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Operations with tensors, or multiway arrays, have become increas-

ingly prevalent in recent years. Traditionally, tensors are repre-

sented or decomposed as a sum of rank-1 outer products using

either the CANDECOMP/PARAFAC (CP) or the Tucker models, or

some variation thereof. Such decompositions aremotivated by spe-

cific applications where the goal is to find an approximate such

representation for a given multiway array. The specifics of the ap-

proximate representation (such as how many terms to use in the

sum, orthogonality constraints, etc.) depend on the application.

In this paper, we explore an alternate representation of tensors

which shows promise with respect to the tensor approximation

problem. Reminiscent of matrix factorizations, we present a new

factorization of a tensor as a product of tensors. To derive the new

factorization, we define a closed multiplication operation between

tensors. A major motivation for considering this new type of tensor

multiplication is to devise new types of factorizations for tensors

which can then be used in applications.

Specifically, this newmultiplication allows us to introduce con-

cepts such as tensor transpose, inverse, and identity, which lead to

the notion of an orthogonal tensor. The multiplication also gives

rise to a linear operator, and the null space of the resulting operator

is identified. We extend the concept of outer products of vectors to

outer products of matrices. All derivations are presented for third-

order tensors. However, they can be easily extended to the order-p

(p > 3) case.We concludewith an application in image deblurring.
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1. Introduction

With the availability of cheap memory and advances in instrumentation and technology, it is now

possible to collect and store more data for science, medical, and engineering applications than ever

before. Often, this data ismultidimensional in nature, as opposed to bi-dimensional: the information is

stored inmultiway arrays, known as tensors, as opposed tomatrices. Applications involving operations

with tensors include chemometrics [41], psychometrics [24], signal processing [9,27,39], computer

vision [44–46], data mining [1,38], graph analysis [21], neuroscience [3,30,31], and many more. A

common thread in such applications is the need to compress, sort, and/or otherwise manipulate the

data by taking advantage of its multidimensional structure (see for example the recent article [34]).

Collapsingmultiway data tomatrices and using standard linear algebra to answer questions about the

data often has undesirable consequences.

In this paper the focus is on third-order tensors. However, our approach naturally generalizes to

higher-order tensors in a recursive manner. Two well-known representations of third-order tensors

are the CANDECOMP/PARAFAC (CP) [7,15] and Tucker3 [43] models. CP and Tucker3 are generally

expressed as a sum of outer products of vectors, although in the literature, they are sometimeswritten

using n-modemultiplication notation [22]. Eachmodel can be considered an extension of the singular

valuedecomposition (SVD) [12, p. 70] formatrices. Inparticular, onemethod for computing theTucker3

decomposition is now commonly referred to as the higher-order SVD (HOSVD) from [26]. However,

the overall theme in multiway data analysis is to build minimal approximations to a given tensor that

satisfy the model and any additional constraints.

Our contribution is an alternative representation for tensors with the same ultimate goal in mind:

building approximations to a given tensor. We think a bit ‘outside the box’ to give a representation of a

tensor as the ‘product’ of two tensors which is reminiscent of the matrix factorization approach. This

leads to adifferent generalizationof thematrix SVD.Wediscusshowtouse this generalization toderive

low-rank tensor approximations. Furthermore, our framework allows other matrix factorizations to

be extended to third-order tensors. Such higher-order extensions can then be used to give optimal

representations in the Frobenius norm of tensors as a sum of so-called outer products of matrices.

Tensor decompositions or representations have been motivated by applications. As such, there are

many representations of a tensor appearing in the literature, with no one representation being om-

nipresent inall applications. Fora lengthy listof tensor representationsandcorrespondingapplications,

see the recent review article on tensor-based approaches [22].

In this paper, we introduce a new tensor representation and compression algorithms based on a

new tensor multiplication scheme. Hence, we offer new contributions to the class of tensor-based

algorithms for compression. We emphasize that our contributions are not meant as a replacement for

the many useful tensor representations presented in [22]. The tensor representation and algorithms

here are orientation-specific which are useful for applications where the data has a fixed orientation,

such as time series applications. Some examples include video compression where the third-order

tensor contains two-dimensional images over time [19], handwritten digit identification [38], and

image deblurring which is presented at the end of this paper. Since our representation is based on a

fundamentally new tensor multiplication concept, we also hope to stimulate new research within the

tensor community.

Our presentation is organized as follows. In Section 2, we describe the existing outer product

representations most traditionally used in tensor representations and give some notation. In Section

3, we define a new type of multiplication between tensors and give corresponding notions of identity,

inverse, and orthogonality. In Section 4, we give tensor–product decompositions based on these new

definitions which resemble matrix factorizations and show how these lead to a natural low rank

product decomposition of tensors. Section 5 illustrates the potential utility of our new representations

on an application in image deblurring. We conclude with remarks on future work in Section 6.

2. Tensor background and notation

Weuse theacceptednotationwhereanorder-p tensor is indexedbyp indicesandcanbe represented

as a multidimensional array of data [17]. That is, an order-p tensor, A, can be written as
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A = (ai1i2···ip) ∈ Rn1×n2×···×np .

Thus, a matrix is considered a second-order tensor, and a vector is a first-order tensor. A third-order

tensor can be pictured as a “cube” of data (see Fig. 2.1). While the orientation of third-order tensors is

not unique, it is convenient to refer to its slices, i.e., the two-dimensional sections defined by holding

two indices constant. We use the terms horizontal, lateral, and frontal slices defined in [22] to specify

which two indices are held constant. UsingMatlabnotation,A(k, :, :) corresponds to the kth horizontal

slice,A(:, k, :) corresponds to the kth lateral slice, andA(:, :, k) corresponds the kth frontal slice. A tube

of a third-order tensor is defined by holding the first two indices fixed and varying the third (see [22]).

For example, using Matlab notation, A(i, j, :) is the ijth tube of A.

Throughout this paper, it is crucial to understand the orientation of a tensor. With that in mind, we

restrict ourselves to third-order tensors and avoid messy subscripting wherever possible. Hence, we

will mostly be referring to the frontal slices of a tensor, based on a given orientation.

If u is a length-m vector, v is a length-n vector, then u ◦ v is the outer product of u and v. The outer

product gives a rank-1matrix, whose (i, j)-entry is given by the scalar product uivj . Similarly, the outer

product u ◦ v ◦ w yields a rank-1, third-order tensor with (i, j, k)-entry given by uivjwk . Likewise, an

outer product of four vectors gives a rank-1, fourth-order tensor, etc.

The tensor rank, r, of an order-p tensor A is the minimum number of rank-1 tensors needed to

express the tensor. For a third-order tensor, A ∈ Rn1×n2×n3 , this means we have the representation

A =
r∑

i=1

σi(u
(i) ◦ v(i) ◦ w(i)), (2.1)

where σi is a scaling constant. The scaling constants are simply the nonzero elements of an r × r × r

diagonal tensor Σ = (σijk) (a tensor is diagonal if the only nonzeros occur in elements σijk where

i = j = k, see [22]). The vectors u(i), v(i), andw(i) are the ith columns frommatrices U ∈ Rn1×r , V ∈
Rn2×r , W ∈ Rn3×r , respectively.

Adecompositionof the form(2.1) is called aCANDECOMP–PARAFAC (CP)decomposition (CANonical

DECOMPosition or PARAllel FACtors model) [7,15], whether or not r is known to beminimal. Note that

the matrices U, V, W in (2.1) are not constrained to be orthogonal. Furthermore, an orthogonal decom-

position of the form (2.1) may not exist [10]. There is no known closed-form solution to determine

the rank r of a tensor a priori. Rank determination of a tensor is a widely-studied problem (see, for

example [4,16,22,25,29]).

While some applications use the nonorthogonal decomposition (2.1), other applications need or-

thogonality of the matrices for better interpretation of the data [32,38,44–46]. Therefore, a more

general form, called the Tucker3 decomposition [43] is often used to guarantee existence of an or-

thogonal decomposition as well as to better model certain data. The Tucker3 decomposition has also

been called the higher-order SVD (HOSVD) [26], though the HOSVD actually refers to a method for

computation [22]. However, Lathauwer et al. [26] shows that the HOSVD is a convincing extension of

the matrix SVD. The HOSVD is guaranteed to exist and computes a Tucker3 decomposition directly.

HOSVD first computes the SVDs of the matrices obtained by “flattening” the tensor in each dimension

and then uses the results to assemble the so-called core tensor. The Tucker3 decomposition can be

re-written as a CP decomposition, except that r will not typically correspond to the tensor rank.

Fig. 2.1. Illustration of a 2 × 2 × 2 tensor as a cube of data.
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The CP and Tucker3 decompositions are analogous to the matrix SVD in that they describe the

tensor as a sum of outer products of vectors. In geometric terms, the SVD decomposes a matrix into

an outer product of vectors, which are one dimension less than a matrix. However, in the third-order

case a vector has two fewer dimensions than a third-order tensor. Thus, one contribution of this paper

is a decomposition of a third-order tensor that is an outer product of matrices (i.e., a decomposition

into terms of only one dimension less). We pursue this idea further in Section 4.1.

We note that both the CP and Tucker3 representations can also be described in terms of n-mode

multiplication [22] between a tensor and amatrixwhich is awayof expressing the vector outer-product

sumas amatrix product involving a flattening of different stackings of the slices of the tensors� andA.

As our representations are based on a fixed orientation, we choose to avoid this notation.

Sincewe areworkingwith third-order tensors, it is convenient towrite (2.1) using Kruskal notation

[23]. If A = ∑r
i=1 u

(i) ◦ v(i) ◦ w(i), is an n1 × n2 × n3 tensor, then we may equivalently write A =
[[U, V,W]], where the columns of U, V, W are u(i)’s, v(i)’s and w(i)’s, respectively. It follows that

U, V, W have r columns but U has n1 rows, V has n2 rows andW has n3 rows.

In this paper, script notation is used to refer to tensors. Capital non-script letters are used to refer

to matrices and lower case letters refer to vectors. Entries in vectors are indexed by subscripts. We use

diag(v1, . . . , vn) to denote the n × n diagonal matrix with entries v1, . . . , vn. Similarly, the notation

diag(D1, . . . , Dk), for k, n1 × n2 matrices Di, refers to a block diagonal matrix of size kn1 × kn2 with

n1 × n2 blocks.

2.1. Approximate tensor factorizations

We adopt the definition of the Frobenius norm of a tensor used in the literature:

Definition 2.1. Suppose A = (aijk) is size n1 × n2 × n3. Then

‖A‖F =
√√√√√

n1∑
i=1

n2∑
j=1

n3∑
k=1

a2ijk.

One of the fundamental problems in applications is finding a CP or Tucker3 approximation, Ã, to a

given tensor A which is optimal in the sense that

min ‖A − Ã‖F , subject to vector constraints (2.2)

is solved, possibly subject to some constraints on Ã as well.

Computing the rank of a tensor as in (2.1) is not well-posed. One idea that has been explored

for determining good low-rank approximations to A, based on this fact, is to successively subtract

best rank-1 approximations from A. Unfortunately, this process does not necessarily lead to tensors

that have subsequently lower rank [42]. It may be that the best rank-k approximation does not exist

[22,35,40]. However, the best rank-1 problem is solveable. Algorithms for finding this (iteratively) can

be found in [20,28,47].

If an estimate, rk of the rank, r, is available, one could use the CP model (2.1) where Ã in (2.2)

is found using rk ≈ r. Computing the best rank-(k1, k2, k3) approximation (known as the multilinear

rank) is well-posed (see [25,26]).

In some cases, the vectors in the CP and Tucker3 decompositions are constrained to be nonnegative

[6,11] or orthogonal [32] given the physical nature of the problem. See Ref. [22] for a more complete

list of constrained tensor decompositions and corresponding algorithms.

In Section 4, however, we give a method for subtracting low rank approximations from A based on

a new type of factorization into a tensor SVD, which gives a handle on the quality of the approximation

after each successive step. Our strategy, loosely outlined, is as follows:

• Find Ã = arg minA∈M ‖A − Ã‖F ,whereM describes a special classof tensors that canbewritten

as a “product” of tensors of appropriate dimension.
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• Compute a low-rank approximation to Ã.

• Repeat, as necessary, on A − Ã.

First, however, we need to introduce the type of multiplication that will give rise to such product-

based factorizations.

3. New tensor operators

One major contribution of this paper is an alternative tensor representation based on a product of

two tensors, whichwewill call the t-product.1 In this section, we define a newnotion ofmultiplication

between tensors and present other properties that follow from our new definition. The t-product

operator was initiallymotivated by desiring a closed operation that preserves the order of a tensor.We

begin by showing where current multiplication strategies fall short in this regard. Then we introduce

the the t-product operation and corresponding group-theoretic and linear-algebraic properties.

3.1. Current tensor multiplication strategies

Multiplication between tensors andmatrices has been defined using the n-mode product [2,26,17].

We will not go into detail here, except to describe the 1-mode product, which will reappear a few

times throughout, due to the fixed orientation inwhichwe areworking. IfA is an n1 × n2 × n3 tensor,

then the 1-mode product of A with n2 × n1 matrix U, is the n2 × n2 × n3 tensor that results from left

multiplying each frontal slice of A with U.

There are several ways tomultiply tensors, but themost commonmethod is the contracted product.

The name “contracted product” can be a little misleading: indeed, the contracted product of an � ×
n2 × n3 tensor and an � × m2 × m3 tensor in the first mode is an n2 × n3 × m2 × m3 tensor. For

example, ifA isn1 × n2 × n3 andB isn1 × m2 × m3, then the contractedproduct ofA andB in thefirst

“mode” or “dimension” is n2 × n3 × m2 × m3. However, the contracted product of an n1 × n2 × n3
tensor and an1 × n2 × m3 tensor in thefirst twomodes results in an n3 × m3 tensor (matrix). Notably,

the contracted product does not preserve the order of a tensor which suggests that it is perhaps not

ideal for helping to generalize other concepts of linear algebra for tensors.

In summary, the order of the resulting tensor depends on themodeswhere themultiplication takes

place. We refer the reader to the explanation in [2] for details. We now introduce a new definition of

multiplication between tensors that preserves order. For example, the product of an n × n × n tensor

with another of the same dimension will yield an n × n × n tensor. We start by giving some notation

that will be useful in deriving the concept of multiplication between tensors.

3.2. Notation

We use circulant matrices extensively in our new definitions. If

v = [
v0 v1 v2 v3

]T
then

circ(v) =
⎡
⎢⎢⎣
v0 v3 v2 v1
v1 v0 v3 v2
v2 v1 v0 v3
v3 v2 v1 v0

⎤
⎥⎥⎦

is a circulant matrix. Note that all the matrix entries are defined once the first column is specified.

Therefore, we adopt the convention that circ(v) refers to the circulant matrix obtainedwith the vector

v as the first column.

1 This is to distinguish it from the notion of “tensor product”, which often is understood to refer to the Kronecker product of

two matrices.
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Circulantmatrices canbediagonalizedwith thenormalizeddiscrete Fourier transform (DFT)matrix

[12, p. 202],which is unitary. Inparticular, if v isn × 1, Fn is then × nDFTmatrix, and F∗
n is its conjugate

transpose, then

Fn circ(v)F
∗
n

is diagonal. The following, well-known, simple fact [8] is used to compute this diagonal using the fast

Fourier transform (FFT):

Fact 1. The diagonal of Fn circ(v)F
∗
n = fft(v), where fft(v) is the result of applying the fast Fourier

transform to v.

It is possible to create a block circulant matrix from the slices of a tensor. For this paper, we will

always assume the block circulant is created from the frontal slices (if wewished another ordering, we

would first permute the tensor to achieve it), and thus there should be no ambiguitywith the following

notation. For example, if A ∈ Rn1×n2×n3 with n1 × n2 frontal slices A1, . . . , An3 then

circ(A) =

⎡
⎢⎢⎢⎢⎢⎣

A1 An3 An3−1 . . . A2

A2 A1 An3 . . . A3

...
. . .

. . .
. . .

...

An3 An3−1

. . . A2 A1

⎤
⎥⎥⎥⎥⎥⎦ ,

where Ai = A(:, :, i) for i = 1, . . . , n3.
Similarly, we will anchor the MatVec command to the frontal slices of the tensor. MatVec(A) takes

an n1 × n2 × n3 tensor and returns a block n1n3 × n2 matrix

MatVec(A) =

⎡
⎢⎢⎢⎣
A1

A2

...
An3

⎤
⎥⎥⎥⎦ .

The operation that takes MatVec(A) back to tensor form is the fold command:

fold(MatVec(A)) = A.

Just as circulant matrices can be diagonalized by the DFT, block-circulant matrices can be block-

diagonalized. Suppose A is n1 × n2 × n3 and Fn3 is the n3 × n3 DFT matrix. Then

(Fn3 ⊗ In1) · circ(MatVec(A)) · (F∗
n3

⊗ In2) =

⎡
⎢⎢⎢⎣
D1

D2

. . .

Dn3

⎤
⎥⎥⎥⎦ , (3.1)

where “⊗” denotes the Kronecker product and F∗ denotes the conjugate transpose of F and “·” means

standard matrix product. Note that each Di could be dense and furthermore most will be complex

unless certain symmetry conditions hold.

To compute the product in the preceding paragraph, assuming n3 is a power of 2, can be done in

O(n1n2n3 log2(n3)) flops using the FFT and Fact 1. Indeed, using stride permutations and Fact 1, it is

straightforward to show that there is no need to lay out the data in order to compute the matrices Di.

Indeed, we have the following.

Fact 2. The Di are the frontal slices of the tensor D, where D is computed by applying FFT’s along each

tube of A.
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3.3. New tensor multiplication

In this section we define a new type of multiplication between tensors, called the t-product, and

explore some of the important theoretical and practical resulting properties.

Definition 3.1. Let A be n1 × n2 × n3 and B be n2 × � × n3. Then the t-product A∗B is the n1 × � ×
n3 tensor

A∗B = fold(circ(A)) · MatVec(B)).

Example 3.2. Suppose A ∈ Rn1×n2×3 and B ∈ Rn2×�×3. Then

A∗B = fold

⎛
⎝

⎡
⎣A1 A3 A2

A2 A1 A3

A3 A2 A1

⎤
⎦

⎡
⎣B1
B2
B3

⎤
⎦

⎞
⎠ ∈ Rn1×�×3.

If the tensors are sparse, we may choose to compute this product as it is written. If the tensors are

dense, naively computing the t-productwould costO(n1n2n
2
3�)flops. However, since circ(MatVec(A))

can be block diagonalized, we can choose to compute this product as

(F∗
n3

⊗ In1)((Fn3 ⊗ In1) · circ(MatVec(A)) · (F∗
n3

⊗ In2))(Fn3 ⊗ In2)MatVec(B).

It is readily shown that (Fn3 ⊗ In2)MatVec(B) can be computed inO(�n2n3 log2(n3)) flops by applying
FFTs along the tubes of B: we call the result B̃. If we take the FFT of each tube of A, using Fact 2, we

obtain D. Thus, it remains to multiply each frontal slice of D with each frontal slice of B̃, then take an

inverse FFT along the tubes of the result. We arrive at the following fact regarding this multiplication.

Fact 3. The t-product in Definition 3.1 can be computed in at most O(n1n2�n3) flops by making use of

the FFT along mode 3.

If n3 is not a power of two, we may still employ FFTs in the multiplication by noting that the block

circulant matrix can be embedded in a larger block circulant matrix where the number of blocks in a

block row can be increased to the next largest power of two greater than 2n3 − 1 by the addition of

zero blocks and repetition of previous blocks in an appropriate fashion. Likewise, once B is unfolded, it

can be conformally extended by zero blocks. The product is computed using FFTs, and the result is then

truncated appropriately. This is a commonly used trick in the literature (see, for example [33]) for fast

multiplication with Toeplitz or block Toeplitz matrices by embedding them in larger, block circulant

circulant block matrices, and will not be described further here.

Nowwe discuss some group-theoretical properties of the t-product. First, the t-product is associa-

tive, as the next lemma shows.

Lemma 3.3. A∗(B∗C) = (A∗B)∗C.

Proof. The proof follows naturally from the definition of ∗ and the fact that matrix–matrix multipli-

cation is associative. �

Definition 3.4. Then × n × � identity tensorInn� is the tensorwhose frontal slice is then × n identity

matrix, and whose other frontal slices are all zeros.

It is clear that A∗I = A and I∗A = A given the appropriate dimensions.

For an n × n × � tensor, an inverse exists if it satisfies the following:

Definition 3.5. An n × n × � tensor A has an inverse B provided that

A∗B = Inn�, and B∗A = Inn�.
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From Definitions 3.1, 3.4, 3.5 and Lemma 3.3, we have the following lemma.

Lemma 3.6. The set of all invertible n × n × n tensors forms a group under the ∗ operation.

It is also true that the set of invertiblen × n × n tensors forms a ringunder standard tensor addition

(component-wise addition) and the t-product. Furthermore, as we show in the next section, the set of

all invertible n × n × n tensors is non-empty.

3.4. Linear operators, rank, and null space

We also can define linear transformations around the t-product.

Lemma 3.7. If T(X ) = A∗X where A is a real n1 × m × n3 and X is a real m × n2 × n3 tensor, then

T : Rm×n2×n3 → Rn1×n2×n3 is linear.

Proof. Follows directly from the definition and the linearity of matrix–matrix products. �

Wenote that Braman [5] was able to show that our t-product results in a linear operator in a special

case when n2 = 1.

In particular, since the mode-1 product can be represented using this new notation, mode-1 mul-

tiplication defines a linear transformation. This is in contrast to the interpretation (see [22, p. 6]) that

a mode-1 multiplication defines a change of basis when the tensor defines a multilinear operator.

Since the t-product defines a linear operator, it makes sense to explore invertibility and the null

space, which is more easily accomplished via the following result.

Theorem 3.8. Let A ∈ Rn1×n2×n3 and B ∈ Rn2×�×n3 be rank rA and rB tensors, respectively, defined by

A =
rA∑
i=1

u(i) ◦ v(i) ◦ w(i), B =
rB∑
j=1

x(j) ◦ y(j) ◦ z(j).

Let t(i,j) denote the vector circ(w(i))z(j). Define scalars dij = (v(i))T x(j). Then

A∗B =
rA∑
i=1

rB∑
j=1

dij(u
(i) ◦ y(j) ◦ t(i,j)). (3.2)

Proof. Using the definition to lay out the tensor–product as the product of two matrices,

rA∑
i=1

circ(w(i)) ⊗ u(i)(v(i))T
rB∑
j=1

z(j) ⊗ x(j)(y(j))T =
rA∑
i=1

rB∑
j=1

dij(circ(w
(i))z(j)) ⊗ u(i)(y(j))T ,

where the last equality comes fromproperties of Kronecker products. The result follows upon applying

the MatVec operation to the matrix on the right. �

In the following, we use T to denote the tensor with ij-tubes, t(i,j), for simplicity. Now we discuss

rank and null space.

Corollary 3.9. Let T denote the rA × rB matrix formed by taking the norms (any valid vector norm) of the

tubes t(i,j) of T , and let Δ be the matrix with entries dij.
Thenrank(A∗B) = nnz(Δ 	 T) � rArB,wherennzmeansnumberofnonzerosand	 stands forHadamard

product. Furthermore, B ∈ null(A) if ‖Δ 	 T‖ = 0.

Proof. Follows by noting that an entry in the matrix T will be zero precisely when z(j) is in the null

space of circ(w(i)). �
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In the remainder of the paper, we use the notation v̂ to denote the vector of Fourier coefficients of

a vector v. Note that entry i, j in T will be zero precisely when the vector ŵ(i) 	 ẑ(j) is the zero vector.

Therefore,

Corollary 3.10. Fix i, and assume that circ(w(i))z(i) = s(i) /= 0. Then, circ(w(i))z(j) = 0 for some j /= i is

possible only if ŝ(i) has at least 1 zero entry.

Next, we move on to invertibility.

Theorem 3.11. Let A = ∑r
i=1 u

(i) ◦ v(i) ◦ w(i) be a representation of an n1 × m × n3 tensor.2 Then A
has an m × n1 × n3 right inverse, A†, such that A∗A† = In1n1n3 defined by

A† =
r∑

i=1

x(i) ◦ y(i) ◦ z(i)

provided that UYT = In1 , V
TX = Ir are solvable and that each w(i) has no zero Fourier coefficients, so that

ẑ(i) = 1./ŵ(i). In particular, A−1 ≡ A† when U, V are square and full rank.

Proof. If VTX = Ir and circ(w(i))z(j) = e1, then by Theorem 3.8, the product A∗A† =
(∑r

i=1 u
(i)

◦y(i)
)

◦ e1 = In1×n2×n3 precisely when UYT = In1×n2 . In order for circ(w(i))z(i) = e1, by taking the

Fourier transform of each side we need ẑ(i) = 1./ŵ(i). �
Thus, for existence of a (right) inverse, this means we need r � n1 and U to have full rank, andm� r

with V full rank.

For applications purposes (see Section 5), it is also convenient to define a right pseudoinverse in

the case r < n1.

Definition 3.12. If A = ∑r
i=1 u

(i) ◦ v(i) ◦ w(i) is m × n2 × n3 then if ẑ(i) has no 0 entries:

A†† =
r∑

i=1

x(i) ◦ y(i) ◦ z(i) ∈ Rn1×m×n3

with YT = U†, VTX = Ir and ẑ(i) = 1./ŵ(i).

A similar definition for a left pseudoinverse is also possible.

Now it makes sense to consider whether or not a tensor of rank r can be factored as a product

of two tensors of rank no greater than r. This is straightforward with appropriate definition of the

“free” parameters in Theorem 3.8 (i.e., we can ensure it if VTX = D is an invertible diagonal matrix,

for instance; however if this is not the case, it still might be possible to do, depending on the Fourier

coefficients of the 3rd terms in the outer product representation). The factorization is not unique,

although some terms are specified.

For completeness, we note that we have a change-of-basis type of result3:

Theorem 3.13. Given C = ∑r
j=1 p

(j) ◦ q(j) ◦ s(j). Let P = [p(1), . . . , p(r)] = UE, where U is n1 × k1 with

k1 linearly independent columns. Then

C = A∗B, A =
k1∑
i=1

u(i) ◦ v(i) ◦ e1, B =
r∑

j=1

x(j) ◦ q(j) ◦ s(j),

as long as VTX = E, with e1 the first column of the n3 × n3 identity matrix.

2 We have not assumed that r is minimal here.
3 Compare to p. 6 of Ref. [22].
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3.5. Transpose, orthogonality, range

Armed with the definition of t-product, several interesting facts now arise (dimensions relative to

Lemma 3.7):

• If we take m = 1, we arrive at something that is akin to the outer-product of two vectors. The

outer-productof twovectors gives amatrix.Here, the “outer-product”of twomatrices (i.e.,m = 1

but n1 > 1, n2 > 1, n3 > 1) gives an n1 × n2 × n3 tensor. We show based on the remainder

of the definitions in this section, that we can construct an optimal (in the Frobenius norm)

factorization of a tensor into a sum of outer products of matrices, given our fixed orientation.

• In linear algebra, it is quite common to think of thematrix–matrix product AB as A acting on each

column of the matrix, and each column is a vector: AB = [Ab1, . . . , Abn]. Similarly, if C = A∗B,
each lateral slice of C (a matrix) is obtained by A acting on a lateral slice of B (also a matrix) and

so we have C(:, i, :) = A∗B(:, i, :).
• If we take n1 = 1 = n2, butm > 1, n3 > 1, the result is a single tube, which can be oriented as

a vector. Thus, an “inside-product” (indeed, in a forthcoming work, we show that this satisfies

properties of an inner product) of two matrices, appropriately oriented as tensors, results in a

vector.

Our goal in this section is to build on the t-product definition, to try to take advantage of some of

the observations above. First, we need a few more definitions.

With the definition of a transpose operation for tensors, we will be able to write our previous

approximation in terms of products of tensors.

Definition 3.14. IfA is n1 × n2 × n3, thenAT is the n2 × n1 × n3 tensor obtained by transposing each

of the frontal slices and then reversing the order of transposed frontal slices 2 through n3.

Example 3.15. If A ∈ Rn1×n2×4 and its frontal slices are given by the n1 × n2 matrices A1, A2, A3, A4,

then

AT = fold

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
AT
1

AT
4

AT
3

AT
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .

The tensor transpose has the same property as the matrix transpose.

Lemma 3.16. SupposeA, B are two tensors such thatA∗B andBT∗AT is defined. Then (A∗B)T = BT∗AT .

Proof. Follows directly from Definitions 3.1 and 3.14. �

For completeness we define permutation tensors.

Definition 3.17. Apermutation tensor is an n × n × � tensorP = (pijk)with exactly n entries of unity,

such that if pijk = 1, it is the only non-zero entry in row i, column j, and tube k.

We are now ready to define orthogonality for tensors, fromwhich it follows that the identity tensor

and permutation tensors are orthogonal.

Definition 3.18. An n × n × � real-valued tensor Q is orthogonal if QT∗Q = Q∗QT = I.

We can also define a notion of partial orthogonality, similar to saying that a tall, thin matrix has

orthogonal columns. In this case if Q is p × q × n and partially orthogonal, we mean QT∗Q is well
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defined and equal to the a q × q × n identity. Note that if Q is an orthogonal tensor, then it does not

follow that each frontal slice of Q is necessarily orthogonal.

Another nice feature of orthogonal (similarly, partially tensors) is that they preserve the Frobenius

norm:

Lemma 3.19. If Q is an orthogonal tensor,

‖Q∗A‖F = ‖A‖F .

Proof. From Definitions 3.1, 3.14, and 2.1, it follows that

‖A‖2
F = trace((A∗AT )(:,:,1)) = trace((AT∗A)(:,:,1)),

where (A∗AT )(:,:,1) is the frontal slice ofA∗AT and (AT∗A)(:,:,1) is the frontal slice ofAT∗A. Therefore,

‖Q∗A‖2
F = trace([(Q∗A)T∗(Q∗A)](:,:,1))
= trace([AT∗QT∗Q∗A](:,:,1))
= ‖A‖2

F . �

Note that if the tensor is two-dimensional (i.e., n3 = 1, so the tensor is a matrix), Definitions 2.1,

3.1, 3.4, 3.5, 3.17, and 3.18 are consistent with standard matrix algebra operations and terminology.

We are finally in a position to consider tensor factorizations that are analagous to the matrix SVD

and matrix QR.

4. New product decompositions of tensors

Wesay a tensor is “f-diagonal” if each frontal slice is diagonal. Likewise, a tensor is f-upper triangular

or f-lower triangular if each frontal slice is upper or lower triangular, respectively.

Theorem 4.1 (T-SVD). Let A be an n1 × n2 × n3 real-valued tensor. Then A can be factored as

A = U∗S∗VT , (4.1)

where U , V are orthogonal n1 × n1 × n3 and n2 × n2 × n3, respectively, and S is a n1 × n2 × n3 f-

diagonal tensor. The factorization (4.1) is called the T-SVD (i.e., tensor SVD).

Proof. The proof is by construction. First, we transform circ(A) into the Fourier domain as in (3.1).

Next, we compute the SVD of each Di as Di = UiΣiV
T
i . Then⎡

⎢⎢⎣
D1

. . .

Dn3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
U1

. . .

Un3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Σ1

. . .

Σn3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
VT
1

. . .

VT
n3

⎤
⎥⎥⎦ . (4.2)

We apply (F∗
n3

⊗ I) to the left and (Fn3 ⊗ I) to the right of each of the block diagonal matrices in (4.2).

Observing that in each of the three cases, the resulting triple product results in a block circulantmatrix,

we define MatVec(U), MatVec(S), MatVec(VT ) as the first block columns of each of the respective

block-circulant matrices, and fold the results. This gives a decomposition of the form U∗S∗VT .

It remains to show that U and V are orthogonal. However, this is easily proved by forming the

necessary products (e.g. UT∗U) and using the same forward, backward matrix transformation to the

Fourier domain as was used to compute the factorization, and the proof is complete. �

We note that this particular diagonalization was achieved using the standard decreasing ordering

for the singular values of each Di. If a different ordering is used, a different diagonalization would be
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achieved, which would be equivalent up to permutation (in the Fourier domain) with the T-SVD given

here.

Assuming (4.1) and using Lemma 3.19 we have that ‖A‖F = ‖S‖F . We will make use of this fact

in the next section in devising approximation strategies based on (4.1). The T-SVD can be computed

using the fast Fourier transform utilizing Fact 1 from Section 3.2. One version of Matlab pseudocode

is provided below.

Algorithm T-SVD

Input: n1 × n2 × n3 tensor A
D = fft(A, [], 3);
for i = 1, . . . , n3[U, S, V] = svd(D(:, :, i));

U(:, :, i) = u; V(:, :, i) = v; S(:, :, i) = s

U = ifft(U , [], 3); V = ifft(V , [], 3); S = ifft(S , [], 3);
Note that if A is real, (4.1) is composed of real tensors even though the proof of Theorem 4.1

involves computations over the complex field. The complex computations result when computing the

Di matrices in (4.2). In particular, these Di matrices will be complex unless there are very specific

symmetry conditions imposed on the original tensor.

The T-SVD and the SVD of the matrix
∑n3

i=1 A(:, :, i) are related as the following Lemma shows.

Lemma 4.2. Suppose the T-SVD of A ∈ Rn1×n2×n3 is given by A = U∗S∗VT . Then

n3∑
k=1

A(:, :, k) =
⎛
⎝ n3∑

k=1

U(:, :, k)
⎞
⎠

⎛
⎝ n3∑

k=1

S(:, :, k)
⎞
⎠

⎛
⎝ n3∑

k=1

V(:, :, k)T
⎞
⎠ , (4.3)

Furthermore, (4.3) gives an SVD for
∑

A(:, :, k) in the sense that
∑

U(:, :, k), ∑
V(:, :, k) are orthogonal

and
∑

S(:, :, k) is diagonal.
Proof. Clearly

∑
S(:, :, k) is a diagonal matrix (the entries can be made positive by an appropriate

scaling). Now, all that remains to show is that if U is an orthogonal tensor, then
∑

U(:, :, k) is an

orthogonal matrix (the proof for
∑

V(:, :, k) follows similarly).

Suppose U is orthogonal. Then we have U∗UT = In1n1n3 which means, by Definition 3.1 that

n3∑
k=1

(U(:, :, k)U(:, :, k)T ) = In1 and
∑
i /=j

(U(:, :, i)U(:, :, j)T ) = 0n1 . (4.4)

Eq. (4.4) means that
(∑n3

k=1 U(:, :, k)
) (∑n1

k=1 U(:, :, k)
)T = In1 which completes the proof. �

We now have an interesting way to describe the range of our linear operator, based on the SVD

and bullet points at the beginning of this section, which is analogous to the matrix case. We can say

B is in the range of T(X ) = A∗X if B(:, j, :) is of the form
∑n

i=1 U(:, i, :)∗c(i, i, :) for each j. Note this is

not quite a linear combination in the sense that the c(i, i, :) are not scalars, but they do represent the

“inside products” (S(i, i, :)∗V(:, i, :)T )∗X (:, i, :) for some X .

Othermatrix factorization ideas can be extended to third-order tensors in a similar fashion as the T-

SVD. For example, we can compute a QR type decomposition A = Q∗R [19] where Q is an orthogonal

tensor and R is f-upper triangular. We call this a T-QR factorization. Such a decomposition might be

preferred when data is being added to each frontal slice of the tensor, because QR-updating strategies

can be employed (in the Fourier domain). Note that the T-SVD and T-QR decompositions can be done in

“reduced” form analogous to matrices when D(:, :, i) is rectangular. For example, if D(:, :, i) is n1 × n2,

n1 > n2, we can compute its reduced SVD, rather than the full SVD, in which case each matrix U is no

longer orthogonal but has n2 < n1 orthonormal columns. As a result, U will be partially orthogonal

n1 × n2 × n3, rather than orthogonal, and S will be n2 × n2 × n3.
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Finally,wenote again that the factorizations areorientationdependent: i.e., rotating the tensor gives

a different factorization. On the other hand, applying permutation tensors to A before computing

the T-SVD does not affect the entries in S , and affects the right or left singular tensor through this

permutation.

4.1. Approximation strategies based on products of tensors

In [19] we present a compression strategy based on Lemma 4.2. The compression is based on the

assumption that the terms ‖S(i, i, :)‖2
F decay rather quickly. We do not pursue this idea further here,

but rather present a compression strategy based on the following. If the T-SVD of A ∈ Rn1×n2×n3 is

given by A = U∗S∗VT , then it is easy to show that

A =
min(n1 ,n2)∑

i=1

U(:, i, :)∗S(i, i, :)∗V(:, i, :)T . (4.5)

Thus, A is written as a finite sum of outer products of matrices. A particularly nice feature of the T-SVD

is that it gives a way to find an optimal approximation of a tensor as a sum of k < min(n1, n2) of the
matrix outer products in (4.5).

Theorem 4.3. Let the T-SVD ofA ∈ Rn1×n2×n3 be given byA = U∗S∗VT and for k < min(n1, n2) define

Ak =
k∑

i=1

U(:, i, :)∗S(i, i, :)∗V(:, i, :)T .

Then Ak = arg minÃ∈M ‖A − Ã‖F , where M = {C = X∗Y|X ∈ Rn1×k×n3 , Y ∈ Rk×n2×n3}.
Proof. Wewill use (3.1), unitary invariance of (partially) orthogonal tensors, and the definition of the

T-SVD to complete the proof. Let n = min(n1, n2):

‖A − Ak‖2
F = ‖S(k+1:n, k+1:n,:)‖2

F

= ‖(Fn3 ⊗ I)MatVec(S(k+1:n, k+1:n,:)‖2
F

= n3‖Σ1(k+1:n, k+1:n)‖2
F +· · ·+n3‖Σn3(k+1:n, k+1:n)‖2

F .

Now let B ∈ M, so that B = X∗YT . Then

‖A − B‖2
F = ‖MatVec(A) − circ(X )MatVec(YT )‖2

F

= ‖(Fn3 ⊗ I)MatVec(A) − (Fn3 ⊗ I)circ(X )(F∗
n3

⊗ I)(Fn3 ⊗ I)MatVec(YT )‖2
F

= n3‖D1−X̂1Ŷ
T
1 ‖2

F +· · ·+n3‖Dn3 −X̂n3 Ŷ
T
n3

‖2
F

� n3‖Σ1(k+1:n, k+1:n)‖2
F +· · ·+n3‖Σn3(k+1:n, k+1:n)‖2

F . �

Thus, it appears the straightforwardway to compress the tensor is to choose some k < min(n1, n2)
and compute

A ≈
k∑

i=1

U(:, i, :)∗S(i, i, :)∗V(:, i, :)T . (4.6)

Unfortunately, it is not immediately obvious that (4.6) leads to a very compressed representation. At

first glance, the method requires the storage of U(:, i, :) for i = 1, . . . , k, so k, n1 × n2 matrices, and

storage of S(i, i, :)V(:, i, :)T , so k, n2 × n3 matrices. Even if k is small, thememory storage is prohibitive.

The columns of the matrix U(:, i, :) may be nearly linearly dependent. To see this, observe that

if U(:, i, :)∗S(i, i, :)∗V(:, i, :)T is a rank-1 tensor, S(i, i, :)∗V(:, i, :)T and U(:, i, :) must each have rank 1.



654 M.E. Kilmer, C.D. Martin / Linear Algebra and its Applications 435 (2011) 641–658

Thus, if this term iswell approximated by a tensor of low rank,we expect this to be reflected in singular

values of each of the matrices U(:, i, :) and S(i, i, :)∗V(:, i, :)T .
Therefore, one practical compression strategy is to take (4.6) and for each i, compute a low rank ap-

proximation toU(:, i, :)∗S(i, i, :)∗V(:, i, :)T . There are severalways this could be computed.We consider

one method here.

Consider that for each i we have

U(:, i, :) =
n∑

j=1

p(j) ◦ μ(j) ◦ q(j), S(i, i, :)∗V(:, i, :)T =
n∑

j=1

λ(j) ◦ b(j) ◦ t(j),

where μ(j), λ(j) are scalars. These could be given by the matrix SVD’s of appropriately oriented

U(:, i, :), S(i, i, :)∗V(:, i, :)T , for example. Thus, their product is

U(:, i, :)∗S(i, i, :)∗V(:, i, :)T =
n∑

j=1

n∑
�=1

μ(j)λ(�)(p(j) ◦ b(�) ◦ circ(q(j))t(�)). (4.7)

This is an outer product representation of each tensor in the sum (4.6). From the right of (4.7) for

each i = 1, . . . , k, wewish to drop certain terms. Appealing to Lemma 4.2, denote σi = ∑n3
k=1 S(i, i, k).

Since σi are the singular values by the lemma, this suggests we drop any terms for which

σiμ
(j)λ(�)‖circ(q(j))t(�)‖∞ < tol.

The proposed algorithm for computing the resulting approximation to A is below. The approxima-

tion is returned in Kruskal form (i.e., A ≈ [[U, V,W]]). Note the parallelizability in that the full T-SVD

need not be approximated at the start of the algorithm.

Algorithm T-Compress

Input: n1 × n2 × n3 tensor A, truncation index k

for i = 1, . . . , k
(1) Compute U(:, i, :), S(i, i, :), V(:, i, :) if not already available

(2) Compute k1 terms of the SVD for U(:, i, :) and k2 terms of the SVD for S(i, i, :)∗V(:, i, :)
(3) for j = 1 : k1

for � = 1 : k2
if σiμ

(j)λ(�)‖circ(q(j))t(�)‖∞ > tol,

U = [U, p(j)], V = [V, b(�)], W = [W,μ(j)λ(�)circ(q(j))t(�)]
T-Compress relies on computing at least k terms of the T-SVD, although this stage can be interleaved

with computing the rest of the approximation. However, Theorem 4.3 suggests that computing the

T-SVD is not necessary in practice. We can modify steps 1 and 2 to obtain the following.

Algorithm T-Compress, ver. 2

Input: n1 × n2 × n3 tensor A, truncation index k

Initialize Acurr = A.

for i = 1, . . . , k
(1) Compute G ∈ Rn1×1×n3 , H ∈ R1×n2×n3 as G, H = arg min ‖A − G∗H‖F

(2) Compute k1 terms of the SVD for G and k2 terms of the SVD for H
(3) for j = 1 : k1

for � = 1 : k2
if σiμ

(j)λ(�)‖circ(q(j))t(�)‖∞ > tol,

U = [U, p(j)], V = [V, b(�)], W = [W,μ(j)λ(�)circ(q(j))t(�)]
(4) Acurr = Acurr − G∗H

Of course, there are many different variations on the idea we have just presented (e.g. using an

‘optimal’ approximation in place of SVDs of the individual matrices, adding a step that checks if one
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can “shrink” the rank of the approximation, taking G, H to havemore than 1 slice), but we do not wish

to pursue them all here in the interest of space.

One should compareT-Compress to algorithms that seek tofind low-rankapproximations of tensors

by subtracting off “best rank-1” approximations one after the other. It has been shown (see [42], for

example) that subtracting a best rank-1 tensor approximation from A does not necessarily reduce the

rank: that is, if A has rank r, and u ◦ v ◦ w is the best rank-1 approximation to A, A − u ◦ v ◦ w does

not have to have rank r − 1. This is true for our algorithm aswell:Acurr may not have lower rank. From

(4.7), if ‖U(:, i, :)∗S(i, i, :)∗V(:, i, :)T‖F � ‖ ∑
j/∈J

∑
�/∈L μ(j)λ(�)(p(j) ◦ b(�) ◦ circ(q(j))t(�))‖F , where J, L

denote (for fixed i) the indicies of terms that were kept each sum on the right, the residual between

A and the tensor approximation (output of the algorithm) must be non-increasing as a function of k.

This seems to be born out in our examples, but more study is needed.

5. An application from image processing

In this section, we illustrate the potential utility of our new tensor–product formulation and related

definitions on an application in image processing.

The discrete model for 2D image blurring is represented as

Ax = b,

where A is known as the blurring operator, x is the “image” unstacked by columns to obtain a vector,

and b is a column vector representing the image. In truth, b has been corrupted by some noise, A is

ill-conditioned, so even if A is theoretically invertible, the exact solution x will be contaminated by

noise.

The regularization procedure used to generate an approximation to the desired image is iterative,

and to speed convergence to this solution requires a preconditioner; that is, a matrix M such that AM

has some of the singular values (corresponding to the so-called signal subspace) near 1, but which

leaves the noise subspace (corresponding to the small singular values of A) untouched [18]. Then one

applies the iterative method to the system

AMy = b, x = M†y. (5.1)

At each step of the iterative method, one will have to compute matrix–vector products with A and M

(possibly also AT , MT , depending on which method is used), and therefore matrix–vector products

with M need to be performed efficiently. Indeed, the cost of using an iterative regularization method

is roughly the sum of the costs of thesematrix–vector products times the number of iterations needed

to reach the solution.

A preconditioner M with the desired SVD spectral clustering properties could be easily obtained

from the SVD of A if it were available; the small singular values are replaced by 1, andM is obtained as

the (psuedo)inverse of the result. Unfortunately, it is usually too costly to factor A to obtain the desired

rank-revealing information needed to generate M directly, nor would matrix–vector products with

M so defined be efficient. It is common in image deblurring applications to assume that the blurring

matrix A has some structure: for example, it might be block Toeplitz with Toeplitz blocks (BTTB). In

such cases, a reasonable first step is to compute a level-1 circulant approximation of A (i.e., a block

circulant approximation), called Ã. This can be block diagonalized by a 1D Fourier transform, and then

one may work in Fourier space to define the preconditioner M from Ã [13,18].

Here, wewant to exploit the fact that since the approximate blurringmatrix Ã is block circulant, the

corresponding approximate blurringmodel Ãx = b can bewritten in terms of a third order tensor (the

approximate blurring operator) acting on a matrix (e.g. the image) through the use of the t-product:

Ã∗X = B,

where X = fold(x), B = fold(b). Thus, we can define our preconditioner from (an approximation to)

the operator Ã itself. The approximation is obtained fromAlgorithmT-compress in Section4.1.We then

generate a regularized pseudoinverse from the output, and this gives our preconditioner, except that

the matrix M is not available explicitly. Rather, the resulting preconditioner will also be represented

in terms of a tensor, M, and so the matrix–vector productMv is computed as M∗fold(v).
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Here, we assume A is square, with n blocks of size n × n, and that A is BTTB. Thematrix is generated

from the point-spread function (see, for example, [33] for how to generate such amatrix from the PSF),

which in turn is the sum of three, nonsymmetric Gaussian blurring kernels with different variances.

Code to generate our PSF is given below. We let Ã denote the T-Chan level-1 block circulant with

Toeplitz blocks (BCTB) matrix approximation to A (see [8]).

In this example, we use n = 128. First, we create an approximation

Ã ≈
k∑

i=1

u(i) ◦ v(i) ◦ w(i), (5.2)

following Algorithm T-Compress in Section 4.1 by setting k = 50, k1 = k2 = 1.

Our goal now is to use this output [[U, V,W]] to produce another tensor, M, which is a regularized

inverse of Ã in the sense that when applying it toB, the resulting image should resemble a less blurred

(withoutnoise amplification)of the image.Once suchMhasbeen identified,wewill iterateon the right

preconditioned system (5.1), again noting that we compute the multiplication of M with a vector v as

M∗fold(v). It can be shown that if the Kruskal form of M is available, this product can be performed

in only O(kn2 + kn lg(n)) flops. This means an application of the preconditioner per iteration is on

the order of the O(n2 lg(n)) cost of a matrix–vector product4 with A. So if the number of iterations

to achieve the regularized solution of the preconditioned system is significantly smaller than it is to

compute the regularized solution to the unpreconditioned system, we have an efficient deblurring

algorithm.

To generate M, we will use Definition 3.12 with one small adjustment. In our case, the condition

numbers of U and V are near 1. However, W has many small magnitude (numerically zero) Fourier

coefficients. Because of this, Definition 3.12 cannot directly be applied. Instead, M = [[X, Y, Z]]where

X, Y are determined as in 3.12 and Z is determined as follows. For the Fourier coefficients

ẑ
(i)
j =

⎧⎨
⎩
1/ŵ

(i)
j ŵ

(i)
j < γc ,

1 ŵ
(i)
j

� γc.

We chose our threshold γc by trial and error visually by inspecting M∗B.
The PSF was created using the following Matlab script:

T = gausswin(m, 20); T2 = gausswin(m, 25); Psf1 = reshape(kron(T, T2),m,m);
T = gausswin(m, 27); T2 = gausswin(m, 23); Psf2 = reshape(kron(T, T2),m,m);
T = gausswin(m,23); T2 = gausswin(m, 30); Psf3 = reshape(kron(T, T2),m,m);
PSF = Psf1 + Psf2 + Psf3.

For this example, the true image is a 128 × 128 downsampled (scaled) version of the satellite

image, in the left of Fig. 5.1. We then formed b = Ax, where x is the vectorized version of the true

image. Gaussian white noise was added to b so that the noise level was 0.1%. The blurred, noisy image

is in themiddle of Fig. 5.1. Asmentioned above,we viewedM∗BwhereM is defined for three different

choices of γc , 0.1, 0.5, 1. We chose γc = 0.5 since the other two values seemed to give an image that

was underregularized or overregularized, respectively. A more sophisticated mechanism for choosing

the regularization parameter γc would be necessary in practice; the reader is referred to [14] for one

possibility. The reconstruction obtained using 3 iterations of the LSQR5 algorithm [36] applied to the

preconditioned problem is shown on the right of Fig. 5.1. Three iterations corresponded to the optimal

(in the two-norm) reconstruction as compared to the true image. This was obtained via our Matlab

codes in 0.126 s. A solution of comparable quality, asmeasured in the 2-normof the errorwith the exact

solution, was obtained with unpreconditioned LSQR in 325 iterations and required 8.52 s to compute.

We believe this example illustrates the potential of many new ideas presented in this paper

(t-product, T-SVD, pseudoinverses, and our compression strategy) in at least one application in image

4 Products with A are computed by embedding in a BCCB matrix and using 2D FFTs.
5 LSQR is a Krylov-subspace iterativemethod for solving the least squares problem. It is known to act as a regularizationmethod

if iterations are stopped before the least squares solution is reached.
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Fig. 5.1. True image (left), blurred noisy image (middle), reconstruction after 3 iterations of preconditioned LSQR with M
defined using γc = 0.5.

processing. Our current work suggests that our approachmight also be valuable in the context of facial

recognition.

For different strategies and models relating tensors to deblurring see [32,37].

6. Conclusions and future work

In order to determine compressed representations of tensors, we introduced the notion of a t-

product between tensors. We subsequently derived formulations of tensor identity, inverse, pseu-

doinverse, and transpose.We showed that the set of n × n × n tensorswith the t-product, inverse and

identity forms a group. We also showed that the t-product defines a linear operator, and discussed

its range and null space. Furthermore, we showed that using the t-product we could extend such

orthogonal matrix factorizations such as the SVD and QR factorizations to tensors. The resulting T-

SVD gave a means for optimally approximating the tensor as a sum of outer products of matrices.

We then proposed an approximation algorithm for the tensor based on this k-term optimal sum. We

demonstrated the utility of our approximation algorithm, as well as the utility of concepts such as

right pseudoinverse, on an application from image deblurring.

Our focus in this paper was on developing a representation specifically for third-order tensors.

However, our approach naturally generalizes to higher-order tensors in a recursive manner. The in-

terpretation of range discussed in this paper leads us to consider extensions of the concept of Krylov

iterative methods. In future work, we will explore the possibility of devising non-negative tensor

factorizations based on our t-product approach. Our results regarding the null space suggest it might

be possible to look for sparse (e.g. compressed) approximations by adding constraints to the Fourier

domain.
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