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The operator-theoretic method (Adomian and Malakian, J. Math. Anal. Appl. 
76 (1 ), (1980), 183-201) recently extended Adomian’s solutions of nonlinear 
stochastic differential equations (G. Adomian, Stochastic Systems Analysis, in 
“Applied Stochastic Processes,” Nonlinear Stochastic Differential Equations. J. 
Math. Anal. Appl. 55 (1) (1976), 441-452; On the modeling and analysis of 
nonlinear stochastic systems, in “Proceeding, International Conf. on Mathematical 
Modeling.” Vol. 1, pp. 29-40) to provide an efficient computational procedure for 
differential equations containing polynomial, exponential, and trigonometric 
nonlinear terms N(y). The procedure depends on the calculation of certain 
quantities A, and B,. This paper generalizes the calculation of the A, and B, to 
much wider classes of nonlinearities of the form N(y, y’,...). Essentially, the method 
provides a systematic computational procedure for differential equations containing 
any nonlinear terms of physical significance. This procedure depends on a 
recurrence rule from which explicit general formulae are obtained for the quantities 
A, and B, for any order n in a convenient form. This paper also demonstrates the 
significance of the iterative series decomposition proposed by Adomian for linear 
stochastic operators in 1964 and developed since 1976 for nonlinear stochastic 
operators. Since both the nonlinear and stochastic behavior is quite general. the 
results are extremely significant for applications. Processes need not, for example. 
be limited to either Gaussian processes, white noise, or small fluctuations. 

I. INTRODUCTION 

A series of papers by Adomian et al. 1 l-l 1 ] have focused on the 
statistical solution of linear and nonlinear, deterministic or stochastic. 
differential equations by adaptations of his iterative series method. This 
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paper further generalizes these methods and facilitates the inversion of 
nonlinear stochastic differential operators. Also, we point out the wide 
applicability of these methods to natural and technological systems, and 
emphasize their application to nonlinear deterministic as well as nonlinear 
stochastic differential equations. 

Dynamical systems in many areas of scientific research are naturally 
characterized by random fluctuations and nonlinear behavior. Examples in 
nuclear reactors, plasmas, propagation, control, signal processing, 
physiology, economics, etc. occur readily. A few lesser known examples of 
random and nonlinear growth processes can be observed in the dendritic 
patterns of snowflakes, the spiral structures within some galaxies, and the 
traveling wave tube amplifier. In the TWT, for example, the electrons and the 
RF field strongly interact in a stochastic and nonlinear transfer of energy. 
These examples help to illustrate that for many physical systems, strongly 
nonlinear behavior and random processes representing violent fluctuations 
are the dominant structural features. Modeling of such dynamical systems 
leads immediately to nonlinear stochastic differential equations. Although the 
significance of modeling nonlinear and stochastic behavior was recognized 
long ago, the prevalent methods for solving such equations have not been 
satisfactory. Most authors have employed linearization, perturbation, and 
averaging techniques, which often distort the physical model and can create 
serious discrepancy between the mathematical approximate solution and the 
actual physical solution. 

In 1960 Bellman pointed out the need for a practical method to determine 
the solution for nonlinear and stochastic differential equations in a 
computationally tractable form. Further stimulated by a previous applied 
problem in radar systems design involving random sampling of random 
processes, in 1961 Adomian formulated his theory of linear stochastic 
operators and developed the concept of stochastic Green’s functions to 
compute the solution statistics of linear stochastic differential equations. By 
1964 he had developed the technique of iterative series decomposition for 
linear stochastic operators. In 1976 this iterative series method was 
generalized to include nonlinear stochastic differential equations [ 3 1. Conse- 
quent research (at the Center for Applied Mathematics) has developed 
several extensions, which hopefully will represent the goal that Bellman 
foresaw in 1960. 

Recent extensions for determining the solution process and computing its 
statistical measures are again concerned with solving general classes of 
nonlinear stochastic differential equations. The equation considered is 
,;Ty = x, where x represents a stochastic process and Y is a possibly 
nonlinear, possibly stochastic, differential operator. We partition F into 
linear and nonlinear components represented by Y and N, respectively, and 
then further partition 9 and JY into deterministic and stochastic 
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components, 9 = L + 5% and J”= N +A. The term y is the solution 
process whose statistical measures are sought. This leads to 
.Fy = Ly + 9y + Ny + My =x, where L is linear deterministic and inver- 
tible. The general solution process y = Y- ‘x is decomposed into 
y = CzZLO y, or equivalently y = CFZP=X;‘x with y, =&F;‘x = L --‘x (the 
homogeneous solution is added) and R;i rx = -L ’ [,9X; ‘x + An + B, 1. 
The A, and B, are the expansion coefftcients for analytic expansions in a 
parameter 1 for the nonlinear deterministic term NV and the nonlinear 
stochastic term .,Ry, respectively [ 1, 21. Then the desired statistical measures 
of the solution process are computed by taking the appropriate ensemble 
averages. The extension provided by the inverse operator method [ 1 ] over 
the previous work [3] depends largely on a modified iterative decomposition 
of the nonlinear component JtTy (JV indicates a stochastic component). 
Calculation of the terms of the modified iterative series depends on a 
recurrence rule by which we can express the terms of the modified series 
explicitly in terms of the original iterative series decomposition for linear 
stochastic operators. Because of the importance of direct calculation of these 
expansion coefficients, the remainder of this paper is focused upon their 
systematic computation. 

II. EXPANSION COEFFICIENTS FOR SIMPLE NONLINEAR OPERATORS 

Consider the nonlinear deterministic component Ny. This nonlinear 
function of J was called f(y) by Adomian and Malakian. The solution 
process is assumed to be a decomposition y = CEO yi and parametrized as 
C~O~‘yi only for convenience in collecting terms; 2 is not a perturbation 
parameter. Therefore, f(y) = f( y(L)) = x:-C, A,,d”, where f(y) is a 
nonlinear function to be specified and assumed to be analytic in i,. This 
analytic parametrization is a crucial step of the inverse operator method in 
extending Adomian’s methods to include exponential and trigonometric 
nonlinearities as well as polynomial nonlinearities (3, 7 1. We call such 
nondifferential operators Ny simple nonlinear operators. Further research 
[ 11) has also considered operators of the form N(y, y’...., yen)) including 
product nonlinearities. 

The analytic parametrization [ 1) decomposes the inverse operator and the 
nonlinear components and expresses them as analytic expansions in ,I. Thus, 

NV= :’ A,l”. . - n -- 0 n 0 

My= =? B,I” (B, stochastic). 
n=O 
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The term Ny could be y* or ey or similar terms for which the A, are easily 
found by previous methods. The complete solutions of the corresponding 
nonlinear stochastic differential equations have been given [ 1, 2,4, 7 1. 

In the resulting series for the solution y = CzzO Any,, each y, is calculable 
in terms of the proceeding y,_ i, thus 

Y1 = Yl(YO>~ Y2 = Y*(Y,, Ylh Y, = Y,(Y,7 YI 5 Y2)““9 

because 

4 = 4(Yll), A, =A,(y,, VI>, A, =A,(y,, Yl? YA... . 

The resulting system of equations is completely calculable since y, = L ‘x is 
known and a natural statistical separability results avoiding the usual trun- 
cations. Let us now consider the determination of the A, by implicit differen- 
tiations. In the reference work, [ 11, coefficients were obtained for the first 
several terms for a number of examples but no specific expression for the 
general A, was provided. Such an expression can be written immediately as 

A, = (lln!)(d”ld~“)f(y(~))l,=,. 

Our goal now is a systematic computation scheme with explicit instead of 
implicit differentiations and interpretation of the results in terms of 
Adomian’s series for the solution process. Let D = d/dA and suppress the 
arguments for simplicity writing 

A, = (l/n!) Dnfllz,. (1) 

For systematic computation of the A, note D = d/d,? = (dy/dA)(d/dy) 
sincef = f(y) and y = y(A). Then each D”f is evaluated at A= 0 and divided 
by (n!). Since y(A) = y, + Ay, + A’y, + .a’) we can write 

(d”/dA”) y(A>lA =,., = n! Y,. (2) 

Also a convenient abbreviation will be 

(d”ldy”)f[y(~)l IA=,, = &,(Y,). (3) 

Now consider D”f in (1). A significant observation, apparent from the 
computed coefficients A,, A i, A *, A 3 for the specific forms of certain N(y) 
which were calculated previously is that the D”f involve d’fldy’ multiplied 
by polynomials in d’y/dA’. Thus, 

D’f = (df/&MW), (4) 

D2f = (d2f/dy2W./d~)2 + (df/4W2yW2) 
D”f = (d3f/dy3)(dy/dl)3 + 3(d*f/dy’>(dy/dd)(d’y/d~*) 

+ (df/4W3W3). 
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Let us write for n > 0 

D”f = 2 c(i, n)(d’fldy’). 
i=l 

(5) 

where c(i, n) for 1 < i < n represents the ith coefficient. These coefficients are 
calculable from a recurrence relation 

c(i,j)=(d/dA)(c(i,j- 1)) +(dy/dA)(c(i- I.j- I)} (6) 

for 1 < i, j < n, where c(i, j) is the ith coefficient for D’f knowing ~(0, 0) = 1 
and c( 1,0) = 0. The latter is true because c(i, j) = 0 for i > j. Coefficient 
~(0, 0) = 1 since it comes from comparison of D”f = ~(0, O)(d”f/dJ9”) =.f. 
i.e., A, =fl,l=o =f(yO). 

Towards a planned computer program 
work of Elrod 19 1 to the nonlinear case. 
introduced now. 

Y(i, j) = (d’y/dA’)j, 

These quantities are explicit derivatives 
expansion coefficients explicitly. Then (5) 

n 

development that will extend the 
some convenient notation will be 

F(i) = dy/dJl’. (7) 

and our goal is to express the 
is written 

D”f = \‘ c(i. n) F(i) (8) 
i- I 

for n > 1, where the c(i, n) are to be calculated from the recurrence relation. 
The results have been calculated from ~(0, 0) up to c( 10, lo), but are not 
included because of length. (These will be published along with computer 
results at a later time.) From (8) we can write, for example, 

D-f = ~(1, 3) F(1) + ~(2, 3) F(2) + ~(3, 3) F(3) 

which immediately leads to 

Dtj’= Y(3, 1) F(1) + 3Y(l, 1) Y(2, 1) F(2) + Y(l. 3) F(3) 

= (d3y/dA3)(df/dy) + 3(dy/dA)(d’y/dAz)(d2f/dy2) 

+ (dyld43(d3f/dH. 

The results will, of course, check with those previously found by Adomian 
and Malakian [ 1, 2 1. 

Using Eq. (8) we can now calculate the D”f and then, from ( 1). the A ,I are 
easily determined. Thus (using the convenient abbreviation in (3)), 
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A, = (l/O9 DOflkO =f(vo) = ho(Yo), 
Al = 4(YO)YlT 

A3 = Wh3(Yo).d + 6h,(Yo)Y,Y* + 6hl(YO)Y,L 
4 = w4w4(Yob~ + 12h3(YoMY2 

+ h,(~,w~: + 24~~1 + 24hboh~. 

The expansion coefficients have been calculated up to A ,. . (These again are 
not included because of length and are to be published with the previously 
mentioned coefficients and computer results.) We observe that when f(y) is 
chosen simply to be y-resulting in a linear case-the coefficients Ai become 
the yi and we get precisely the first author’s solution for the linear case. 

II. EXPANSION COEFFICIENTS FOR DIFFERENTIAL NONLINEAR OPERATORS 

Consider the nonlinear operator Ny = T(y, y(i),..., y’“‘). We assume r is 
analytic in 1 and y, y(l),..., yen) are also analytic in 1. We are concerned with 
two important subcases of the dlflerential nonlinear operator N which are: 

(1) sum of nonlinear functions of the time derivatives of y, with each 
nonlinear function dependent on a single derivative 

Ny= 2 Niy= 5 j&~“‘); 
i=O i=O 

(2) a sum of products of nonlinear functions of y, each dependent on a 
single derivative. As an example consider T(y, y’) = y’y’“. 

Obviously, if Ny = T(y), we have the simple nonlinearity for which we 
have previously found expansion coefficients and we must obtain identical 
results for this limiting case. We, therefore, define the expansion coefficients 
A,,, for the general differential nonlinear operator Ny to be 

A, = (~/~!)~“‘{KY,.Y’,..., ~(~))}ln=o, 

where y, y’,..., y(“) are assumed analytic functions of 1. 

Case I. The first subcase of our general class was specified by Ny = 
qy, Y’,..., y’“‘) = Cj’zofi(y”‘) h’ h w IC we shall call a sum decomposition [3]. 
Our expansion coefficients are given by 

A,,, = 2 [(l/m!)Dm~(y’i’)l~=o] = i Aim, 
i=O i-0 

(10) 
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because f(y, y’,..., yen) = C~=,J”‘A, = Cr-Ofi(y”‘) and each f.(y”‘) = 
C~_oLmAi,. This leads to Z(y, y’,.... ~1”‘)) = CyZO C,” ,, lmAi, = 
Cz:, [Cy10 Aim] A”, therefore A,,, = Cyzo Ai,. 

Case II. The second subcase, product decomposition of the nonlinear 
operator ] 121, decomposes Ny = T(y, y’,..., y’“‘) into a sum of products. Let 
us first take pairwise products such as f( y, y’) = f,( JV)~,(J*‘) = n: 0 fi( y’i”j 
so we can consider nonlinearities such as v’v”. Now the expansion coef . _ 
ficients are given by 

AnI = (l/m!) ~“~fotY’“‘t~))fl(Y”‘(~))~/., 0 

l~“-kfotY’“‘(4)1 . lmtY”‘@))ll.i 0’ 

This leads to 

A,= <’ Ao.,-kA1.k 
k=O 

(11) 

since 

f(y, y’)= T A,l” = 1) ~;(JJ~‘) 
m-: 0 i -0 

and as before fi( y”‘(A)) = C,“=. A,, 1”. This implies r( J, y’ ) = 
(C,“,oAo,~m>(C~,oAl,~m~= c,“=. [~~=oAo,,-kAl,kl A” which alsO 
gives us the result of (11). An extended Leibnitz rule in terms of multinomial 
coefftcients can handle products of n factors, that is I(y, y’...., JI’“‘) = 
rLJty”‘). W e d o not write out all of these possibilities here. Computer 
programming is now in progress. 

Essentially we are concerned with nonlinear functions of physical 
significance, i.e., functions defined by uniformly and stochastically 
convergent power series, including a Fourier series: NV = f(y) = 
Cz, (Ai cos iy + Bi sin iy) where f(y) is convergent. Since both the 
stochastic behavior is quite general, i.e., not limited to small fluctuations or 
white noise (and is considered in general to be non-Gaussian) and the 
nonlinear behavior is quite general, the problem has been adequately dealt 
with and can be generalized to the case of partial differential equations ] lo]. 
This work has further been extended to systems of nonlinear stochastic 
differential equations and will be discussed elsewhere. The techniques 
presented in this paper have solved such specific applied problems as the 
anharmonic oscillator and the Dufting and Van der Pol oscillators. quickly 
and naturally. (To appear.) 



ADOMIAN AND RACH 

REFERENCES 

1. G. ADOMIAN AND K. MALAKIAN, Operator theoretic solutions of stochastic systems, J. 
Mufh. Anal. Appl. 76 (1) (1980), 183-201. 

2. G. ADOMIAN, Stochastic systems analysis. in “Applied Stochastic Processes” 
(G. Adomian. Ed.), Academic Press, New York, 1980. 

3. G. ADOMIAN, Nonlinear stochastic differential equations, J. Math. Anal. Appl. 55 (1) 
(1976), 441-452. 

4. G. ADOMIAN, On the modeling and analysis of nonlinear stochastic systems, in 
“Proceedings of the International Conference on Mathematical Modeling,” Vol. I, 
pp. 29-40, (Avula, Bellman, Luke, and Rigler, Eds.), University of Missouri, 1980. 

5. R. E. BELLMAN AND G. ADOMIAN, The stochastic riccati equation, J. Nonlinear Anal. 
Theory Meth. Appl. 4 (6) (1980), 1131-l 133. 

6. G. ADOMIAN AND K. MALAKIAN, Stochastic analysis, Internaf. J. Mafh. Modeling 1 (3) 
(1980). 21 l-235. 

7. G. ADOMIAN AND L. H. SIBLIL, Symmetrized solutions for nonlinear stochastic differential 
equations, Infernat. J. Mafh. Mufh. Sci. 4 (3) (1981), 529-542. 

8. G. ADOMIAN AND R. AMBARTZUMIAN, “Some Remarks on Stochastic Transformations,” 
Sov. J. Confemp. Mafh. Anal. Allerton Press, Vol. XVI, No. 1, 1981, 25-30. 

9. M. ELROD. “Numerical Solution of Linear Stochastic Differential Equations.” Ph. D. 
Dissertation, University of Georgia, Center for Applied Mathematics, 1973. 

10. G. ADOMIAN AND K. MALAKIAN. Inversion of stochastic partial differential 
operators-the linear case, J. Mafh. Anal. Appl. 77 (2) (1980). 505-5 12. 

1 I. G. ADOMIAN. “On Product Nonlinearities in Stochastic Differential Equations,” Appl. 
Math. Comput. 8 (1981). 79-82. 


