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1. INTRODUCTION 

Elster and Nehse [4] considered a class of functions f: S -+ R”, S c IR”, 
for which, if x, y E S and 0 <j. 6 1, there is z E S such that 

f(z) 5 if(x) + (1 - i.)f(4’) (1.1) 

and called such functions convexlike. If S is a convex set and if f is a 
convex function, then clearly f is convexlike. Elster and Nehse obtained a 
saddlepoint optimality condition for convexlike mathematical programs. 
Hayashi and Komiya [9] also considered convexlike functions and 
developed a Gordan-type theorem of the alternative involving convexlike 
functions and in addition considered Lagrangian duality for convexlike 
programs. 

Hanson [7] considered differentiable functions f: S + R for which there 
exists an n-dimensional vector function q(,q U) such that for all x, u E S 

f(-~) -f(u) 3 [9(x, u)l’ L7 f’(u). (1.2) 

Such functions were termed invex by Craven [2]. Clearly differentiable 
convex functions are invex. Hanson [7] showed that if, instead of the usual 
convexity conditions, the objective function and each of the constraints of a 
nonlinear programming problem all satisfy (1.2) for the same q(x, u), weak 

29 
0022-247X/88 $3.00 

Copyright t 19x8 by Academx Press. lot 
All rights or reproductmn I” an) form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82406402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30 WEIR AND MOND 

duality and the sufficiency of the Kuhn-Tucker conditions still hold. 
Furthermore Craven and Glover [3] (see also Ben Israel and Mond [l] 
and Martin [ 111) showed that the class of invex functions is equivalent to 
the class of functions whose stationary points are global minima. 

More generally, Ben Israel and Mond [ 1 ] and Hanson and Mond [S] 
considered (not necessarily differentable) functions defined on S having the 
property that there exists an n-dimensional vector function ~(x, U) such 
that, for all x, u E S and 0 < 2 < 1, 

f(u + E.q(x, u)) < if(x) + (1 - E.)f(u) (1.3) 

and observed that differentiable functions satisfying (1.3) also satisfy (1.2). 
In view of this observation, functions satisfying (1.3) will be called 
pre-invex.’ An m-dimensional vector valued function f: S -+ R” is pre-invex 
on S (with respect to q) if each of its components is pre-invex on S (with 
respect to q). 

It is implicit in the definition of (1.3) that, for all x, u E S and 0 < 1 d 1, 
u + $(x, U) E S; hence pre-invex functions are convexlike. However, 
pre-invex functions have some interesting properties that are not generally 
shared by the wider class of convexlike functions. For example, as for 
convex functions, every local minimum of a pre-invex function is a global 
minimum and nonnegative linear combinations of pre-invex functions are 
pre-invex [ 141. 

As a simple example of a function which is not convex but is pre-invex, 
consider 

f(x)= - 1x1. 

Then f is pre-invex with v] given by 

if ~60 and x<o 
if ~30 and XBO 
if y>O and x<o 
if y<O and x > 0. 

Our purpose in this paper is to detail how and where pre-invex functions 
can replace convex functions in multiple objective optimization. 

2. PRELIMINARIES 

The following convention for equalities and inequalities will be used. If 
x, y E R”, then 

’ The authors are grateful to V. Jeyakumar for his coinage of the term “pre-invex.” 
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x=v iff x,=y,, i= 1, 2, . . . . n 

x 5 y iff x, < yi, i = 1, 2, ..,, n 

xdy iff xsy, and x#y 

X<Y iff x,<y,, i= 1, 2, . . . . n 

x Z$ y is the negation of x d y. 

A scalar valued optimization problem may be expressed as 
(P) minimize f(x) subject to g(x) 5 0. 

Heref: S-+ R and g: S+ II%“, where SC W. 
As previously mentioned, Hayashi and Komiya [9] extended Gordan’s 

alternative theorem (see [lo]) from convex to convexlike functions (their 
results are for a more general problem than (P), but may be easily 
specialized), and they also prove saddlepoint and Lagrangian duality 
theorems. For completeness we state and prove an extension to Gordan’s 
alternative theorem involving pre-invex functions and then state the 
corresponding saddlepoint and duality theorems which follow in the same 
manner as in the case for convex functions (see, e.g., Geoffrion [5] and 
Mangasarian [lo]). The saddlepoint and duality theorems will be shown 
to be special cases of Theorems 4.1, 4.2, and 4.3. 

THEOREM 2.1. Let S he a nonempty set in R” and let f: S + R” he a 
pre-invex function on S (with respect to 9). Then either 

f(x) < 0 has a solution x E S 

or 
P’fb) 2 0 for all x E S, for some p E l%“, p >, 0, 

hut both alternatives are never true. 

Proof. Following [lo], the proof depends on establishing the convexity 
of the set n=U {~(x):xoS}, where 

A(x)= {uERm:U>f(X)}, XE s. 

Under our assumptions this is immediate for if u, and u2 are in /i, then for 
O<i<l, 

nu,+(l-~)u,>~~(x,)+(l-~)f(xz) 

2f (x2 + Mx, > x2)). I 

The program (P) will be said to satisfy the generalized Slater constraint 
qualification if g is pre-invex (with respect to q) and there exists x, E S such 
that g(x,) < 0. 
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THEOREM 2.2. For the problem (P), assume that f is pre-invex (with 
respect to n) and g is pre-invex (with respect to n), and that the generalized 
Slater constraint qualtfication holds. If (P) attains a minimum at x=x0 E S 
then there exists v0 E R”, v0 2 0, such that (x,, vO) is a solution of the 
saddlepoint problem (all x E S, v E KY”‘, v 2 0), 

dXO> 0) 5 dx,, d 2 d-c VII), (2.1) 

w,here qo(x, v) is the Lagrangian f(x) + v’g(x). Moreover, (f the condition 
(2.1) is satisfied for some x0 and vO, then x0 is a minimum for (P). 

In relation to (P), consider the problem 

(D) maximize q(v) subject to v E RF, v 2 0, 

where q(v) = inf,,,Y {f(x) + v’g(x)}. 

THEOREM 2.3. In problem (P), assume that f is pre-invex (with respect 
to n) and g is pre-invex (with respect to n), and that the generalized Slater 
constraint qualtfication holds. Then (D) is a dual to (P). 

Many results for the convex scalar optimization problem have been 
extended to the multiple objective optimization problem, which may be 
expressed as 

(PV) minimize f(x) subject to XEX, 

where f: S -+ Rk, S c KY’, XC UP. 
This is the problem of finding the set of efficient or Pareto [ 121 optimal 

points for (PV): x,, is said to be efficient if it is feasible for (PV) and there 
exists no other feasible point x such that f(x) <f (x0). 

The concept of proper efficiency given by Geoffrion [6] is a slightly 
restricted definition of efficiency which eliminates efficient points of a 
certain anomalous type: x0 is said to be properly efficient if it is efficient for 
(PV) and if there exists a scalar MB 0 such that, for each i, 

f&o) -fix) < M 
f/(x) -J(xcl) ’ 

for some j such that f;(x) >f;(x,) whenever x is feasible for (PV) and 
fi(x) <fi(x,); thus unbounded trade-offs between the various {fi} are not 
allowed. An efficient point that is not properly efficient is said to be 
improperly efficient. 

Under convex assumptions, Geoffrion [I63 showed that the properly 
efficient points of (PV) may be characterized in terms of the solutions to a 
scalar valued parametric programming problem. In the following sections 
we will show that Geoffrion’s assumptions of convexity may be replaced 
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by pre-invexity. We shall also consider the relevant questions of vector 
saddlepoints and duality. 

3. PROPER EFFICIENCY AND PRE-INVEXITY 

In relation to (PV) consider the following scalar minimization problem: 

(PVL) minimize Ly(x) subject to x E X, 

where E.E A+ = {E.ER%>o,~;= , 3., = 1). For convenience we assume 
that Xc S. 

Geoffrion [6] established the following fundamental result: 

THEOREM 3.1. Let 1., > 0 (i = 1, 2, . . . . k) be fixed. If x0 is optimal in 
(PVL), then x0 is properly efficient in (PV). 

Assuming f convex and X convex, Geoffrion also established the 
converse of Theorem 3.1. This result is based on Gordan’s alternative 
theorem (see [lo]). Hence replacing Gordan’s alternative theorem with 
our Theorem 2.1 gives: 

THEOEM 3.2. Let f be pre-invex on X (with respect to q). Then x0 is 
properly efficient in (PV) if and only if x0 is optimal in (PVL). 

Additionally, in his “Comprehensive Theorem,” Geoffrion established a 
more complete characterization of proper efficient points for the problem 
(PV). It is not difficult to see that his assumptions of convexity may be 
replaced by pre-invexity. Here we restate the problems and Geoffrion’s 
“Comprehensive Theorem,” replacing any assumption of convexity with 
pre-invexity. 

PROBLEM 1. Find a point x0 that is a properly efficient solution of 
(PV). 

PROBLEM 2. Find a point x,, that is a locally properly efficient solution 
of (PV). 

In Problems 3-5, X is taken to be of the form X= {x: g(x) 5 O}. 

PROBLEM 3. Find a feasible point x0 such that none of the k systems 
(i= 1, 2, . . . . k) 

24’ v fi(XO) < 0 

U' Ofj(X,)dO all j# i 

uf v gj(XlJ) d O all j such that g,(x,) = 0 

has a solution u E R”. 
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PROBLEM 4. Find a feasible point x0, a point y, E R”, y, 2 0, and a 
point i0 E n + such that J$, g(x,) = 0 and V [Itihf(xO) +yk g(x,] = 0. 

PROBLEM 5. Find a feasible point x,,, a point yOe R”, yOz 0, and a 
point & E /1+ such that y; g(x,) = 0 and x0 achieves the unconstrained 
minimum of E.&f(x) + y;g( x). 

PROBLEM 6. Find a point x0 and a point &,E il+ such that x0 is 
optimal in (PV&). 

The following assumptions will be made: 

Assulnption P. All functions are pre-invex (with respect to q) on X. 

Assumption D. All functions are continuously differentiable on X. 

Assumption Q, . The generalized Slater constraint qualification holds. 

Assumption Q2. The Kuhn-Tucker constraint qualification holds [9]. 

THEOREM 3.3. 

5-4-3 
D 

The proof of Theorem 3.3 follows in exactly the same manner as that of the 
“Comprehensive Theorem” in [6], replacing convexity with pre-invexity. 

4. VECTOR SADDLEPOINTS AND DUALITY 

Here we consider the vector valued optimization problem 

(PV)’ minimize f(x) subject to g(x) s 0, 

where f: S + Rk, g: S -+ W”, and the related vector saddlepoint and dual 
problems. 

By studying a natural generalization of the scalar Lagrangian 

S(x) + did-~) e (e=(l, l,..., I)‘ERk) 

Tanino and Sawaragi t13] have developed a saddlepoint and duality 
theory for convex (PV)‘, generalizing that of the scalar case. Here we take 
a slightly different approach (see also [15]) but the results shown have 
their analogs in [ 133. 
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The vector saddlepoint problem is the problem of finding x0 E S, y, E R”, 
y,zO, such that 

f(.d + y’dxd e 2 f(xd + yb g&J e 

f&J + yh dxd e 2 f(x) + YL g(x) e 

(4.1) 

(4.2) 

for all x E S, y E R”, y 2 0. 
The conditions (4.1) and (4.2) are always sufficient for x,, to be properly 

efficient for (PV)’ (see [ 151). On the other hand, if x0 is a properly efficient 
solution of (PV)‘, one requires a constraint qualification and convexity to 
assure the existence of y0 such that (x,, yO) is a solution of (4.1) and (4.2). 
We now show that this convexity requirement can be weakened to pre- 
invexity. 

THEOREM 4.1. Let x0 he a properly efficient solution for (PV)‘; if the 
generalized Slater constraint qualification is satisfied, and if f and g are 
pre-invex (with respect to q), then there exists y,>=O such that (x,, y,) is a 
solution of the saddlepoint problem. 

Proof. Since x0 is a properly efficient solution for (PV)’ then by 
Theorem 3.2, x0 minimizes Ab f (x) subject to g(x) 5 0 for some lb0 E /1+. 
Since &f is pre-invex (with respect to 4) and since the generalized Slater 
condition is satisfied, by Theorem 3.3, there exists y, E III”, y, 10, such that 
y; g(x,) = 0 and 

dx,, Y) 6 dx,, Yo) G dx, VCA (4.3) 

where cp(x, y) = A&[f (x) + y’g(x) e]. C onsequently, if (4.1) was not true 
then for some i E { 1, 2, . . . . k I, 

and 

f;(xo) + Y’dXd >fi(%) + Y:, g(x0) 

frcG3) + Y’&cd w&J + Yb g(xd for all j # i; 

multiplication by &, i = 1, 2, . . . . k, and summing over all values of i would 
then contradict (4.3). A similar argument applied to (4.2) would also result 
in a contradiction. 1 

We now turn our attention to duality and consider the problem of (see 
1151) 

PI maximize Z = (v E Rk: (U E /i+, y ZO), 1’~ = infx(llf(x) + 
Ykb)l>. 

(D) is the problem of finding all the extreme points of E (see, 
e.g., C131). 
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THEOREM 4.2. (Weak Duality). Let x be feasible for (PV)’ and let 
v E E. Then f (x) - v < 0. 

Proof For some jti E A +, y 2 0, 3.‘v = inf, (E.‘f(x) +y’g(x)}. Since 
g(x) 5 0, 2’f (x) 3 A’f (x) + y’g(x) 2 inf, {ILfg(x) + y’g(x)} = 2’~. So 
i.‘(f(x)-v)>O and thusf(x)-v & 0. 1 

THEOREM 4.3 (Strong Duality). Let x0 be a properly efficient solution of 
(PV)’ and let the generalized Slater constraint qualifi:cation be satisfied. Then 
there is an extreme point co E E such that f (x,,) = co. 

Proqf: Since x,, is a properly efficient solution for (PV)’ then x0 solves 
the pre-invex problem 

minimize j-if(x) subject to g(x) 5 0 

for some AELI+, by Theorem 3.1. Since the generalized Slater condition is 
satisfied, from Theorem 3.3, there exists y, 2 0 such that yt, g(xa) = 0 and 
for all x 

j-lf‘(-d + y; g(x,) d IY(x) + yI, g(x). 

Thus aIf < inf, (iif + yh g(x)} = i.‘v for some v E [Wk. From weak 
duality L’f(x,) = ;l’v. If there was no extreme point &,E 5 such that 
f(x,)= co then there would be [EZ such that [--f(x,) ~0, [-f(x,) ~0. 
Hence for all 1~/1+, J.‘f> l.‘f(x,). Since [EZ there exist RE /1+ and 
.$ E R”, 9 2 0, such that 

inf {Ilf(x) +p’g(x)} = 1:‘[> E:lf(x,) 3 ;‘f(xO) +j’g(x,), 

which is a contradiction. 1 

As indicated earlier, Theorems 2.2 and 2.3 are special cases of 
Theorems 4.1, 4.2, and 4.3. 

Finally, we direct our attention to problem (PV)’ with differentiable 
functions. 

In relation to (PV)’ consider the problem 

(D)’ maximizef (u) + y’g(u) e 

subject to L7 E”ff(u) + v y’g(u) = 0 (4.4) 

~20, ikeA+. (4.5) 

(D)’ is the problem of finding the properly efficient points of f +y’ge 
subject to the given constraints. (D)’ was first given in [16] and shown to 
be dual for (PV)' under convex hypotheses. We now show that these 
hypotheses may be weakened to pre-invexity. 
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THEOREM 4.4 (Weak Duality). Let x be feasible for (PV)’ and (u, A, y) 
feasible for (D)‘. lff and g are pre-invex (with respect to yl) for all feasible 
(x, u, A, y) then 

f(x) & f(u) + y’g(u) e. 

Proof. 

jJ{f(x)-(f(u)+y’g(u)e)l =j.‘(f(x)-f(u))-y’g(u) (from (4.5)) 

2 ;rl(x, u)’ L7 Alf(u) - Y’dU) (by pre-invexity off) 

3 f/(x, u)’ { OiY(u) + VY’dU)) -Y’dX) (by pre-invexity of g) 

= -Yk(X) (by (4.4) 

30 since g(x) 5 0, y 2 0. 

Thusf(x) <f(u)+y’g(u)e. 1 

THEOREM 4.5 (Strong Duality). Let f and g be pre-invex (with respect to 
q) for all feasible (x, u, i, y) and let x,, be a properly efficient solution for 
(PV)’ at which a constraint qualification is satisfied. Then there exist (A, y) 
such that (x,, A, y) is a properly efficient solution of (PV)’ and the objective 
values of (PV)’ and (D)’ are equal. 

Proof: Since f and g are pre-invex and x0 is a properly efficient solution 
of (PV)’ then, by Theorem 2.2, x0 is optimal in (PVA)’ for some 1 E A +. 
Since also a constraint qualification is satisfied at x0, then by Wolfe’s 
duality theorem [ 173, there is y 2 0 such that (x,, A, y) is optimal in the 
problem 

(Di)’ maximize A’f (u) + y’g( u) 

subject to Oi.‘f(u)+ Vy’g(u)=O 

J’zO,iEA+, 

and y’g( x0) = 0. 
Since (x,, A, y) is optimal for (DL)‘, (x,, I., y) is properly efficient for 

(D)‘, from Theorem 2.1. The optimal values of (PV)’ and (D)’ are equal 
since y’g(x,) = 0. 1 
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