that 
D( I f :  f ~  2`0 & P( f ) ]  ). In particular we shall construct a numerical 
formula P( f )  which is in prenex form and has 5 quantifiers (numerical, 
of course) such that the corresponding sentence F* fails in (L ̀ 0÷1 , e). 
Thus we can say that, in the appropriate sense, L ' '+l satisfies that 
"there is a Y ~ B 5 with recursive code such that ~ D(Y)" .  However, 
with L a, where ~ + 1 < ,~, no such devices of  expression are needed. 

l.emma 3.2.1. There are formulae q~l(u0, vl), and ~k 2(o0, O1) in LST 
with only the free variables shown such that for  each x c co, x E L ̀ 0.1 , 
there is a limit ordinal ;~ such that 

1) x ~ L'°+IO,) 

2) ( V y  ~ L`o+l(X))(3n)(Def((L`o+l(~), e), n, y))  

3) Th((L`O÷I(x), e)) ~ L'°+I(X + 2) 

4) Sat((L`O÷I(X), e), ~01(v 0, Vl) , f )  i f  and o n l y / f  (/a3)(f(0) 
L`o+l(3)) < (ta3)(f(1) ~ L`o+l(3)) 

5) Sat((L ~'~ I(X), e), ~02((v 0, u l ) , f )  i f  and only i f (u3) ( f (O)  
L ̀ o+l(3)) = ( u 3 ) ( f ( 1 ) ~  L ̀ 0+1(3 )) 

6) ( V x  c L'°+I(X))(x c V(co)). 

Proof. The proof is like the proof  of  Theorem 2. One uses standard 



Section 3 351 

pairing and inverse pairing funct ions  on V(to) to code ever3,thing :is a 

subset o f  V(to). 

In the following,  we use ~o 1 , and ~0 2 as in the s ta tement  of  T h e o r e m  

3.2.1. 

Defini t ion 3.3. A t o w e r e d -  structure is a s t ructure  (A, R )  such tha~: 

1) A c to and the relat ion x ~ y =- Sat( (A,  R) ,  ~2(0o, vl) ,  Xn(x i f n  = 0; 

y if n 4: 0)) is an eqvivalence re la t ion on A 

2) the re la t ion x < y - Sat ( (A,  R),  ~o 1 (o o, o l), ~n(x if n = 0; y if n 4: 0)) 

h a s t h a t ( V x ,  y ~ A ) ( ( x <  y & ' y  < x ) v ( y < x  & ~  x < y ) v  

'x  ~ y & ~ x < y & "- y < x))  and ( V x ,  y ,  z E A ) ( ( ( x  ~ z & x  < y )  

z < y )  & ((x ~ z & y < x)  -~ y < z)), and < has no maximal  ele- 

men t  

3) A ° = [ i : i E A & ( ~ ' j ) ( ~ j < i ) ] , R  ° = R  t A  0 

4) we have ( ' f ix  ~ A ) ( V  y ) ( R ( y ,  x )  ~ y E A ° )  

5) s u p p o s e x ~ A .  T h e n F O D O ( ( [ i : i < x ] , R  t [ i : i < x ] ) )  = 

[ z C  [ i : i < x l  : ( 3 ] ) ( / < x v j " x ) & z = [ k : R ( k , / ) ] ) l  

6) (A, R j satisfies the axiom of  ex tens ional i ty  

7) ( V i c  A - A ° ) ( D e f ( ( A , R ) ,  i, 2i))  

8) for  scme  k we have that  for  all x a A there  exists a prenex formula  

~0 wi th  only  free variable o 0 and wi th  on ly  k al terat ions o f  quanti-  

fier~ such that  S a t ( ( 4 ,  R) ,  (~t ! o0)(~0) & ~o, Xn(x)) 

9) for each !1 ° predicate  Q ( n , f )  we have (3,7)(12 ~ A & 

" Q(n, C h ( T h ( ( A ,  R)) ) )  -* ( 3 n ) ( n  ~ A & ~ Q(n, C h ( T h ( ( A ,  R)) ) )  

& ( V m ) ( m  < n --, Q(m, C h ( T h ( ( A , R ) ) ) ) ) ) .  Define c5- = 

[ Ch (Th ((A, R)  is a t o w e r e d -  s t ruc ture  I • 

L e m m a  3.2.2. [ f ~  2 "  : f c o d e s  Th ( (A ,  R) )  for  some t o w e r e d -  struc- 

ture (.4, R )  ] is in B s with recursive code. In other words c5 - = 

[ f  ~ 2 "  : f =  C h ( T h ( ( A ,  R)))  f o r  some t o w e r e d -  structure (A,  R ) ]  is 

in B 5 with recursive code. 
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Proof. We define f ~  6 = P1 ( f )  & P2 ( f )  & P3 ( f )  & / ' 4  I f )  & Ps ( f )  & 
P 6 ( f )  & PT( f )  & P s ( f )  & Pg ( f ) ,  where P1 ( f )  is ' ( V x ) ( ¢ 2 ( x , x ) )  & 

( V x ) ( V y ) ( ¢  2 (x, y )  - ~o 2 (y ,  x ) )  & (V .x ) (Vz) ( (¢2  (x, y )  & ¢2 (Y, z)) -~ 
¢2(x,  z)) '  E [ i :  f ( i )  = 1 ] ; P 2 ( f )  is ' ( V x ) ( V y ) ( ( ~  l ( x , y )  & 

~ ¢1 (y ,  x ) ) v  (¢1 (y ,  x )  & ~ ~01 (x, Y)) v (¢2(x, Y) & ~ ¢1 ( x , y )  & 
~ ~l (Y, x)  & ( V x ) (  V y ) ( V z ) ( ( ( ~  2 (x, z) & ~ (x, y ) )  --, ~'l (z, y ) )  & 
((¢2 (x, z) & (y ,  z)  & (y,  x )  --, ~Pl (Y, z))) & "-" (:1 x) (Vy)(~o!  (y ,  x )  v 
~ 2 ( x , y ) ) '  E [ i : f ( i )  = 11;  P 3 ( f ) i s  ' ( V x ) ( x  E F ( ~ ) - - - - - ( V y ) ( ¢ l ( X , y ) v  
¢ 2 ( x , y ) ) )  & ( 3 x ) ( x  = F (~ ) ) '  E [ i : f ( i )  = 1 ] ;  P 4 ( f ) i s  
' ( V x ) ( V y ) ( y ~ _ x - .  a,E 1/(~)) '  E [ i : f ( i )  = I1 ; P 6 ( f )  is 
' ( V x ) ( V y ) ( V z ) ( z  E x = z E y ) - *  x = y ) '  E [ i: f ( i )  = I ] : PT'~f) is 
" fo r  each sentence :-q o0(~) such that  f ( ' ( 3  ! Vo)(~)') -" 1 we have that  
fer  some formula  ~k wi th  on ly  the free variable v 0 , ' 3 o 0 (4' & ~ ) & 
( :t ! o 0 ) (~  )' E [ i: f ( i )  = 1 ] '" & [ F :  "F' E [ i: f ( i )  = 1 1 is a consis tent  
set of  sentences in LST";  P5 (3") is "'for each formula ~ with only  the 
free variable o I such that  f ( ' (  :1 !o 1)(~, )') = 1 we have that  

' (  B o 0) (  =! o 1 ) (~ (%)  & ¢~ (o 1 ) & (~1 (01, o0) v ~2 (o l ,  oo)))' ~ 
[ i : f ( i )  --" 1 ] if and only  if  there exist~ a formula ff 1 wi th  free variables 

o2, ..., ok, ok+ 1 such tha t  '( ::1 v o)(  3 o ! )( 3 v:, ) ... ( 3 v k )(Vvk+ 1 )(¢(v o ) & 

~b(Vl),& ~ 1 ( ° 2 , v 0 )  & ' ' "  &tp l (Ok 'v0)  &(vk+l  E v I --- (~Pl(Vk~l,V 0 ) &  
*))) '  E [ i : f ( i )  = 1 ] ,  where ~, * is the result of  relativizing the quant i  ~ 

tiers in ¢, to those y wi th  ~ l (Y, v0)";  Ps ( f )  is " fo r  some k we have that  
for all formulae P w i t h  only  the free variable v o such that  
f( '(31! Vo)(P) ')  = 1 there is a formula ¢J wi th  free variable only  v 0 and 
which is prenex and only  has k al terat ions of  quantif iers  such that  

f ( ' ( : i V o ) ( P  & ~ ) ' ) =  1; P 9 ( f )  is ( V  k ) [ ( 3 n ) ( / i ( n )  & ~ Q ( k , n , f ) ) - *  
( q n ) ( A ( n )  & -~ Q(k ,  n , f )  & ( V m ) ( B ( m ,  n ) -*  Q(k ,  rn, f ) ) ) ] ,  where Q is 
a comple te  II ° predicate,  A ( n )  is "n is odd or (n is even & In/21 i s P  with  

only  free variable o o and f ( ' (  3 ! v0)(P) ' )  = 1 & ( V m  < n /2 )  (~(Iml has 
only  free variable o 0 and is, say, Q(oo),  and f ( ' ( V  Oo)(Q(o o) - P(oo))  & 
(~1 !Oo)(Q) ' )  = 1)))",  B ( m ,  n)  is "A (m) & A ( n )  & Im/21 i s P &  In/21 is 

Q & '( 3 o 0 ) (::i o I ) (P(t 'o) & Q(o I ) & ~ 1 (°o ,  v I ))' ~ [ i: f ( O  = 1 1 " 
To show that  this  is the desired conj~mction, we must  show that ,  for 

the corresponding (.4, R )  to f ~s in the p roof  o f  Lemma 1.3.1, tha t  
(A, R)  is a t ow ere d -  structure.  ! o  do this, one proves by  induc t ion  on 
the complex i ty  o f  a formula  b ~ : h~.t for all assignments g in (A, R) ,  we 

have Sat((A,  R) ,  F ,  g) = '( :! vii )(  3 vi~) ... (:1 Vil)(Git (vi~ ) & ... & 
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Gi/(vii) & F ) '  ~ [ i: f ( ; )  = I l, where Gik(Vo) is Ig(i k) i~ o 0 is even; Gik(v o ) 
is the canonical def in i t ion  of  g(i k) in (A 0, R0 ) if g(i k) is odd;  and 
oq,  ..., oq is a comple te  list o f  the free variables in F. 

Theorem 3.2. L ~'+l :at&ties " the re  exists an e lement  Y ~ B 5 , with 

recursive code,  such that  ~- D( Y)".  

Proof. Proceed as in Section I. The predicate defining the set K of  the  
proof  of  Lemma  1 5.1 is replaced by a II 0 predicate since one needs to 

consider  P(n, i, j )  only for n = 0, 1. 

We can state an independence  result corresponding to  Theorem 3.2. 

Defini t ion 3.3. We let Z(2) be 

I) ( : l x ) (x  = V(to)) 

2) ( V  y ) ( y  C V(¢o)) 

3) (V z ) ( z  ~ x =-- z ~- y)  -+ x = y 

4) x ¢ ck -~ ( B y ) ( y  e x & ( V  z ) ( z  ~ x -, z qi y ) )  

5) ( B y ) ( V z ) ( z ~  y = ( B w ) ( z E  w & w E x ) )  

6) ( V x ) ( B y ) ( V z ) ( z  E y - (F  & z ~ x)), where  F is a formula not  con- 

taining y free 

7) ( V  x ) (  3 y ) ( P ( x ,  y ) )  --> ( 'q x ) (  3 f ) (  [ n ( B k ) ( f (O ,  k)  = n) l = x & 

(Vm)(P( [  n" (Bk)(f(:n, k) = n ) l ,  [n" (B k)(f(m + 1, k) = n ) l  ))), 
where P is a formula  which does not  m e n t i o n  f free. 

It is well k n o w n  that  L ' '+l  satisfies Z(2). The d e p e n d e n t  choices 

principle 7) can be seen to h~.ld using the definable well-ordering of  
L ' '*1 . For  a discussion of  thc ramif ied analytical hierarchy,  L w+l , see 

Boyd, Hensel, and Putnam [ 11. 

Theorem 3.3. Z(2) is consis tent  wi,tr " the re  exists an e lement  Y ~ .3 5 , 

with recursive code,  such that  ~ D ( Y ) " .  
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Extensions of  these independence results can be obtained for certain 
stronger theories than Z. Rather than give a systematic formulation, we 
given an example of  what can be done. 

Def'mition 3.4. We let Z(L) be Z together with ( : l x ) ( ~  a)(t~ = O z" & 
x = I:'(t~), whe~'e s2 L is the first constructible uncou~table ordinal). 
Naturally, we assume some standard formulation of  the constructible 
hierarchy appropriate to Z. 

Theorem 3.4. Z(L) is consistent with " (3  a)(~ D(e))". 

Proof. Using the Skolem-Lowenheim theorem, choese # countable such 
that La possesses a well-ordering of  type fl and nc well-ordering of  ~ of  
type/~ and a well-ordering on ¢o of  type any a < ~. That is, ~ is count- 
able and is s2 in La. It is not known whether ( 3 a)(--- D(a)) holds in La. 
But instead pass to zhe generic extension of La obtained by adjoining a 
generic well-ordering y of  t~ of type ~. In this extension we have Z(L). 
In acdition, we can carry out the independence techniques of  this paper 
using La(y) instead of  La, where La(y) is the same as La except that 
La(0} = V(to) u [ y ] .  The resulting Borel set will have code recursive in 
y.  

We can turn Theorems 3.1 - 3.4 into proofs of consistency from de- 
teminateness. We make use of the usual way of formalizing the con- 
structible hierarchy within set theories, such as the ones being consid- 
ered, based ov sets of  restricted type. This formalization is done by 
means of  the predicate CHY÷(x,f) ,  which is the same as the CHY(x , f )  
of Section 2 except that no type restrictions are placed in the successor 
case. In addition we shall use CODE(f,  y), CODE*(f, y)  to mean, re- 
spectively, that ( :1 x) (CHY (x, f )  & y is coded by f ) ,  ( 3 x) (CHY ÷ (x, f )  
& y  is coded by f ) .  Thus, L '~÷'' was [ y :  ( 3 f ) ( C O D E ( f , y ) ) ] ,  and 
L = [ y :  ( 3 f ) ( C O D E + ( f , y ) ) ] .  

Lemma 3.5.1. The following can be proved respectively, in Z(2) and in 
Z without the power set axiom: (CHY(x, f )  & CODE(f, y))  
(3g)(CHY+ (x, g) & CODE+ (g, y)),  (CHY(x, f )  & CODE(/', y)  & 
f ~ V(to + ~o)) -~ (3g) (CnY+(x ,  g) & CODE+(g, y)~}. 
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l.emma 3.5.2. Shoenfield's abs,~h~teness theorem, (see Shoenfield [7] ) 
is provable in Z without the power set axiom. 

Theorem 3.5. Z without the power set axiom + D(~o + 3)proves the 
consistency o f  Z. 

Proof. The assertion that D(Y)  holds for all Y ~ Bto+3 with recursive 
code is Y~ ~ in the analytical hierarchy, and is therefore subject to Shoen- 
field's theorem. Hence in Z without  power set + D(~ + 3) we can prove 
that every Y ~ B~÷ 3 with recursive code has a constructible winning 
strategy. Now we can formalize the proof of Theorem 3. I, so that  we 
obtain within Z without power set, that (3 x ) ( 3 f ) ( 3 y ) ( C H Y ÷ ( x , f )  & 
CODE÷(f, y)  & (Vg)(  -~ CODE(g, ~,,'))). Fix such a well-ordering x. 
Then, arguing in Z without  power ~et, we have that all of  L ~÷~' is coded 
in the i" with CHY + (x, f ) .  Using tl-is f,  we can straightforwardly give a 
model of  Z and hence derive the consistency of  Z. 

We may similarly obtain 

Theorem 3.6. Z(2) + D(5) proves the consistency o f  Z(2). 

The level of the Borel hierarchy jumps up by one if we want to con- 
sider sets of  Turing degree. 

Theorem 3.7. Z without the power set axiom + "every Turing set 
Y ~ B~.  4 either contains or is disjoint from a Turing cone" proves the 
consistency o f  Z. Z(2) + "every Turing set Y ~ B 6 contains or is dis- 
joint  from a Turing cone" proves the consistency o f  Z(2). 

In fact Theorems 3.5, 3.6, and 3.7 can be sharpened in the following 
way: our proofs actually produce specific subsets Y of 2 ~,  and so the 
respective hypotheses may be weakened in the respective theorems by 
using the respective Y instead of using all Y at the respective level of 
the Borel hierarchy. 
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Section 4 

Here we wish to ment ion some possibilities for future research. 
What is the formal relation between the questions about tile Borel 

hierarchy studied here and the commonly considered axioms and 
hypotheses in set theory? At one extreme, as far as we know, even 
D(5) may not be derivable from Morse-Kelley set theory together with 
the 2nd-order reflection principle *. At another extreme, it may be 
that  Z together with ( V x )  (~fx is a well-ordering on ~o then the cumu- 
lative hierarchy exists up through x) is sufficient to derive (V t~)(D(a)). 

What is the relatio'a between Borel determinateness, (written 
(V a)(D(a))), and "every Borel set of  Turing degrees contains or is dis- 
joint  from a Turing cone?" 

It is easily seen that the following can be derived from Betel deter- 
minateness: for every Borel Y c 2 "  X 2`0 either Y can be uniformized 
by a Borel function or [ (f, g) : (g, f )  ~ Y 1 can be uniformized by a 
Borel function. A Borel function is just  a subset, X, of 2 ̀0 × 2`0 such 
that ( V f ~  2`0)(3 !g ~ 2`0)((f, g) ~ X). A Borel function X uniformizes 
Y just  in case ( V f ~  2`0)(_! !g ) ( ( f , g )  ~ X & ( f ,g )  ~ Y). In fact, a Y can 
be found which is continuous. So we have 

I. to every Borel set Y c 2`0 X 2`0 there is a Borel functior, F which 

either uniformizes Y or uniformizes [ (f, g): (g, f )  ¢ Y 1 

II. there is an ordinal a < I'z such that to every Borel set Y c 2`0 X 2`0 
there is a Borel function F ~ Ba which either uniformizes Y or uni- 

formizes [ (f, g): (g, f )  ~ Y ] 

III. to every Borel set Y c 2 ̀ 0 X 2`0 there is a continuous function F 
which either uniformizes Y or uniformizes [ (f, g) : (g, f )  ~ Y l 

IV. Borel determinateness. 

What is the relation between I -  IV? Of course we have IV -~ II1 

* D.A.Martin has recently derived D(4) from MK + 2nd-order reflector principle (unpublished). 
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II -~ 1. It seems reasonable  to hope  for a mathemat ic ian ' s  p r o o f  o f  I, but  
beware o f  II! Our results can be seen to carry over to obtain the inde- 
pendence  o f  II fr3m Z(L) using a-degrees,  a <i ~2. 
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