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I. INTRODUCTION 

In the present paper the maximal finite irreducible subgroups of GL,(Z) 
are classified up to conjugacy for odd prime dimensions p < 23. Unlike in 
[PlP 77, SO], part I, where this task is solved for p = 5 and p = 7, no use of 
classification results of finite primitive subgroups of GL,(@) will be made. 
Inspired by [Fei 743, algebraic number theory will be applied to 
investigate the geometry of the lattices on which the groups act. The 
starting point of the classification is Theorem (11.4). Circulants, i.e., integral 
polynomials in the standard p-cycle 
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(1, denotes the n x n-unit matrix), cf. [New 721, come into the game as 
Gram matrices of bilinear forms fixed by certain of the irreducible sub- 
groups G of GL,(Z). As a consequence of (11.4) and the fact that the pth 
cyclotomic fields a([,) have classnumber 1 for p < 19, each irreducible 
finite subgroup of GL,(Z), p 6 19 prime, is conjugate to a unimodular 
group which fixes a bilinear form with circulant Gram matrix. 

Section III has two main results, namely, Theorems (111.3) and (111.7). 
Generalizing results by Burnside [Bur 121 and Bannai [Ban 731 
Theorem (111.3) states that the finite subgroups of GL,(Q) (n E N not 
necessarily prime) containing certain 2-transitive groups of permutation 
matrices are contained in automorphism groups of root systems. 
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Theorem (111.7) implies, e.g., that the maximal finite irreducible subgroups 
of GL,(Z) for odd prime dimensions p < 11 are essentially reflection 
groups, cf. Corollary (111.9). 

The last three sections are devoted to describing a method of finding the 
maximal finite irreducible subgroups of GL,(Z) for bigger p and to carry- 
ing out the method for p = 13, 17, 19, and 23, cf. Theorems (V.2))(V.5), 
and (VI.3). Fortunately the two main phenomena responsible for the 
existence of other maximal finite irreducible subgroups of GL,(Z) than 
automorphism groups of root systems occur separately in these dimensions 
p, namely, the existence of prime numbers q < p for which q or -q is not a 
primitive root modulo p on the one hand and the class number of the pth 
cyclotomic field Q([,) not being 1 on the other hand. For dimensions 13 to 
19 it was necessary to compute automorphism groups of some lattices by 
machine. For this the original implementation of the algorithm developed 
in [PlP 851 was used, the calculations were carried out on the Cyber 175 
of the Rechenzentrum of the RWTH Aachen. 

It might be worth mentioning that the proof of Theorem (11.4)(i) can 
easily be modified to obtain, e.g., the following result: 

Let L be an irreducible ZG-lattice on which the finite group G acts 
faithfully and let U = (g) be a subgroup of G of prime order p z=- 2. Assume 
n,=dim,{x~LIgx=x} and n,=dim,L-n, are relatively prime, then 
the restriction L 1 u has a projective ZU-lattice as direct summand. 

It is a pleasure for me to thank R. Parker for informing me about certain 
decomposition numbers of Co.2 and Co.3 before (VI.2) was available to 
me, M. Pohst for computing the vectors of minimum length of one of the 
lattices in (V.~)(V), and 0. Taussky for informing me about the literature 
on circulants. 

II. THE IRREDUCIBLE UNIMODULAR GROUP OF PRIME DEGREE 
AND ITS NATURAL LATTICE 

In odd prime (p) dimensions Q- and C-irreducibility are equivalent for a 
finite irreducible unimodular group (f.i.u.g.), cf. [PlP 77, SO], which has 
some easy, but important consequences. 

(11.1) Remark. Let G < GLJZ) be a f.i.u.g. Then 

(i) G is uniform, and hence contained in a unique maximal f.i.u.g. 
G”““. More precisely, there is an-up to scalar multiples-unique sym- 
metric matrix FE QP x p, F # 0, with g”Fg = F for all g E G. (det F) F is 
positive definite and G”“” = Aut,(F) := {g E GL,(Z) 1 g”Fg = F}. 

(ii) PI 1% but P’!IGI. 

481.‘97,1-19 
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(iii) (cf. [Min 11)) /GJ ) n, q’(y) with q running over all primes (<p) 
and 

Proof: (i) cf. [PlP 77, SO]; (ii) the natural character of G is C- 
irreducible and of degree p, hence p 1 IG(. The rest follows from part (iii). 

Q.E.D. 

Hence the natural ZG-lattice L = Lo := Zp” ’ of a f.i.u.g. G < GL,(L) is 
equipped with a unique positive definite, surjective, G-invariant bilinear 
form d = dG: L x L + Z. The Gram matrix F, E Zp x p (with respect to the 
standard basis of Zpx ‘) of dL-. IS a multiple of F in (11.1.1) and G”“” can be 
identified with Aut(L, 9). 4 induces a G-invariant @bilinear form on the 
natural QG-module V = V, := Q”” ’ = QL; which will also be denoted by d 
or dG.. The notation V,, L,, #G, Fo will be used without further comment. 
Note, any ZG-lattice L with faithful G-action and Z-rank n defines a con- 
jugacy class of subgroups of GL,,(Z) isomorphic to G (via the various 
choices of Z-bases of L); other ZG-lattices L’ in QL := Qp@, L with 
QL’ = QL define subgroups of GL,,(Z) which are conjugate under GL,,(Q) 
to those defined by L; finally L defines a unique dG., if @ 0, L is irreducible 
@G-module. The group theoretical structure of f.i.u.g. of degree p is best 
distinguished by the behaviour of the maximal normal 2-subgroup O,(G). 
Note, with G 6 GL,(Z) also G+ = G n SL,,(Z) is irreducible. 

(11.2) PROPOSITION. Let G < SL,(Z) he a f.i.u.g. and let d he the mul- 
tiplicative order of 2 module p. One of the,following situations arises: 

(i) O,(G) is elementary abelian ef order 2dk with 1 6 k 6 (p - 1 )/d. In 
this case G is conjugate under GL,(Q) to a group of monomial matrices. 
Moreover, G contains an irreducible subgroup which is an extension qf an 
elementary abelian 2-group qf order 2d by a cyclic group of order p. 

(ii) O,(G) = 1. In this case G has a unique minimal normal subgroup 
N # 1 (possibly N = G). N is nonahelian simple, Co(N) = 1 and as a matrix 
group N is irreducible. 

Proof Since p[ 1 O,(G)1 the natural QG-module V = V, becomes 
reducible upon restriction to O,(G). Since dim, V= p, Clifford’s theorem 
leads only to two possibilities for the decomposition of the V02(G): Either it 
is the direct sum of p G-conjugate one-dimensional nonisomorphic 
QO,(G)-modules or it is the direct sum of p copies of a single one-dimen- 
sional QO,(G)-module. The first case leads to (i) above by routine 
arguments, cf. part I of [PlP 77, SO]. In the second case O,(G) consists of 
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scalar matrices of determinant 1 and is therefore trivial. By similar Clifford 
arguments as above, cf. [PlP 77,801, one concludes that G has no abelian 
normal subgroup # 1 in this case. Hence a minimal normal subgroup of G 
is nonabelian, characteristically simple, and therefore simple, since the 
degree of a faithful irreducible character is a prime number. The rest 
follows. Q.E.D. 

In the sequel P will denote a fixed Sylow p-subgroup of the f.i.u.g. G of 
degree p, -7 a fixed generator of P, and i = i,,, a fixed primitive pth root of 
unity. The group ring ZP of P is isomorphic to ((a, h) 1 a E Z, h E Z[<], 
q(a) = G(h) j d Z 0 Z[c,], where cp and $ are the ring epimorphisms of b 
and Z[[] onto Z/pZ. Clearly, the natural ZIP-lattice L, (restriction of the 
ZG-lattice L to ZP) is isomorphic to an ideal of full Z-rank in ZP. Slightly 
extending the conventions of [Fei 741, one can describe the P-invariant 
rational quadratic forms of such an ideal as being induced by a generalized 
trace bilinear form 

1 
T,: QP x QP + Q: (x, 1’)H; rr,,,,(ifj) 

of QP (note V, z op QP). Here frQg, o: QP + Q denotes the regular trace, 
f’EQ[z+z ‘]~QPO((+(p’) and : QP + QP is the involution 
c;:)’ 2,:’ t+cr,=: QjZ ‘. Clearly T, is positive definite if and only if ,f is 
totally positive, i.e., if f is mapped onto positive real numbers by each of 
the (p + 1)/2 homomorphisms of Q[z + I~ ‘1 into R. As a shorthand 
notation for the ZP-ideal a with the bilinear form induced by T,., the sym- 
bol (a, f) will be used. Aut(a, S) consists of all isometries of (a, ,f) with 
itself disregarding the action of P. In particular, if (a, ,f’) is isometric to 
(L, d(;) for some f.i.u.g. G, then Cm”” can be identified with Aut(a, f’). 
However, the kind of mappings between the various (a, f) usually used to 
make to a convenient choice of (a, f) will not be arbitrary isometries but 
additionally respect the P-action, in the sense of the following easily 
verified remark, which also follows from [Fei 741 Theorem 9.2. 

(11.3) Remurk. Let a, a’ be ZP-ideals of full Z-rank in QP and ,f; ,f“ 
invertible elements of ~JJ[z + z ‘1. 

(i) The multiplication by an invertible element a of QP induces an 
isometry of (a, ,f) onto (aa, a5f), which is a ZP-isomorphism. 

(ii) Each automorphism a of the Q-algebra QP is induced by an 
automorphism of P and induces an isometry of (a, f) onto (cc(a), u(f)). 

(iii) Each isometry fl: (a, J’) + (a’, f’) satisfying /Iz = zip for some 
i E .Z can be factored into a product of isometries just described in (i) and 
(ii) above. 
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The well-known concept of the dual lattice will be used in the next 
theorem: For a %-lattice L in the Q-vector space V= QL with positive 
definite scalar product 4: Vx V-+ Q the dual lattice of L (with respect to 
4) is given by L” := {x E VI 4(x, L) E 27). 

Clearly L# is again a Z-lattice in L’, it is ZG-lattice if L is ZG-lattice and 
4 G-invariant. 4 takes integral values on L x L iff L E L#; in this case 
[L” : L] = ldet(d(e;, e,))l for some Z-basis (e,,..., e,) of L is the dis- 
criminant of (L, 4). Frequently the isomorphism type of L#/L (as abelian 
group) presented in the form of the elementary divisors of the Gram matrix 
(&e,, ej)) will be used as an invariant of (L, 4) which usually contains 
more information than just the discriminant. 

(11.4) THEOREM. Let G 6 GL,(Z) be a f.i.u.g. with natural lattice L = Lo 
and, associated G-invariant scalar product q5= @o and Sylow p-subgroup 
P = (z). There exists an ideal a of ZP, a totally positive f E Q[z + z ~ ‘1 and 
an isometry c(: (L, q5) + (a, f) satisfying CIZ = zia,fbr some i E 77. For any such 
(a, f) the following holds: 

(i) a is an invertible ideal of ZP, i.e., as ZP-module a is projective 
indecomposable; 

(ii) (IGl/p)ZP~faficZP; 

(iii) L #IL g ZPlfaLi as abelian groups. 

Proof The existence of (a, f) was already established above. 
(i) Clearly, the following properties of a ZP-ideal a’ of full Z-rank are 

equivalent: a’ is indecomposable as ZP-lattice; a’/pa’EZP/pZP; a’ is a pro- 
jective ZP-lattice; upon localization at p, a’ becomes a principal ideal; a’ is 
invertible ZP-ideal (in this case a ‘-’ is given by the dual of a’ with respect 
to T,); cf. also [CUR 62, Sect. 74 ff]. Hence it suffices to prove that L, is an 
indecomposable ZP-lattice. Assume L, is decomposable. Then Lp = 
L, 0 L, where L1 = (v E L) zv = U} is of Z-rank 1 and L, is isomorphic to 
some ideal of Z[LJ. With respect to 4 the sublattices L, and L, are 
orthogonal to each other. According to a theorem by Eichler, cf. [Kne 541, 
(L, 4) decomposes uniquely into the direct sum of pairwise orthogonal 
Z-sublattices #O, each of which cannot be decomposed any further. 
Because of the uniqueness of this decomposition L, is one of these com- 
ponents and the others are contained in L2. Since G acts irreducibly, the 
components are transitively permuted by G. Hence there are p - 1 one- 
dimensional components in L,. These are also permuted by P. But ajp for 
a = 2, 3,..., p - 1, hence P leaves each component invariant. But this con- 
tradicts the irreducibility of L2 as ZP-lattice. 

(ii) The surjectivity of 4: Lx L + Z implies L P kL # for any k E N, 
k 3 2. Hence (ICI/p) L# c L by Theorem 2.8 of [Ple 771. The continuation 
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of the isometry (L, 4) + (a, f) to (I’, 4) --t (QP, f) maps L# onto f --‘ii ~~ ‘. 
Hence ((G(/p)fP’ii-’ E a, or (ICI/p) ZP gfaa, which establishes the first 
inclusion. To obtain the second inclusion, note the ZP is equal to its dual 
lattice with respect to T’ . But T,(ZP, fati) = T’(a, a) c Z. Hence fasl c ZP. 
(iii) From the proof of (ii) one gets L#/Lrf-‘6 ‘/a. Multiplication with 
fa yields L#/LrZPfafi (note@ becomes principal, if localized at primes). 

Q.E.D. 

(11.5) COROLLARY. Under the hypothesis of (11.4) one has 

(i) C,(P) = P x Z(G) and 

(ii) (cf: [Fei 741 Theorem 10.2.6) N,(P) is a split extension of C,(P) 
by a cyclic group of order e ) p - 1. 

Proof (i) Since the ideal a of (11.4) is invertible one has End&L,)= 
End,,(a) r ZP. But C,(P) = G n End& Lp) after obvious identifications 
and the units of finite order in ;ZP are up to sign the elements of P, since 
the projection of ZP onto Z[<] induces a monomorphism of the unit 
groups by the description of ZP given earlier. 

(ii) This follows from the more general result in [Fei 741 or from part 
(i): It is obvious, if Z(G) = 1 and via the determinant the case Z(G) # 1 can 
be reduced to the earlier case. Q.E.D. 

For the further discussion of consequences of Theorem (11.4) a few com- 
ments on the unit group of ZP will be helpful. In view of later applications 
the group ring ZP will be identified with the ring Z[z,] of circulants of 
degree p, where 

0 

I 
zp = P-1 

i: i 

0 

1 o...o 

is the standard p-cycle of degree p in matrix form (Z, denotes the n x n-unit 
matrix), cf. [New 721. The involution now becomes transposing of 
matrices, totally positive elements of Z[z, + z; ‘1 = (x E Z[z,] 1 x” = x} 
can be interpreted as positive definite symmetric matrices. Since the unit 
group U(Z[z,]) is given by U(Z[z, + z;‘]) x (z,), only the unit group 
U(Z[z,+z;‘]) of the subring Z[z,+ z;‘] is of interest. 

(11.6) Remark. The epimorphism E: ;Z [z, + z; ‘1 + Z [ [ + [ -- ’ ] pro- 
jecting zP + z; ’ onto its eigenvalue [ + [ ~ ’ maps the unit group E, = 
U(Z[z,+z;‘]) onto the subgroup UP= {x~ U(Z[[+[-‘1)1x- 
+ 1 mod p } of Up = U(Z[[ + C ~ ‘I), where p is the prime ideal of 
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B[2; + [-‘I containing p. The elements 5, = i” ~ i)‘2( 1 - c’)/( 1 - [) for 
i = l,..., (p - 1)/2 form representatives of the coset of oP in UP. Let U,’ = 
{xg UP/x totally positive} and E,’ = {Xe E,I X positive definite}. Then 
U;/U;r E;/E;. 

ProoJ: Clearly ~[z,+z,‘]~{(a,b)EZOZISp+~,‘]Iarbmodp}. 
Hence &(Ep) = OP. Since ti= i(mod p), 1 = t,, c2,..., t(,- r),z form represen- 
tatives of oP-cosets in U,. From the structure of the unit group U, one 
concludes Uz n oP = 0; and U,lU; g 0J-u;. Since the <: also form a full set 
n;-coset representatives in Ui, one has U, Uz = U, , &(Ep+ ) = U,’ n DP, and 
U;/U;z E;/E;. Q.E.D. 

It seems that frequently U,‘/Ui = 1 = E,‘/Ez holds. In [Fei 74, 
Theorem 6.61 U; = Vi for p d 23 is proved, moreover Feit’s argument for 
p = 23 works for each prime number p of the form 2q + 1, where q is prime 
with 2 a primitive root mod q. According to [New 72, p. 1913, Dade and 
Taussky have shown E,’ = Ei for all primes p 6 100 except for p = 29, cf. 
also [Dav 781. Since by [Was 80, pp. 144 and 3521, the 5; and - 1 
generate U, for primes p < 67 one actually does not only have a construc- 
tive way to prove this but also an algorithm to replace an element 
a E Z[[, + [; ‘1 by a totally positive element generating the same ideal (if it 
exists), for p ,< 67, namely by solving linear equations over the field of 2 
elements (representing signs). 

Here is a rough sketch of the search for maximal f.i.u.g. of degree p based 
on Theorem (11.4) alone: 

Step 1. Choice of the invertible ideal a of Z[z,]. Clearly the ideal 
classes of Z[c] are in l-l correspondence with the ideal classes of inver- 
tible Z[z,]-ideals. Choose from the set of representatives of the invertible 
Z[z,]-ideal classes modulo the action of the Galois group Gal(Q({)/Q;e). 
Tables of ideals of a[[] may be found in [Reu 751. 

Step 2. Choice of a principal ideal f of Z[z, + z; ‘1 for given a. Because 
of (11.4)(ii) and (II.1 )(iii) there are only finitely many principal ideal f of 
Z[z, +z;‘] with a generator f such that (a,f) is isometric to (L, tic) for 
some f.i.u.g. G. However, there are far too many possibilities for f if one 
only applies (11.4)(ii) and (II.l)(iii). How this difficulty is overcome at least 
in dimensions ~23 will be discussed in the subsequent chapters. 

Step 3. Choice of generator f of f for a and f given. This amounts to 
replace some generator of f by a totally positive generator J: This is always 
posible, if E,’ = Ei, in which case f is essentially unique cf. (11.6) and dis- 
cussion of (11.6). 

Step 4. Find Aut(a, f). In the cases where this was really necessary it 
was done by means of a computer, cf. Section IV. Note: to decide that 
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Aut(a, f) is absolutely irreducible one only has to find one element of 
Aut(a, f) which does not have the eigenvector of zP eigenvalue 1 as eigen- 
vector. As a final point in this section it remains to mention that the order 
of the normalizer N,(P) of a Sylow p-subgroup P in a maximal f.i.u.g. of 
degree p can usually be relatively easy computed by means of (11.3) if 
E,’ = Ei, cf. (11.6) above. 

(11.7) LEMMA. Let G be a maximal f.i.u.g. of degree p and let (a, f) be 
isometric to (L, dc). Let CI: z + zi be an automorphism of P= (z) and 
denote the induced automorphism of ZP also by LX. Then c( is induced by 
No(P) if and only if 

(i) au(a))’ is a principal ideal aZ[z +z-‘1 in Z[z + z-‘1 and 

(ii) a&x(f) f -lEEi. 

Proof: Apply (11.3)(iii) and note {uUl u E U(ZP)} = Ei. Q.E.D. 

Of course the most convenient case is, if a is principal. In this case one 
may choose a = ZP, zP E G and the Gram matrix FG of dG is a circulant, 
namely f itself. Moreover in (11.7) one may choose a = 1. 

III. REFLECTION GROUPS 

In each dimension n some of the maximal finite subgroups G of GL,,(Z) 
are reflection groups or contain a reflection subgroup of index 2. Before 
discussing these groups in prime dimensions some results for arbitrary 
dimensions will be presented. Recall, a (real) reflection is an involution in 
GL,([W) fixing an (n - 1 )-dimensional hyperplane of [w”” ’ pointwise, a 
reflection group is a group generated by reflections, and each finite reflec- 
tion group in GL,,(Q) can be described by its associated root system, cf., 
e.g., [Wit 411 and [Hum 721. The following remark is an easy con- 
sequence of basic properties of root systems. 

(111.1) Remark. Let G be a finite, irreducible subgroup of GL,,(Q) con- 
taining a reflection. Then G is absolutely irreducible and hence fixed an 
essentially unique positive definite quadratic form C$ = dG. Let R = 
(g E G / g reflection) and f the root system associated with R. Then 

(i) RgAut(T) with Aut(T) consisting of all (&)orthogonal transfor- 
mations which map I- onto itself, in particular RI! G z Aut(T), 

(ii) r decomposes into the union of orthogonal root systems all 
isomorphic to the same irreducible root system r, of rank d dividing n. In 
case dfn, Aut(ZJ is an imprimitive matrix group, namely equal to the 
wreath product Aut(f,,) l S,, <, of Aut(f,) with the symmetric group S,,!‘,. 
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Moreover, cf. [Hum 72, p. 661, Aut(T,) is a split extension of the reflection 
group corresponding to r with a group of order 1,2, or-in the case of 
r, = D,-of order 6. 

Sometimes it is possible to predict for some finite subgroup G of CL,,(Q) 
not containing reflections that finite groups H are contained in some 
Aut(f) for suitable root systems ZY For instance, such a result was proved 
in [Ban 731 for the group G of all degree n permutation matrices of deter- 
minant 1 thus generalizing Burnsides answer for the same question with G 
consisting of all permutation matrices of degree n, cf. [Bur 121. Of course, 
nowadays Burnside’s result can be obtained as an immediate consequence 
of (111.1) and the classification of root systems. Bannai’s result will be shar- 
pened in Theorem (111.3) below with a completely different proof. For this 
and other purposes some special lattices have to be described, which are 
well known for a long time already, cf., e.g., [Cox 511. 

The condition *,, below for a prime p and a permutation group G of 
degree m with natural permutation lattice M= @;!L, ZE, (gE, := E,(,, for 
g E G, i= l,..., m) will be used: 

(*,) M/pM has 2 irreducible Z/pZG-constituents, namely the trivial 
one with multiplicity 1 + E and a (m - 1 - s)-dimensional one with mul- 
tiplicity 1, where E = 0 for p 1 m and E = 1 for p ) m. 

Apart from S,, and A,, on n symbols, M,, and M,, on 11 (resp. 12) 
points, also, for instance, PSL,(q) for q = +3 mod 8 on q + 1 points satisfy 
ep for all primes p. 

(111.2) LEMMA. Let G be a transitive permutation group qf degree m with 
natural permutation lattice M = @y! , ZE,. 

(i) [Ple 77, Theorem 5.11. Let G he 2-transitive satisfJ,ing *P for all p, 
define L = M/Z CT!, E, as G-factor lattice of M, and ek = E, + R C:=, E, 
for k = I,..., m. Then all UC-sublattices of L are given by multiples of L,= 
{ 1~~ , die, 1 d divides Cy= , d, >, where d > 0 divides m. Moreover the dual Lz 
of L, with respect to some G-invariant rational scalar product 4 # 0 is a mul- 
tiple of LmlJ. 

(ii) [Ple 77, Theorem 5.2 and 5.41. Assume G is transitive and satisfies 
*2. Extend the action of G on M to the wreath product G = C, 2 G of order 
2” ICI on M such that the base group qf C, t G induces all possible sign 
changes of the vectors Ei. Then the Zc sublattices of M are multiples qf 
M,=M, M*={Cy=, c(,E,j2 divides C:!“=, ai) and M3= {x:=, ~(,E~lcc,= 
cr,(mod 2)). Moreover the dual lattices with respect to a rational c-invariant 
scalar product $ satisfy M,# EM, , MT z M,, and MT z M,. 
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Note, for m = n + LG of (111.2)(i) and for m = n I? of (IIL2)(ii) give rise 
to subgroups G and G of GL,(a) via the action of G on (IX. and c on QM 
such that all finite groups H d GL,,( Q) containing G or 8 are contained in 
Aut(T) for some root system of rank n. Namely each such H is contained 
in some Aut(L,, 4) or Aut(M,, i/j), which clearly contain reflections. The 
following result was proved already in [ Ple 80, Satz (II. 12)]. 

(111.3) THEOREM. Let G be u 2-transitive permutation group of degree n 
embedded into GL,,(Q) as group qf permutation matrices and assume G 
satisfies *,, for m = n and all primes p. Then any .finite group H with G < 
H d GL,,(Q) can he embedded into Aut(T),for some root system r of rank n 
containing the root system A,,+ , 

Note though the scalar product going with r in (111.3) is not necessarily 
unique, Aut(f) is well defined up to conjugacy in GL,,(Q). 

Proqf: H acts on some lattice L of L-rank n in KJ” ’ ’ and fixes some 
positive definite scalar product d of a”’ ‘. It suffices to prove that the 
group G,,I G of all permutation matrices of degree n also operates on L 
and fixes 4. (Note, G,, can be viewed as reflection group corresponding to 
the root system A, , .) Namely then (H, G,,) is finite and contains reflec- 
tions, and (111.1) can be applied either to (H, G,,) directly if (H, G,) is 
irreducible, or to the (n - 1)-dimensional constituent group of (H, G,). By 
2-transitivity G,, and G both fix a 2-dimensional space of quadratic forms, 
which must be the same since G E G,, Hence G,, fixes 4. That G,, also acts 
on L follows from the fact that the sets of ZG- and the ZG,,-lattices con- 
tained in Q’lX ’ = QL are exactly the same. One has UYx ’ = I’, @ I’,-, 
where V, consists of the G,,-fixed points in Q”’ ’ and I’,,+, is the unique 
QG,,-complement. By 2-transitivity V,, , and V,( r Q) are irreducible as 
QG,,- and as QG-modules. From (111.2)(i) one gets that Ln I’,, , and 
(trivially) L n V, are ZG,,-lattices; also x,(L) and rc,, ,(L) are LG,,-lattices, 
where rr,: Q”’ ’ + I’, are the projections for i = 1, n - 1. Moreover, G as 
well as G,, act trivially on n,(L)/L n V,, hence also on the isomorphic 
module rr,, ,(L)/Ln V,,-,, cf. [Ple 78, Chap. 21; hence each Z-lattice X 
with ( V, n L) @ ( V,, , n L) < X f 71, (L) @ n2( L) is a ZG,,-as well as a ZG- 
lattice. Hence G,, also acts on L. Q.E.D. 

(111.4) Remark. Let 

z= E GL,@) 

be the standard n-cycle generating the ring Z[z] of n x n-circulants. 
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(i) Each of the lattices L, of rank n = m - 1 with dl m described in 
(111.2)(i) with G-invariant scalar product 4 has the circulant Gram matrix 
aF, for some a E Q with respect to a suitable Z-basis of L,. Namely, if yd = 
1 +z+ ... +zd-’ then Fd = (l/da) y:‘(mZ, + J,,) yd = (l/&)[m(dZ,, + 
Cy= ,(d- i)(z’+ zei)) - d2J,] with Z,, J, E i?“,’ the unit matrix (resp. the 
matrix) with all entries equal to 1 and a=gcd(d, m/d). 

(ii) For n =m odd the lattices M, and M, of (111.2)(ii) with G- 
invariant scalar product $ have the circulant matrices aF2 (resp. a’p3) for 
some a, a’ E Q as Gram matrices with respect to suitable bases, where F, = 
y32=2Z,+z2+zP2 and 

F,=Ltypryp =nz,,-(n-2)(z+z-‘)+ (n-4)(z2+zm2) 

-(n-6)(z3+z-3)+ . . . ~(zO~~~)/2+z~O~~1)‘2)~ 

ProoJ: (i) Clearly the Gram matrix of 4 with respect to the basis 
(e, ,..., e,) is a multiple of ml, -J,. It remains to show that the columns of 
yd represent coordinate columns of a Z-basis of L, with respect to 
(e 1 ,..., e,). That these vectors lie in L, is obvious and ldet ydl =d 
(= [L, : Ld]) can be seen from the eigenvalues of yd which are d and units 
in the n-th cyclotomic field. 

(ii ) Clear. Q.E.D. 

In view of the discussion of positive definite units of Z[z + zP ‘1 in 
[New 72, Chap. X, Sect. 6 ff], (111.4)(i) yields infinitely many such units 
which are not of the form g”g for some g E GL,(27). Namely choose (n, d) 
such that d2 = n + 1 (=m), then Fde Z[z + z ‘1 is unimodular. In par- 
ticular, the root lattice of the root system E, admits a circulant Gram 
matrix, as already proved in [NeT 561. In dimension 24 (111.4)(i) together 
with taking tensor products yields two inequivalent positive definite units 
of Z[z+z--1 ] both of which are not of the form g”g with gg GL,,(Z). 
However the positive definite units of Z[z + z- ‘1 z z24x24 modulo 

( k?g I g E GL24(Z) > f orm an elementary abelian group of order 8, with a 
subgroup of order 4 represented by odd lattices. Unfortunately, the Leech 
lattice does not have a circulant Gram matrix. 

The rest of this section is restricted to f.i.u.g. of prime degree p > 2; the 
notation of Section II is kept. 

(111.5) LEMMA. Let G < GL,(Z) he a f.i.u.g. such that p - 1 of the p 
elementary divisors of the Gram matrix F, qf dG are equal. Then there exists 
a nonsingular matrix X E Q[z], where z E G has order p, such that G = 
X-‘GX < GLJZ) and Fe has p - 1 elementary divisors equal to 1. 
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Proof: Let P= (z) be a Sylow p-subgroup of G. For the natural ZG- 
lattice L one has L#/LrZ/aZ 0 (Z/hZ)P-l (as abelian groups) with 
gcd(a, b) = 1. All prime divisors q of a or b divide lGi/p by Theorem (11.4), 
and hence are smaller than p. No prime ideal q of Z[[, J has norm q, since 
p :, q k 1 for p > 3 and p = 3 is obvious. Therefore the ZP-ideal a isomorphic 
to L, (as ZP-lattice) projects onto the same ideal of Z[c,] as the ZP-ideals 
a’ with a’ c a and a/a’ cyclic of order b. Hence the ZG-lattice bL, of index a 
in L, where L, is the unique sublattice of index a of L# containing L, is 
isomorphic to L as ZP-lattice. Moreover, the action of G on bL, gives rise 
to the f.i.u.g. I!? with the desired properties. Q.E.D. 

The hypothesis of the next theorem was already explained in (11.6) and 
the comments following (11.6). 

(111.6) THEOREM. Assume that each totally positive unit of ?I[(,, + i; ‘1 
is a square in Z[[, + [;‘I. Let G f GL,(Z) be a f.i.u.g. containing the stan- 
dard p-cycle zp such that p - 1 qf the elementary divisors of the Gram matrix 
of (L,, do) are equal. Then G d Aut(T) .for some root system I of rank p. 

Proof By Lemma (111.5) it may be assumed that p - 1 elementary 
divisors of F, are equal to 1, i.e., L”/L is cyclic, and (L, dG) isometric to 

@[PI, f 1 for f EZ[z/,+z;‘] cZ@.Z[[,,+[;‘] such that the 
Z[<, + [; ‘]-component is a unit. Note, because of z,, E G we may choose 
a = Z[P]. Because every totally positive unit of Z[<,, + [; ‘1 is a square, 
one may assume by (11.6) and (11.3) that the Z[c, + [; ‘]-component off is 
equal to 1. Let v E Z[P] correspond to (0, 1 - i,) under the embedding of 
ZP into Z @ Z[l,,]. Then dG.(u, v) = 2 and hence Aut(L, $c;) contains reflec- 
tion XH x - b&x, V) v. The result now follows from (111.1). Q.E.D. 

Note, the lattices of the group turning up in (111.6) have been described 
in (111.2) and (111.4). 

(111.7) COROLLARY. Assume p = 2q+ 1 with q prime and that totally 
positive units of Z[c, + [;‘I are squares in Z[[, + [;‘I. If aO(n) denotes the 
number of divisors of n E N, then there are 3 + o,(p + 1) conjugacy classes of 
maximal f.i.u.g. in GL,(Z),for q> 1, which contain one group G with z,f G. 
For p = 3 this number is 3 = a,(p + 1). Always the groups of three classes are 
isomorphic to C,{ S, and except for p = 7 the groups of the other o,(p + 1) 
classes are isomorphic to C2 x S, + , . For p = 7 only two of the a,(8) other 
groups are isomorphic to C, x S, and two are isomorphic to W(E,). 

Proof: By (111.6) and the discussion before (11.4) one only has to show 
that each prime number r E N, r < p generates a prime ideal in Z[[, + [; ‘1. 
This is trivial for p = 3 and for the other cases it follows since r or -r is a 
primitive root modulo p (note, Z/pZ*rC, x C,). Since the lattices have 
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been described earlier in this chapter and since their automorphism groups 
can easily be determined from (III. 1 ), the claim follows. Q.E.D. 

(111.8) COROLLARY. For p = 3 there are three, and for 5 d p < 11 there 
are 3 + oO(p + 1) conjugacy classes of maximal f.i.u.g. of degree p. 

Proof Because of (111.8) it remains to show that each conjugacy class 
of maximal f.i.u.g. of degree p < 11 contains a representative G with z,, E G. 
But this is clear, since the class number of O[c,,] is equal to 1 for p 6 19, 
cf., e.g., [Was 821. Q.E.D. 

Of course (111.8) was well known for p = 3, and also for p < 7, cf. 
[PIP 77, 80, Part 11. For completeness sake the circulant Gram matrices 
FG of suitable representatives G for the conjugacy classes of maximal f.i.u.g. 
of degree p < 11 will be given. Notation: (a,,..., a(, ,),z) corresponds to 
F, = a,Z, + Cl!?; I)/* a,($ + z;j) (1, = unit matrix, z,, = standard p-cycle). 

p=3: (l,O), (3, -I), (2, 1) (GEC,~S,EC, x S4); 

p=5: (1,&O), (2,0, I), (5, -3, 1) (Gz:C,~S,), 

(5, -1, -11, (4, 1, -2), (3, 1, -11, (2, 1, 1) (Gr C, x S,); 

p=7: (LO,O,O),(2,0, 1,0),(7, -533, -1) (G~c,\s,), 

(7, -1, -1, -1),(2, 1, 1, 1) (GzC, x S,), 

(3, 1, - 1, - l), (2, 1, 0, - 1) (Gz W&J); 

p= 11: (1,0,0,0,0,0), (2,0, l,O,O,O), (11, -9, 7, -5, 3, -1) 

(G=C,?S,,h 

(11, -1, -1, -1, -1, -1),(5,2, -1, -1, -1, -1) 

(9, 5, 1, -3, -3, -3) (8, 5, 2, - 1, -4, -4) 

(3, 2, LO, - 1, -2), (2, 1, 1, 1, 1, 1) (G=C2 x S,,). 

IV. SOME STRATEGIES FOR FINDING MAXIMAL 
F.I.U.G. OF DEGREE p 

The notation of Section II is kept. Additionally 7c, and n, denote the 
epimorphisms of Q[z, +z;‘] onto Q and Q(c), respectively, (c = i,,). 
Among the possibilities for (a, f) isometric to (L, #G) for some f.i.u.g. G left 
open in Theorem (11.4) the case a principal, i.e., without loss of generality 
a=ZP, and 71*(f) Z[[,+c;‘] =mE[~p+[;‘] for some rnE N has been 
settled in Theorem (111.6) for those p with U,’ = Uz, cf. (11.6). A way to 
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handle the possibly large number of remaining possibilities can be based on 
the following theorem. 

(IV.l) THEOREM. Let G B GL,(Z) he u f.i.u.g. 

(i) [Fei 741 There is a ZG-sublattice M qf L = L, with [L : M] < cc 
and an CIEQ>~ such that the dual lattice M# qf M with respect to ~4 
satisfies: M s M# and for each prime q the Sylo~, q-subgroup qf M#IM is 
elementary abelian of rank less than (p + 1)/2. 

(ii) The lattice of ZG-submodules qf L is distributive; more precisely a 
ZP-isomorphism cp: L + a of L onto a LP-ideal a maps M < LG L with 
M & qL for any prime q onto aa’ for some integral invertible ideal a’ of ZP 
with (IGl/p) ZP c a’ c ZP. 

Proof: (i) This follows from general results of [Fei 74, Chap. 31, 
namely 3.4 and 3.18. 

(ii) The distributivity follows from [Ple 77, Theorem 3.191 and the 
fact that L/qL has no repeated Z/qZG-composition factors for all primes q. 
The latter is clear for q = p, since L lies in a p-block of defect zero, and it 
follows for all other q by restricting the operation to P and observing that 
xp - 1 has no repeated factors as polynomial over Z/qZ. The rest follows 
from Theorem (11.4) and [Ple 77, Theorem 2.81. Q.E.D. 

Theorem (IV.1) allows to improve the strategy for searching the maximal 
f.i.u.g. of degree p sketched at the end of Section II as follows: 

(A) Perform steps 2, 3, and 4 only for those totally positive 
f E Q [ zp + 2; ’ ] satisfying 

(**) s,ZPcatif EZP and rank,(ZP/a@)b(p- 1)/2 where sp 
is the product of all prime numbers q < p. 

(B) Find the minimal irreducible subgroups G of the irreducible 
Aut(a, ,f) found under (A) (up to conjugacy). For each such G find 
Aut(M, dG) where M is a ZG-sublattice of L = Lo with M @ qL for all 
primes q (cf. (IV.l)(ii)). 

Some comments are necessary. Finding Aut(a, f) might sometimes be 
complicated. In the context of (A) the implemented algorithm for finding 
automorphism groups of lattices of [PlP 831 was successfully applied in 
dimensions 13, 17, and 19, where no applications of Section III were 
possible. In dimension 23 most discussions could be reduced to well-known 
lattices. The restriction in (**) leaves only very few possibilities for f; 
sometimes, cf., e.g., dimension 19, even more f’s can be excluded by 

481 97~1-20 



300 W. PLESKEN 

theoretical arguments. As for (B) there are two strategies both based on 
Theorem (IV. 1 )( ii) possible: 

(Bl ) Check G-invariance of candidates M as given in (IV. 1 )(ii). 

(B2) Compute Aut(M, dG) for candidates M as given in (IV.l)(ii). 

In both cases one certainly will minimize the computations by checking 
the candidates M in a suitable order, e.g., one will first try to find ZG-lat- 
tices defining composition series for L/qL for prime divisors q of IG/ and 
use this to find all relevant ZG-sublattices of L layer by layer: first the 
maximal, then the second maximal sublattices etc. In the case of (Bl) this 
is a simplified version of the centering algorithm applied in [PlP 77, SO], 
which only involves finding lattice bases, inverting and multiplying 
matrices in this case. It should be noted that the idea of starting out with 
minimal irreducible groups was also already used in [PlP 77, SO]. In the 
situation of (Bl) the full automorphism groups are usually not difficult to 
find since they are up to GL,(Q)-conjugacy subgroups of the 
automorphism groups found under (A) already by (IV.l)(i). For both, 
finding the G’s in (B) and the automorphism groups in (B2) (11.2) and 
(11.5) might be a help. In case Eg = El, cf. (11.6) Lemma (11.7) can be used 
in the context of (Bl) or (B2) as a sufficient criterion for those candidates 
M which must be dropped because not even N,(P) operates on them. Also 
in the case Es = EP+ in the terminology of (11.6), it is easy to distinguish the 
conjugacy classes of maximal f.i.u.g. of degree p, since the totally positive 
f~ Z[z, + z; ‘1 is uniquely determined up to squares of units by the ideal 
fl[z, + zp’]. For instance, in dimensions p d 19 the elementary divisors of 
FG will be sufficient to distinguish the conjugacy classes of maximal f.i.u.g. 
in GL,(Z), and for p = 23 in addition to this a s L, principal or not prin- 
cipal has to be taken into account. At the end of these general remarks 
another a priori restriction for the possibilities for f will be indicated. Note, 
it is convenient to consider all those candidates f E Q[z, + zp '1 
simultaneously for which x2(f) generates the same z[[+[-‘]-ideal. It is 
convenient and without loss of generality to assume ad Z[z,] and a is 
mapped onto Z under the epimorphism of Q[z,] onto Q or equivalently 
J,a = i7Jp for J,, = C;:t z$. 

(IV.2) Remark. Assume E,’ = Ei (cf. (11.6)). Let aqZ[z,] be an inver- 
tible ideal with J,,a = pi?, and assume that f E Q[z,+z;‘] is totally 
positive and satisfies (**) of (A). Up to multiplication by elements of Ez 
(cf. (11.3)) all totally positive f'c Q[z, + z;,‘] satisfying (**) and for which 
x2(f) and x2( f ‘) generate the same ;Z[[ + [-‘]-ideal are given by 
Eff+aJ, with i2nn,(f)+pa>0, a~& and l<i<(p--1)/2, where 

r(i--j)(zs +z;~) is the p xp-circulant with first row 
1, 0 ,..., 0, l,..., i- 1). 
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Proof. By (11.6) and the proof of (11.6) the elements 7cnZ(f) (2 for 1 6 i 6 
(p - 1)/2 form a set of representatives of the Uz-orbits on the totally 
positive generators of x2(f) Z[i + [-‘I. But 7c2(Zf) = [:. Hence anyf’ with 
the conditions in (IV.2) can be multiplied by an element of Ei such that it 
differs from EFf f or some i, 1 < id (p - 1)/2 only by a rational multiple 
GI * J, of J, for some c( E Q. Since 7c1(~f) = i2, total positivity yields i2x,(f) + 
pa > 0. Finally aiif' d ZP and J,a = ZJ, yield c1 E Z. Q.E.D. 

(IV.3) LEMMA. Let agZ[z,] be an invertible ideal, f E Q[z,+z;‘] 
totally positive with Tf(a, a) G Z. Define m(f, a) = min{ Tf(x, x) 1 x E 
(l-z,)a,x#O} andM(f,a)= min{T,(x,x)lxEa\(l--,,)a}. Thefollow- 
ing holds. 

(i) m(f + J,, a) = m(f, a). Moreover, if E,’ = Ei (cf (11.6)) then 
m(f ‘, a) = m(f, a) for any totally positive f’ E Q[z, + z; ‘1 with n2(f ‘) 
generating the same iZ[[ + {-‘]-ideal us x2(f ). 

(ii) rf Aut(a, f + aJ,) is irreducible for an LX E Z,,, then cI f m(f, a) - 
M(f, a). (Note, this is applied in the case f - Jp not totally positive.) 

Proof: (i) The first statement is clear from J,( 1 - zp) = 0. The second 
follows from the first, (11.3) and (11.6). 

(ii) Let XE (1 -zp) a with T,(x, x) = m(f, a). Since Aut(a, f + CIJ,) is 
irreducible, there is some y E a\( 1 - z,) a lying in the Aut(a, f + NJ,)-orbit 
of x. Hence m(f, a) = T,+,.,(y, y) = T,(y, y) + CXT,~( y, y) and therefore 
ab~T,,(y, y)=W a)- T,(Y, y)Gm(f, a)-Wf, a). Q.E.D. 

The last result is sometimes useful to see quickly that an integral form 
has a reducible automorphism group; it supplements (11.4) but can also be 
applied in dimensions which are not prime numbers. 

(IV.4) PROPOSITION. Let (L, c$) be an integral lattice of dimension n with 
4: Lx L + Z positive definite. Let q be a prime number dividing the dis- 
criminunt of (L, 4) only to the first power such that q # n + 1 and 
n < 2(q - 1). Then Aut(L, 4) is not absolutely irreducible. 

Proof. Assume G = Aut(L, 4) is absolutely irreducible. By Minkowski’s 
bound (cf. (II.l)(iii) for n = p) and Theorem 2.8 of [Ple 771 (cf. also proof 
of (11.4)) q divides /G( exactly to the first power. Let R denote the q-adic 
integers. Since l-dimensional RG/qRG-modules can be lifted to RG-lattices, 
i.e., are of the form X/qX for some RG-lattice X of R-rank 1, it is an 
elementary property to the Brauer tree that the projective cover of the RG- 
lattice R a+ L# is of R-rank n + 1. This is a contradiction, since q does not 
divide n + 1. Q.E.D. 
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A short word on the computer calculation of Aut(L, 4) might be 
appropriate; a detailed account of the methods is given in [PlP 843. Let 
(b i,..., 6,) be a Z-basis of L. Then the elements of Aut(L, 4) can be iden- 
tified with the n-tuples (6; ,..., 6;) of vectors in L satisfying &b,!, b,!) = 
#(bi, bj) for 1 < i, j< n. The algorithm in [PlP 851 is essentially a backtrack 
search of such tuples (b;,..., b:), possibly under the assumption that some 
of the b: are already preassigned. For identifying the isomorphism type of 
Aut(L, 4) the permutation representation on a certain set of vectors in L, 
e.g., the vectors of minimum length is used. The resulting permutation 
groups can easily be investigated by means of CAYLEY, cf., e.g., [Can 743. 

V. DIMENSIONS 13, 17, AND 19 

The class number of Q([,) is 1 for p d 19, cf., e.g., [Was 821. Hence one 
may assume zp E G, and-in the terminology of (11.4)--a = ZP = Z[z,] and 
f = FG in step 1 of the discussion at the end of Section II. The modifications 
of Section IV will be taken into account; the notation of the previous sec- 
tions is kept and f(ao ,..,, acp ~ , j,2) is used as shorthand notation for ~1, + 
p; Iv2 a,(z; + zpq. 

(a) p= 13. 

Let f=f(a,,..., a,)~Q[z,,+zGi ] be totally positive satisfying (**) of 
Section IV. Since a = B[z,,] one has fEZ[z,, +z;‘] and there are four 
possibilities for the ideal of iZ[[+ c-‘] generated by n,(j), namely 
~cr+i-‘l~ q3, q5> q,.q5, where qj (resp. q,) is a fixed prime ideal of 
;Z[[+ [-‘I containing 3 (resp. 5). (Note, 2, 7, and 11 are primitive roots 
mod 13, and 3, - 1 (resp. 5, - 1) generate subgroups of order 6 (resp. 4) of 
(Z/132)*. Note also the transitivity of Gal(Q([+i-‘)/Q) on the prime 
ideals above 3 (resp. 5) and on the products of a prime ideal containing 3 
with one containing 5.) 

If nz(f) is a unit in Z[[ + [-‘I, the result of Section III imply that only 
f = ZIX and f = I,, + J,3 (with J,3 = Cj$,, zI;,) have to be investigated. 

The case rcz(f) Z[[ + [-‘I = q, will be discussed in some more detail; 
the argument for the other cases are simular and will be omitted. 
According to (IV.2) the relevant elements f with 7r2(f) Z[[ + i ‘I= q3 
come into 6 series distinguished by rc,(f) mod 13, namely fe {f3,, + 
aJ,,li=l,4,3, 12,9, ~O,CIEZ~~}, where the f3,i can be chosen, e.g., as 

f3,, =f(3, 1, - 1, - LO, 0, 01, f3,4=f(4, 2, 1, -1, - 1, - 1, O), f3,3 = 

f(5, 3, 2, 1, - 1, -3, -3), f3,12= f(4, 2, 2, 1, 0, 0, - l), .f3,9 =f(3, 0, l,O, 
0, 1, l), and f3,i0=f(4, 2, 0, -1, - 1, 1, 2) (note r~,(f~,~)=i). One easily 
checks m(A Z[zi3])=4 for all these elements f, cf. (IV.3)). By applying 
condition (**) of Section IV, (IV.3)(ii) and (IV.4), one concludes that fj,, , 
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fL4 =f3,1 + J,,, and f3,10 are the only forms whose automorphism groups 
have to be checked for irreducibility. 

An analogous discussion for nz(f ) Z [5 + i ‘1 = q, yields f5,2 = ,f(4, - 2, 
0, LO, -Ll), .f,,,=f(4,0,0,1, -l,O, 1),f5.5=f(3,0, 1, -l,O,O, l), and 
f5,7 = f (3,0, 1, 1, 0, 0,O) as only forms to be investigated. Finally, if 
%(f)~Cr+r11=q3%Y then m(f, Z[zi3])=6 and 5 possibilities for J 
have to be taken into account, namely z,(f) E { 6, 5,7,2, 1 1 }. 

The automorphism program of [PlP 853 shows that 2 of these 11 forms 
have an irreducible automorphism group, namely ,f,,, and f5,?. For 
instance, the lattices for the last 5 forms contain up to sign only 13 vectors 
of minimum length. Since they are not pairwise orthogonal, the 
automorphism group must act reducibly. In some other cases more detailed 
information has to be used from the machine calculation. Usually one can 
see that the group order is less than 132. As the final result of this dis- 
cussion and machine computation one has the following. 

(V.l) LEMMA. Up to isometry, there are .four lattices (Z[z,,], f) with 
,f’~ O[z,, + ZI’] totally positive and satisfying (**) qf Section IV such that 
Aut,(f‘) = Aut(Z[z,,], f) is irreducible: 

(i) ,f= f,,, = I,, with automorphism group isomorphic to C, { S,4; 

(ii) .f =f,,ls =fP., l,..., 1) with automorphism group isomorphic to 
c, * s,,; 

(iii) .f =,f3,, =f’(3, 1, - 1. - 1, 0. 0,O) with automorphism group 

isomorphic to C, x SG, where S= is SL,(3) extended by the 
automorphism g + g ” qf order 2; 

(iv) f = fs,2 = f(4, -2,O, l,O, - 1, 1) with automorphism group 

isomorphic to C2 x PSZ), where PS=) is the extension qf PSL2(25) 
by the Frohenius automorphism of order 2. 

Proceeding to (B) of Section IV the minimal irreducible subgroups of the 
four groups listed above have to be identified, which is easily done by 
means of (11.2). Aut,(Z,,) has up to conjugacy two such subgroups, one 
isomorphic to SL,(3) and the other to a subgroup of index 2 of C, 2 C13; 
cf. [Sim 701 for the transitive permutation groups of degree 13. AutZ(fi,,4) 
has one such subgroup up to conjugacy, namely f of isomorphism type 
PSL2( 13); cf. also [Sim 701 for the 2-transitive permutation groups of 
degree 14. Finally Autz(f3,,) and Autz(f5,2) have their commutator sub- 
groups (isomorphic to S&(3) and PSL,(25) resp.) as unique minimal 
irreducible subgroups. 

According to (B), Section IV, the sublattices of the natural ZG-lattice L 
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have to be found for each of the four minimal f.i.u.g. just discussed. In case 
G is isomorphic to a subgroup of index 2 of C2 { Cr3, the group G = 
(G, -I,,) is isomorphic to C2 2 C,, and leaves the same sublattices of L 
invariant as G. But by (11.2)(ii) the HG-sublattices of L coincide with the 
ones invariant under the full monomial group Autz(fi,r) ( gCc, t S,,). For 
GzPPSL,( 13) the sublattices are described in (111.2)(i) and coincide with 
those of AutZ(fi,,3). However the remaining two cases yield new lattices; 
either of the strategies (Bl) of (B2) or some theoretical arguments can be 
applied. 

Let G < AutL(f3,,), GE&Y,(~). The Aut,(f,,,)-sublattices of 3-power 
index in L are given by 3’L and 3jL# for i E Z a0 and jE H >, . As Lj3ZG- 
module L#/L becomes reducible: L#/L = L,/L@ L,IL where L1 and Lz 
are ZG-lattices on which G acts monomially. This explains why SL,(3) also 
turns up as a subgroup of Aut,(f,,,). All ZG-sublattices with 3-power index 
in L are given by 3’L, 3jL#, 3’L,, 3jL, with iEZ>O and jEL3 1. The 
ZG-sublattices of L, with 2-power index in L, are the same as under the 
full monomial group, cf. (111.2)(ii). All other LG-lattices in QL are 
obtained by taking sums and intersections of multiples of the lattices 
described so far; they fall into 3.4 = 12 isomorphism classes. 

Finally let Gd Aut,(&), GzPSL,(25). The Brauer characters of G are 
well known; in particular L/qL becomes irreducible only for q = 2 and 
q = 5, where one has two irreducible constituents in each case. Let L, and 
L, be the LG-sublattices of L# such that L,/L and L,/L are the Sylow 2- 
resp. 5-subgroup of L#/L. One easily checks that the multiples of L, L,, 
L,, and L# are the only ZG-sublattices in QL: That 2’L and 2’L, for 
iez,, and j E Z s, are all LG-sublattices of 2-power index in L follows by 
comparing the central characters belonging to the trivial QG-module and 
to QL: they are not congruent mod 8, cf. [Ple 831 (IV.13) or Chapter VII 
of [Pie 831. That 5L, is the only proper ZG-sublattice of L not contained 
in 5L follows from (11.4)(ii). 

This finishes essentially the proof of the classification of the maximal 
f.i.u.g. of degree 13. For some of the more interesting lattices also the 
minimum (square) length (~0) denoted by m and the number of vectors of 
(square) length m are given. For ail forms the determinant of the form FG 
is given as the product of the elementary divisors of F,. 

(V.2) THEOREM. There are 17 conjugacy classes of maximal f.i.u.g. of 
degree 13 falling into 4 conjugacy classes under CL,,(Q). Representatives for 
the 17 classes are given by the Aut,(F) with F as follows. 

(i) F = I,, = f(1, 0 ,..., 0) (det F = l), F = f(2, 0, 1, 0, 0, 0, 0) 
(detF=4), F=f(13, -11,9, -7,5, -3, 1) (detF=412) with Aut,(F)z 
C,\S13; 
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(ii) F=f(13, -l,..., - 1) (det F= 1412), F=f(2, l,..., 1) (det F= 14) 
F=f(12, 5, -2, -2, -2, -2, -2) (det F=711. 14), F=f(7, 5, 3, 1, - 1, 
-3, -5) (det F=211. 14) with Aut,(F)rC, x S,,; 

(iii) F=f(3, 1, -1, -l,O,O,O) (detF=36, m=3, a=104), F= 
f(5, 3,2, 1, -1, -3, -3)(detF=37,m=3,a=52),F=f(4,2, 1, -1, -1, 
-1,O) (detF=35.12, m=4, a=468), F=f(4,2,2, l,O,O, -1) (detF= 
36.12, m=4, a=234), F=f(15, -5, -5,3, -1,7, -5) (detF=45.127, 
m=12, a=52), F=f(13, -3, -7,5, 1, -7,5) (detF=46.12h, m=12, 

a = 52) with Aut,(F)r C, x S-), where S? denotes SL,(3) extended 
by its outer automorphism (g++ g-“) qf order 2; 

(iv) F=f(4, -2,O, l,O, -1, 1) (detF=5’.10, m=4, a=780), F= 
f(13, -7,1,1, -1,3, -1) (detF=23.109, m=12, a=130), F=f(6, 1,2, 
2, -2,1, -2) (detF=5’.10*, m=6, a=130), F=f(5, -1, -1, -l,l, 

-1, 1) (det F=2X. 104, m=5, a=52) with Aut,(F)%C,xPSz), where 

PSZ) is PSL,(25) extended by the outer automorphism of order 2 
induced by the field automorphism. 

Moreover, ifF=,f(a,,..., ub) E Z[z,, + zu’ ] is positive definite and has the 
same elementary divisors as a ,form F listed above, then Aut,(F) is conjugate 
under GL,,(Z) to Aut,(F). 

(b) p=17. 

In this case one can restrict oneself to two possibilities for rrn2( f) Z[{ + [] 
for the totally positive f = f(a,,..., as) E Z[z17 + zh’] satisfying (**) of Sec- 
tion IV with a=L[z,,], namely to Z[l+[-‘1 itself, or one fixed prime 
ideal q2 containing 2. By the results of Section III the first possibility leads 
to f = I,, and fi,18 =I,, +J,7 = f(2, l,..., 1) as only forms whose 
automorphism groups have to be considered. In the case 
n2(f) Z[[ + [-‘I = q, a similar discussion as for p = 13 shows that it suf- 
fices to consider f2,3=f(3,0,0,0, -l,O, -1, 1, l), f2,5=f(3, 1, 1, l,O,O, 
- 1, 0, - 1 ), and f2,7 = f( 3,0, 1, 0, 0, 0, 0, 0, 1). The computer computation 
with the automorphism program of [PlP 851 shows that only f2,3 has an 

irreducible automorphism group; Aut,( f&) is isomorphic to C, x S?, 

where S=) is the extension of SL,( 16) by the field automorphism of 
order 4. 

Proceeding to (B), Section IV, the minimal irreducible subgroups of the 
automorphism groups off ,,, , f,,,x, and f2,3 have to be found. Similarly as in 
the case p= 13 one finds a subgroup of order 2’. 17 of AutJfr,,), a sub- 
group isomorphic to PSL,(17) of Aut,(f,,,,), and the commutator sub- 
group of Autz(f2,3), which is isomorphic to SL,( 16). 

Let G<Aut,(f,,,) be the extension of one of the two (z,,)-invariant 
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subgroups of diagonal matrices in Aut,(f,,,) of order 2s by (zr,). Then 
the ZG-sublattices of L = L, are quickly found by method (Bl ) of Sec- 
tion IV. Identify L with Z[z,,] and let p, @, and q be the three ideals of 
Z[z,,] containing 2. I,, such that q has index 2 and p and ~5 have index 28 
in Z[z,,]. Then the ZG-sublattices of L correspond to multiples of Z[z,,], 
p, 6, q, Pp, pq, $?q, anddepending on the choice of G-of pq* and @’ 
(resp. of gq’ and $5~‘). The Aut,(a,f,,,) for these various ideals a are all 
induced by subgroups of Aut,(f,,,)gC, ) S,,. To see this, let M be a ZG- 
sublattice of L. Then one will always find an Aut,(f,,,)-invariant lattice (cf. 
(11.2)(ii)) among the sums and intersections of multiples of M and M#. 
With this in mind one finds that Aut(a,f,,,) corresponds to the extension 
of the group of all diagonal matrices in Aut,(f,,,) by a Frobenius group of 
permutation matrices of order 17.8, for a E {p, $5, pq, @q}. Since (p, f,,,) 
and ($, fi,r) as well as (pq, f, ,) and (f?q, f,,,) are isometric, cf. (11.3)(ii). 
Hence one ends up with 2 conmgacy classes of subgroups in this case, and 
similary in the case a E {pq2, pfi’, @q*, fop’} where the automorphism group 
corresponds to an extension of group of order 29 of diagonal matrices in 
Aut,(f,.,) extended by a Frobenius group of order 17.8. 

Next let G <Autz(f;,,s) be isomorphic to PSL,( 17). It follows from 
[Ple 83, Chaps. VII and VIII], that there 4.3 = 12 isomorphism types of 
sublattices of L = L,. By (111.1) and (111.2)(i) for 2.3 = 6 of these the full 
automorphism group is isomorphic to C, x S,,. The remaining 6 lattices 
come in isometric pairs and have an automorphism group isomorphic to 
C, x PSL,( 17) by similar arguments as in the previous case. 

Finally let GzSL,( 16) be the commutator subgroup of AutJ&). 
Applying strategy (Bl ) or (B2) of Section IV, one checks that all ZG-sub- 
lattices of L = L, can be obtained from L, its even sublattice L’ = {x E L 1 
Tf,,,(x, x) even}, L#, and L’” by taking sums and intersection of multiples. 
There are 4.2 = 8 isomorphism types of lattices, no two of which are 
isometric, and the full automorphism groups of which are all isomorphic to 
Aut(&). This finishes the proof of the following theorem for which the 
same notation is used as in (V.3). 

(V.4) THEOREM. There are 24 conjugacy classes of maxim& ti.u.g. OJ 
degree 17 ,falling into 6 conjugacy classes under GL ,,( Q ) (only four of which 
consists of maximal finite subgroup of GL,,(Q)). Representatives are given 
by the Aut,(F) with F as follou~s. 

(i) F = I,, = f( 1, 0 ,..., 0) (det F = l), F = ,f(2, 0, 1, 0, 0 ,..., 0) 
(detF=4), F=f(17, -15, 13, -11,9, -7,5, -3, 1) (detF=416) with 
Aut,(F)zC* { Sr,; 

(ii) F=f(17, - l,..., - 1) (det F= 18”), F=S(2, l,..., 1) (det F= 18), 
F=f(16, 7, -2 )...) -2) (det F=915. 18), F=f(9,7,5,3,1, -1, -3, 
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-5, -7)(detF=215.18),F=f(4,3,2, l,O, -1, -2, -2, -2)(detF=2), 
F=f(5,3, 1, -1, -l,..., -1) (detF=2r6) with Aut,(f)rC,xS,,; 

(iii) F=f(5, 1,2,0, l,O, -2, -2, -2) (detF=4*, m=4, a=34), 
F=f(6,0,3, -2,2, -1, 1, -2, -2) (det F=49, m=4, a=34) where 
Aut,(F) is a split extension of Ci’ by a Frobenius group of order 17.8. 

(iv) F=f‘(8, -4, 5, -4, 5, -2, 3, -1, 2) (det F=4’. 16, m = 6, 
a=2176), F=f(17, -3, 1, 5, -3, 1, -7,5, -7) (det F=48. 16’, m= 16, 
a = 34) where Aut,(F) is a split extension qf Cz by a Frobenius group of 
order 17.8; 

(v) F=f(4,0,0, 1, -2,O,O, -1, 1) (det F=2.48, m=4, a=204), 
F=f(6,2, -1, 1,2, 1, -1, -1,3) (det F=2.4’.36, m=6, a=2040), F= 
f(52,25, 16, 7, -20, -20, -11, -20, -2) (detF=9’. 18.36’, m=34, 
a = 36) with Aut,(F)rC, x PSL,( 17); 

(vi) F=f(3,0,0,0, -l,O, -1, 1, 1) (det F=2’.6, m=3, a= 136) 
F=f(4,0, -1, 1,2, 1, -1, 1, 1) (detF=2’.12, m=4, a=1326), F= 
.f(4, 1, 1, -1, -1, -2,O, 1,2) (det F=2*.6, m=4, a=2040), F=f(7, 1, 
-3, -1, -1, 1,3, 1, -3) (detF=2’.4’.12, m=7, a=816), F=f(lO, 
-2, -5, 1,4, 1, -5, 1, 1) (det F=37.69, m= 10, a== 1020) F=f(17, -1, 
-1, -1, -7, -1, -7, 5, 5) (det F=6’. 12’, m= 17, a=240), F=f’(ll,2, 
2, -4, -4, -7, -1,2,5) (detF=3’.6’, m=8, a= 102) F=f(8, -1,2, 
-1, -1, -1, -1, -1,2) (detF=37.6X.12, m = 8, a = 102) with 

Aut,( F) z C, x SG, where s) denotes the extension qf SL2( 16) by 
the field automorphism group af’ order 4. 

Moreover, if F=j’(a, ,..., ax) E Z[z,, + z,;‘] is positive d+nite with 
elementary divisors equal to those qf‘aform F listed above, then Aut,(F) and 
Aut,(F) are conjugate under CL,,(Z). 

(C) Q= 19. 

In this case nz(.f) Z[l+ < ‘1 for the totally positive ,f’~ Z[z,, + ~19’1 
satisfying ( * * ) of Section IV can be assumed to be Z [[ + [ ’ 1, q, or an 
integral Z[[ + i - ‘I-ideal divisible by q, I, where q, and q, , are fixed prime 
ideals of Z[[ + [ ‘1 containing 7 (resp. 11). Those elements f with 
7~~(f) E q,, cannot have an irreducible automorphism group by [Fei 74, 
Theorem C], or more directly by Feit’s theorem (3.1) p. 347, of [ Fei 821 as 
follows: L,#/L, has a ZG-submodule elementary abelian of order 11 6 or 
11’. Hence by (II. 1 )(iii) and (11.4) a Sylow 1 l-subgroup S = ( y) of G has 
order 11 and y has minimum polynomial of degree < f(2. 11 - 2) on a fac- 
tor, or submodule of L/l lL, thus contradicting (11.2) and Feit’s result just 
quoted. (Not applying Feit’s result leaves 4 more ideal rr*(f’) Z[[ + [~ ‘1 to 
be checked.) The usual arguments show that there are only 4 elements 
f~ Z[z,, + z;‘], which have to be checked, namelyf= I,, and f = I,, + J,, 
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in case n*(f) is a unit in n[c+[-‘], and f=f,,, =f(7, 0, -3, 0, 2, 
-2, -5,3,3, -1) and f=F,,?=f(5, l,O, -3, -1, 1,3,2,0, -2) in case 
rrz(f) generates q,. The automorphism program [PlP 851 shows easily 
thatf,,, and f,,, have a reducible automorphism group and the even sublat- 
tice of the lattice forf,:, the automorphism groups have an orbit of 19 vec- 
tors (and their negatives) of minimum length which are not pairwise 
orthogonal). 

Proceeding to (B) of Section IV, Aut,(Z,,) has only one minimal 
irreducible subgroup up to conjugacy, namely, the subgroup of index 2 of 
the extension of the group of all diagonal matrices in Aut,(Z,,) by (z,~). 
As in the case p = 13 one sees by means of (III.a)(ii) that this group does 
not have more invariant sublattices of L = z19x’ than Aut,(Z,,) itself. 
Finally Aut,(Z,, + J,,) has only a group isomorphic to PSL,(19) as 
minimal irreducible subgroup. By (111.2)(‘) 1 one concludes that this group 
does not have any other invariant lattices in L = z’9x ’ than Aut,(Z,, + J,,) 
itself. This proves that one has a situation in dimension 19 as in prime 
dimensions less equal to 11, namely that all maximal f.i.u.g. are essentially 
reflection groups. The Gram matrices can be taken from (111.4). 

(VS) THEOREM. There are 3 + ~~(20) = 9 conjugacy classes qf maximal 
f.i.u.g. of degree 19 falling into two conjugacy classes under CL,,(Q). The 
groups in the first three classes are isomorphic to C, l S,, and the others are 
isomorphic to C2 x S,,. 

VI. DIMENSION p = 23 

In [Fei 74, Theorem E], Feit proved that a f.i.u.g. of degree 23 has a 
subgroup of index 23 or 24 or is embedable in C2 x Co.2 or C, x Co.3, 
where Co.2 and Co.3 are the Conway groups turning up as stabilizers in 
the automorphism group of the Leech lattice of a vector of norm 4 resp. 6, 
cf. [Con 691. This result will not be applied, but follows from the sub- 
sequent discussion along the lines of Section IV. Similarly as in [Fei 741 no 
automorphism computations are necessary since sufficiently many lattices 
of dimension 23 are known. 

The class number of Q(i) is three; the nonprincipal ideal classes are 
represented by the two prime ideals of Z[[ + [-‘I which contain 2. Hence 
by (11.3) one may assume a = ;Z[z,,] or a = u2, where a2 is one fixed ideal 
of Z[z,,] of index 2l’ in Z[z,,]. 

In the case a = Z[z,,J the totally positive fe Q[z,, +z~‘] satisfying 
(**) of Section IV can be chosen to be f = Zzj or f = Z,, + J,, by the results 
of Section III. Since the transitive permutation groups of degree 23 are well 
known, cf., e.g., [Neu 771, and the 2-transitive permutation groups of 
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degree 24 are easily derived from those, one only finds an extension of a 
group of order 2l’ of diagonal matrices in Aut,(Z,,) extended by (zz3) as 
minimal irreducible subgroup of Aut,(Z,3) and a group isomorphic to 
Z?SL,(23) as minimal irreducible subgroup of Aut,(Z,, + Jz3), cf. also (11.2). 

Next let a = a2. Then f~ Q[zz3 + z;‘] satisfying (**) of Section IV has 
the property nz(f) Z[[ + [-‘I = +z[[ + [-‘I, because each prime number 
q, 2 < q < 23, generates a prime ideal in Z[[ + i -‘I. One finds the relevant 
elements ,f~ Q[z,, + zsi] by applying (IV.2) (IV.3) (note m(f, a) = 4), 
and (IV.4) namely (in the terminology of (IV.2)):f, = $5:,fi = i(zg -.Z,,), 
fh = t(zi - 3Jz3), and .f3 = f(s:, - .5J,3), as well as a few other elements f, 
which can be ruled out by applying (IV.3)(ii) to the even sublattice of 
(a, f). The automorphism group of (a,, f2) is isomorphic to C, 2 M,, . This 
can be seen from the fact that the Mathieu group Mz3 is the automorphism 
group of the Golay code of length 23, cf. [MaS 771, that (a,, fz) is 
isometric to (a;, iI,, ), where a; is the bC*,-ideal of index 2 in a,, cf. also 
(111.1). Aut(a,, f;) is isomorphic to C, x Co.2, because the even sublattice 
of (a,, fi ) is isometric to the lattice of all vectors in the Leech lattice which 
are orthogonal to a fixed vector of norm 4 cf. [Con 691. Similarly 
Aut(a,, fb) is isomorphic to C, x Co.3, since (a,, fh) is isometric to the lat- 
tice of all vectors orthogonal to a fixed vector of norm 6 in the Leech lat- 
tice. Finally a similar argument or a direct reference to the Golay Code of 
length 24 proves that Aut(a,, f3) is isomorphic to C, x M,,. (Note, at this 
stage Feit’s result quoted at the beginning of this section follows already.) 
The minimal irreducible subgroups of the Aut(a,, J;) are isomorphic to an 
extension of Ci’ by Cz3 for i = 2, to Co.2 (resp. Co.3) for i = 1 (resp. i = 6), 
and to PSL,(23) for i= 3. 

The first of the four minimal irreducible groups the lattices of which have 
to be discussed according to B of Section IV is GE C:r . C2, acting 
monomially of L = Zz3 x I. Identify L with Z[z,,], and let p, i.5, and q be the 
three prime ideals of Z[z,,] containing 2. Zz3 which are of index 2’r, 2” 
(resp. 2) in Z[z,,]. The ZG-sublattices of L correspond to multiples of 
Z[z,,], p, 6, q, pq, @q, p@, anddepending on the choice of G-of pq*, p'@ 
or pq', p@'. Using the automorphism of Z[z,,] which interchanges p and 
8, cf. (11.3) and omitting the principal Z[z,,]-ideals, because of (111.8) one 
has to find the automorphism groups of (p, Z23), (pq, il,,), (pq2, fl,,), 
(~'6, Z23). As noted earlier, Aut(pq, $Z23)~ C, t M,,. Since (p, I,,) is dual to 
a scaled version of (pq, +I,,) one also gets Aut( p, I,,) E C, { M,, . The other 
two lattices are also dual to multiples of each other and hence have 
G&,(Q)-conjugate automorphism groups. One easily checks that 
Aut(pq’, $Z,,) is isomorphic to a subgroup of C2 ) M,,, namely to a split 
extension of Ci2 with M,,. 

Next let G d Aut,(Z,, + J,,) be isomorphic to PSL,(23). The sublattices 
of L = L, are determined in [Ple 83, Chaps. VII and VIII]. They fall into 
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10.2 = 20 isomorphism classes 4.2 = 8 of which also admit the operation 
of AutZ(Zz3 + &) by (111.2)(i). The remaining 12 types come in 6 isometric 
pairs. The remaining 6 lattices have automorphism groups conjugate under 
G&(Q), since each of the lattices can be obtained from the others by tak- 
ing intersections and sums of multiples of one arbitrarily given lattice, its 
even sublattice, their dual lattices etc. Since one of the lattices (with dis- 
criminant 3) was seen to have C2 x M,, as isomorphism type of its 
automorphism group, the same holds for all six of them. 

For the discussion of the Co.2- and Co.3-lattices the following notion is 
helpful. 

(VI.l) DEFINITION. Let G be a finite group. The LG-lattice L is called 
monomially generated, if there is an XE L with L = ZGx such that the 
induced lattice ZG O,, ZX has no epimorphic image of L-rank 1, where 
H= (geG[ gx= ax}. 

(VI.2) PROPOSITION. Assume [G : G’] d 2. A monomia@v generated ZG- 
lattice L has at most one UG-sublattice L’ # L with L/L’ cyclic (as abelian 
group). If L’ exists, one has [L : L’] = 2. 

Pro@ In the terminology of (IV.1) one has a LG-epimorphism cp of 
M:=ZG@,, LX onto L which maps 1 @.Y onto .Y. Let L’ d dG L with 
L/L’ cyclic of order bigger than 2. Then there is a unique l-dimensional 
ZG-lattice X having L/L’ as epimorphic image. The composition of cp with 
the natural epimorphism L + L/L’ factors over X, since G acts monomially 
on M. But A4 does not have a l-dimensional lattice as epimorphic image, 
hence [L : L’] 6 2. If L’ d ZG L with [L : L’] = 2, then clearly L’ is the only 
sublattice with this property, since L is generated (as ZG-lattice) by a 
single element. Q.E.D. 

Let G < Aut(a,, f, ) be isomorphic to Co.2. Then L = az contains 2.2300 
vectors of minimum norm 3, cf. [PlP 851. This together with the character 
table of Co.2 shows that L is monomially generated, namely 2300 is the 
minimal degree of a nontrivial permutation representation of G and the 
irreducible character of degree 23 is not contained in the permutation 
character. Proposition (VI.2) implies that the even sublattice L’ of L is the 
only sublattice of L with cyclic factor group (# 1). By restricting the 
operation of G to a Sylow 5-subgroup and to a Sylow 23-subgroup one 
sees that L/qL is either irreducible as Z/qZG-module or has a l- and a 22- 
dimensional constituent for any prime number q dividing /GI. Using the 
selfduality of L, one obtains now that the multiples of L, L’, and L’” are 
the only ZG-sublattices of L. 

Let G < Aut(a,, f6) be isomorphic to Co.3. Then L = a2 is contained in a 
ZG-lattice L’ with index 2, since L”/Lr C,. Computing the vectors of 
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minimum length of L’ yield 2.276 vectors of norm 5. The same argument 
as in the Co.2-case yields that L’ is monomially generated and that the ZG- 
sublattices of L ark all multiples of L, L’, L”, and L’. This finishes the 
proof of the final result. 

(VI.3) THEOREM. There are 28 conjugacy classes of f.i.u.g. of degree 23 
falling into 7 conjugacy classes under GL,,(Q) (only 4 qf which consist of 
maximal finite subgroups of GL,,(Q)). The 28 classes can be characterized 
by two invariants: the elementary divisors of the Gram matrix FG of some 
group G in the class and the minimum number of generators of the LP-lattice 
L,, where L is the natural LG-lattice and P a Sylow 23-subgroup qf G. In 
case L, is generated by one element, the possible elementary divisors are 

(i) 122. 24, 1 .2422, 122. 6, 1 .6**, 1 .22’.6, 1 .32’.6, 1 .82’.24, 
1.32’.24 with GrC XS 

(ii) 123, 12*.4: 1 .gli with GgCC,l S23, 

and in case L, is not generated by one element, the elementary divisors are 

(iii) 1 22. 2, 1 . 222 with GE C, 2 M 23, 

(iv) 1 22. 8, 1 . 822 where G is a split extension of Ci2 by M,,, 

(v) 1**.3, 1.3**, 122.12, 1.1222, 1.42’.12, 1.32’.12 with GZ 
c2 x M2,> 

(vi) 1 23, 122. 4, 1 . 422 with G z C, x Co.2, 

(vii) 122.6, 1 .622, 1 .2*’ .6, 1 . 32’ ’ 6 with GE C, x Co.3. 

Conversely, if F is the Gram matrix of a positive definite integral bilinear 
form qf degree 23 with elementary divisors as above, 23 1 Aut(F) and L, 
indecomposable as ZP-lattice, where P < Aut,(F), IPl = 23 and L the natural 

Aut,(F)-lattice, then Aut,(F) is a f.i.u.g. of degree 23. 
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