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Abstract 

This paper presents finite-difference solution and analytical solution of the finite-difference approximations based on the 
standard explicit method to the one-dimensional Burgers equation which arises frequently in the mathematical modelling 
used to solve problems in fluid dynamics. Results obtained by these ways for some modest values of viscosity have been 
compared with the exact (Fourier) one. It is shown that they are in good agreement with each other. @ 1999 Elsevier 
Science B.V. All rights reserved. 

AMS classification." 65N06 

Keywords: Burgers equation; Exact-explicit finite difference; Explicit finite difference 

. Introduction 

We consider the one-dimensional quasi-linear parabolic partial differential equation 

~u ~3u ~2u 
~3t + U -~x = V f f  fix 2 , a < x < b , t>0,  (1) 

with the initial condition 

u ( x , O ) = d p ( x ) ,  a < x < b ,  (2) 

and the boundary conditions 

u ( a , t ) = f ( t )  and u ( b , t ) = g ( t ) ,  t>0,  (3) 

where v > 0 is the coefficient of kinematic viscosity and ~b, f and g are the prescribed functions of 
the variables. Historically, Eq. (1) was first introduced by Bateman [3] who gave its steady solutions. 
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It was later treated by Burgers [5] as a mathematical model for turbulence and after whom such an 
equation is widely referred to as Burgers equation. 

Many problems can be modelled by the Burgers equation [9]. For example, the Burgers equation 
can be considered as an approach to the Navier-Stokes equations [2, 12] since both contain nonlinear 
terms of the type: unknown functions multiplied by a first derivative and both contain higher-order 
terms multiplied by a small parameter. 

The Burgers equation is one of the very few nonlinear partial differential equation which can 
be solved exactly for a restricted set of initial function ~b(x), only. In the context of gas dynamic, 
Hopf [11] and Cole [7] independently showed that this equation can be transformed to the linear 
diffusion equation and solved exactly for an arbitrary initial condition (2). The study of the general 
properties of the Burgers equation has motivated considerable attention due to its applications in 
field as diverse as number theory, gas dynamics, heat conduction, elasticity, etc. 

The exact solutions of the one-dimensional Burgers equation have been surveyed by Berton and 
Platzman [4]. Many other authors [1, 6, 8, 10, 13-15, 17] have used a variety of numerical techniques 
based on finite-difference, finite-element and boundary element methods in attempting to solve the 
equation particularly for small values of the kinematic viscosity v which correspond to steep fronts 
in the propagation of dynamic waveforms. 

2. Statement of the problem 

Consider the Burgers equation (1) with the initial condition 

u(x,O) = sin(nx), 0 <x < 1, (4) 

and the homogeneous boundary conditions 

u ( O , t ) = u ( 1 , t ) = O ,  t>0.  (5) 

By the Hopf-Cole transformation [13] 

u(x, t) = -2v~-,  (6) 

the Burgers equation transforms to the linear heat equation 

80 820 
~-=V~x-2x2, 0 < x < l ,  t>0 ,  (7) 

with the initial condition 

O(x,O) = exp{-(2rtv)-l[1 - cos(nx)]}, 0 < x <  1, (8) 

and the boundary conditions 

Ox(O,t)=Ox(1,t)=O, t>0.  (9) 

This means that if O(x, t) is any solution of the heat equation (7) subject to the conditions (8) 
and (9), then the transformation (6) is a solution of the Burgers equation (1) with the conditions 
(4) and (5). 
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Using the method of separation of variables the (exact) Fourier series solution to the above 
linearized problem defined by Eqs. (7 ) - (9)  can be obtained easily as 

o o  

O(x, t) = ao + ~ a, exp(-n2rcZvt) cos(nrtx), (10) 
n = ]  

with the Fourier coefficients 

P 1 

= J0 exp{-(2xv)- l [1  - cos(xx)]} dx, (11) a0 

/0' an = 2  exp{-(2rcv)-I[1 - cos (~x)]}cos (n~x)dx  ( n =  1,2,3 . . . .  ). (12) 

Thus, using the Hopf-Cole transformation given by Eq. (6), the (exact) Fourier solution to the 
problem given by Eqs. (1), (4) and (5) is obtained as 

u(x, t)  = 2~tv ~n~=l an exp(-n2x2vt)n sin(nxx) 
2 , ( 1 3 )  

ao + ~n=l an exp(-n2rt vt) cos(mtx) 

where ao and a, (n = 1,2,3 . . . .  ) are defined by Eqs. (11) and (12), respectively. 

3. Methods of solution 

The solution domain {(x, t) :x C [0, 1], t E [0, cx~)} is discretized into cells described by the node 
set (xi, tj) in which xj =ih ,  tj = j k  (i = 0(1)N; j = 0(1)J, N h =  1 and Jk = tf) h - - A x  is a spatial 
mesh size, k -  At is the time step and t r is the final time. 

3.1. An explicit finite-difference solution 

A standard explicit finite-difference approximation to Eq. (7) with the boundary conditions (9) is 
given by 

Oi, j+, = (1 - 2r)O~,j + 2rOi+1,j, i -- O, 

0i,/+1 = rOi-l,j + (1 - 2r)Oi, j + rOi+l,j, 

0/,j+, = 2rOi_l,j + (1 - 2r)Oi, j, i = N, 

i =  I ( 1 ) N -  1, 

(14a) 

(14b) 

(14c) 

for j = 0(1)J  with a truncation error of O(k) + O(h 2) (see, e.g., [16, Section 2]). In the above 
equations, r = k v / h  2 and 0gj denotes the finite-difference approximation to the exact solution O(xg, tj) 
at the point (x~, tj). For stability analysis it is convenient to use Von Neumann's approach (see, e.g., 
[16, Section 2]) to obtain the bound on the size of the time step k. It can be obtained as k<~hZ/2v. 

Thus, using the Hopf-Cole transformation given by Eq. (6), the explicit finite difference solution 
to the non-linear problem by Eqs. (1), (4) and (6) is obtained as 

u ( x ~ , t j ) = - ~  , i =  l ( 1 ) N - 1 ,  j = 0 ( 1 ) J .  (15) 
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3.2. An exact-explicit finite-difference solution 

Assume that the finite-difference equation (14b) has product solutions of the form 

Oi, j -~- f i g j  (16) 

where f ,  depends on i (or x) only and 9s depends on j (or t) only (see, e.g., [16, Section 3]). 
Substitution of  Eq. (16) into Eq. (14b) we obtain 

9j+l = r~_~ + (1 - 2r)f~ + r f+ ,  (17) 

gj f, 

Since the left member of Eq. (17) is independent of i and the right member is independent of j ,  
the two equal expressions in Eq. (17) must both be equal to a constant c. Setting each member 
of  Eq. (17) equal to this constant c gives the two homogeneous difference equations for J~ and gj, 
namely 

and 

gj+l  - -  Cgj ~- 0 (18) 

/"J~-I "~ (1 - 2r - c)J) + rf,+~ =0 .  (19) 

The general solution of Eq. (18) is 

9j =AcJ,  (20) 

where A is an arbitrary constant. 
Since the solution of  Eq. (7) is periodic in x, the solution of Eq. (19) is periodic in i. 

Thus, 

J~ = B cos(ie) + C sin(i~), (21) 

where B and C denote arbitrary constants, and 

2 r + c -  1 
cos~ - (22) 

2r 

The boundary conditions (9) at x --- 0 and x = 1, in terms of  central differences, lead to 

0 1 , j = 0 - 1 j  (for all j )  (23) 

and 

ON+I, j = ON--l, j (for all j ) ,  (24) 

respectively. Applying Eqs. (23) and (24) to Eq. (16) and utilising Eq. (21) we obtain Cs inc~=0  
and B sin(N~) sin ~ - C sin ~ cos(N~) = 0, respectively. Since we are interested in the non-trivial 
solution of  the problem it follows that s in(N~)= 0 giving ~ =src/N, s =0 ,  1,2 . . . . .  Therefore, the 
difference equation (21) takes the form 

/ isn \  =Bcost ), (2s) 
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and from Eq. (22) we obtain 

c = l -  4r sin2 ( S~N). (26) 

Substitution of Eqs. (20), (25) and (26) in Eq. (16) we obtain 

Oi, j = D c J c o s ( ~ )  ( s=0 ,  1,2,...), (27) 

where D = AB. 
Since Eq. (14b) is linear in 0~,j, the sum of different solutions is a solution of Eq. (14b). Thus, 

we form the series 

j 1Sg 
Oi, j = Z O s c  cos ~ , i :  I ( 1 ) N -  1, j=0 (1 ) J .  (28)  

s:0 

Applying the initial condition (8) to Eq. (28) yields 0~,o = ~ o D s  cos(isrc/N) in which 

/o' /o' Do= O(x,O)dx and Ds=2  O(x,O)cos(snx)dx ( s=1,2 ,3 , . . . ) .  

Thus, using the Hopf--Cole transformation given by Eq. (6), the exact-explicit finite-difference 
solution to the nonlinear problem is easily obtained as 

~,~=1 Ds( 1 - 4r sin 2 sn/2N)gs sin(snxi) 
u(x , , t j )=2nv • z • , i = I ( 1 ) N - 1 ,  j = 0 ( 1 ) J .  (29) 

Do + ~s~l Ds(1 - 4r sin sn/2N)Js cos(srcxi) 

It can be shown that when r = kv/h 2 the exact-explicit finite-difference solution (29) converges to 
the Fourier solution as the mesh size tends to zero, for finite values of time t. 

4. Numerical results and conclusions 

All calculations were performed in double-precision arithmetic on a Pentium 166 processor using 
Microsoft FORTRAN Compiler. All results are obtained when the coeffiecients of both series are 
equal to or less than 0.1 × 10 -9. 

Tables 1 and 2 display results obtained by explicit solution (15) and exact-explicit finite difference 
solution (29) of the problem, respectively. It is observed that both results are reasonably in good 
agreement with the exact solution (13), and exhibit the expected convergence as the mesh size is 
refined. Table 3 presents the values obtained by applying Richardson's extrapolation to the value of 
the weighted 1-norm defined by 

1 U-1 Ui, j 
I lel l~=~ ..~ 1 u(xi, tj) ' e=[e l  "' 'eN-l]T 

which gives an approximate rate of convergence of 1.9594 for the explicit method and 1.9536 for 
the exact-explicit method. Both are consistent with the theoretical expectation of O(h2). It is also 
clear from Table 3 that the error in both solutions decreases as N increases. 
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Table 1 
Comparison of the explicit finite-difference solutions with exact solution at tf-=-0.1 for v = 1 and At----0.00001 

x Numerical solution Exact solution 

N =  10 N = 2 0  N = 4 0  N = 8 0  

0.1 0.10863 0.10931 0.10948 0.10952 0.10954 
0.2 0.20805 0.20935 0.20967 0.20975 0.20979 
0.3 0.28946 0.29128 0.29173 0.29184 0.29190 
0.4 0.34501 0.34719 0.34773 0.34786 0.34792 
0.5 0.36845 0.37079 0.37137 0.37151 0.37158 
0.6 0.35601 0.35828 0.35884 0.35898 0.35905 
0.7 0.30728 0.30924 0.30973 0.30985 0.30991 
0.8 0.22588 0.22733 0.22769 0.22778 0.22782 
0.9 0.11966 0.12043 0.12062 0.12067 0.12069 

Table 2 
Comparison of the exact-explicit finite-difference solutions with exact solution at t t- =0.1 for v = 1 and At----0.00001 

x Numerical solution Exact solution 

N =  10 N = 2 0  N = 4 0  N =  80 

0.1 0.11048 0.10977 0.10959 0.10955 0.10954 
0.2 0.21159 0.21023 0.20989 0.20981 0.20979 
0.3 0.29435 0.29250 0.29204 0.29192 0.29190 
0.4 0.35080 0.34863 0.34809 0.34795 0.34792 
0.5 0.37458 0.37232 0.37175 0.37161 0.37158 
0.6 0.36189 0.35974 0.35921 0.35907 0.35905 
0.7 0.31231 0.31050 0.31004 0.30993 0.30991 
0.8 0.22955 0.22825 0.22792 0.22783 0.22782 
0.9 0.12160 0.12091 0.12074 0.12070 0.12069 

Tables 4 and 5 display explicit and exact-explicit  finite-difference solutions for v = 0.1 and v = 

0.01 with At  = 0.001 at different times. It is clearly observed that both numerical  predictions are 
reasonably in good agreement  with the exact solution. It is seen that for small values o f  v, one must  

consider a large value o f  N to obtain proper  solution. To achieve a better accuracy, large values of  
N and t must  be taken since the (exact)  Fourier solution fails for small values o f  v and t [13]. 

In order to show how good the numerical  solutions exhibit  the correct physical  characteristic o f  
the problem we only give the graph in Fig. 1 which shows the numerical  solutions at different t imes 
for v =  1.0, h = 0 . 0 2 5 ,  k = 0 . 0 0 0 1 .  The exact solution given by  Eq. (13) also is drawn on the same 
figure, but the graphs can not be distinguished due to the closeness o f  the numerical  solutions to 

the exact  one. 
It is also possible to solve Burgers-l ike problems with different initial and boundary  conditions by  

the above approach so-called the exact-explicit  finite-difference method. For example,  for the Burgers  
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Table 3 
Values of Ilelll for numerical predictions shown in Tables 
1 and 2 

N Ilell, 

Explicit Exact-explicit 

10 0.007571 0.007278 
20 0.002025 0.001885 
40 0.000555 0.000448 
80 0.000177 0.000077 

Table 4 
Comparison of the numerical solutions with exact solution at different times for v=O.1, zXx=0.025 and At =0.001 

x tf Numerical solution Exact solution 

Explicit Exact-explicit 

0.25 0.4 0.30834 0.30891 0.30889 
0.6 0.24039 0.24075 0.24074 
0.8 0.19543 0.19568 0.19568 
1.0 0.16238 0.16257 0.16256 
3.0 0.02718 0.02720 0.02720 

0.50 0.4 0.56911 0.56964 0.56963 
0.6 0.44676 0.44721 0.44721 
0.8 0.35888 0.35924 0.35924 
1.0 0.29162 0.29192 0.29192 
3.0 0.04017 0.04021 0.04021 

0.75 0.4 0.62555 0.62542 0.62544 
0.6 0.48701 0.48721 0.48721 
0.8 0.37366 0.37392 0.37392 
1.0 0.28723 0.28748 0.28747 
3.0 0.02974 0.02977 0.02977 

equation (1) with the boundary  conditions (5)  and the initial condition 

u ( x , O ) = 4 x ( 1 - x ) ,  0 < x < l  

the exact-explicit  finite-difference solution can be easily obtained in the similar way  to the previous 

problem. Obviously,  the only marked  difference is the initial conditions which is 

O(x,O) = e x p { - ( 3  - 2x)x2/3v}, 0 < x <  1. 

Explicit  and exact-explicit  finite difference solutions obtained to the prob lem for v = 1.0 (with 
A t = 0 . 0 0 0 1 )  and v = 0 . 0 1  (with A t = 0 . 0 0 1 )  at different t imes are displayed in Tables 6 and 7. It 
is clearly seen that the obtained numerical  results are in good agreement  with the exact solution. 
Fig. 2 shows the numerical  solutions for v = 0.1, h = 0.025, k = 0.01 at different t imes which exhibit 
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Table 5 
Comparison of the numerical solutions with exact solution at different times for v = 0.01, z2xx = 0.0125 and At = 0.0001 

x tf Numerical solution Exact solution 

Explicit Exact-explicit 

0.25 0.4 0.34244 0.34164 0.34191 
0.6 0.26905 0.26890 0.26896 
0.8 0.22145 0.22150 0.22148 
1.0 0.18813 0.18825 0.18819 
3.0 0.07509 0.07515 0.07511 

0.50 0.4 0.67152 0.65606 0.66071 
0.6 0.53406 0.52658 0.52942 
0.8 0.44143 0.43743 0.43914 
1.0 0.37568 0.37336 0.37442 
3.0 0.15020 0.15015 0.15018 

0.75 0.4 0.94675 0.90111 0.91026 
0.6 0.78474 0.75862 0.76724 
0.8 0.65659 0.64129 0.64740 
1.0 0.56135 0.55187 0.55605 
3.0 0.22502 0.22454 0.22481 

U 
1.2 

1.1 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

t=O. 001 

\ 

t=O. 1 "\. 

z t = o . 5  " . & \  

--, , , , , . . . . . . .  , . . . . . . .  r 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
X 

Fig. 1. Solution at different times for v =  1.0, h--0.025, k--0.0001. 

the  cor rec t  p h y s i c a l  b e h a v i o u r  o f  the  p r o b l e m .  A l l  so lu t ions  are  d r a w n  on  the s ame  f igure  s ince  t hey  

are  v e r y  c lose  to each  other .  

I t  is o b s e r v e d  that  in  al l  c a l cu l a t i ons  b o t h  so lu t ion  ser ies  o f  the  a b o v e  Burge r s  equa t ion  wi th  

di f ferent  in i t ia l  and  b o u n d a r y  cond i t i ons  are  u s e d  the s a m e  n u m b e r  o f  the  t e rms  to ge t  g o o d  
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Table 6 
Comparison of the numerical solutions with exact solution at different times for v = 1.0, Ax = 0.025 and At = 0.0001 

x tj Numerical solution Exact solution 

Explicit Exact-explicit 

0.25 0.01 0.65915 0.66007 0.66006 
0.05 0.42582 0.42629 0.42629 
0.10 0.26121 0.26149 0.26148 
0.15 0.16132 0.16148 0.16148 
0.25 0.06103 0.06109 0.06109 

0.50 0.0l 0.91890 0.91972 0.91972 
0.05 0.62745 0.62809 0.62808 
0.10 0.38304 0.38343 0.38342 
1.15 0.23382 0.23406 0.23406 
0.25 0.08715 0.08724 0.08723 

0.75 0.01 0.68304 0.68364 0.68364 
0.05 0.46481 0.46526 0.46525 
0.10 0.28129 0.28158 0.28157 
0.15 0.16957 0.16974 0.16974 
0.25 0.06223 0.06229 0.06229 

Table 7 
Comparison of the numerical solutions with exact solution at different times for v = 0.01, Ax = 0.0125 and At = 0.001 

x tf Numerical solution Exact solution 

Explicit Exact-explicit 

0.25 0.4 0.36296 0.36185 0.36226 
0.6 0.28217 0.28193 0.28204 
0.8 0.23043 0.23046 0.23045 
1.0 0.19463 0.19474 0.19469 
3.0 0.07611 0.07617 0.07613 

0.50 0.4 0.69591 0.67851 0.68368 
0.6 0.55351 0.54508 0.54832 
0.8 0.45625 0.45176 0.45371 
1.0 0.38705 0.38446 0.38568 
3.0 0.15220 0.15215 0.15218 

0.75 0.4 0.95925 0.91169 0.92050 
0.6 0.80197 0.77402 0.78299 
0.8 0.67267 0.65617 0.66272 
1.0 0.57501 0.56478 0.56932 
3.0 0.22796 0.22746 0.22774 

app rox ima t ion  for v = 1.0, v : 0.1, and  v = 0.01. For  v<O.O1,  our  so lu t ions  show the same behav iou r  

wi th  the exact  one  o f  each p rob lem.  

In  conc lus ion ,  s ince all the numer i ca l  results  ob ta ined  b y  the above  methods  show reasonab ly  good  

ag reemen t  wi th  the exact  one  for modes t  va lues  o f  v, and  also exhibi t  the expected  conve rgence  as 
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/ / /  i ~ -  . . . .  ~ \ \, \ 

/ / i  ~ t=l.0 , \  \ \  

/ / ~ "  / "  \ \ \ \  
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////"" t= 3. 0 \ '  

" ' '  I ' I ~ ] ' I ' I ' I ' I ~ I ' I ' "  
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x 

Fig. 2. Solution at different times for v--O.1, h--0.025, k=O.O01. 

the mesh size is decreased, both methods can therefore be considered to be competitive and worth 
recommendation. The present solution is an alternative solution to the exact (Fourier) one. But if 
the initial condition Ui, o of  a problem is known only at the finite number of  the mesh points, for 
such a problem the present solution method is much more practical than Fourier one. 

References 

[1] G. Adomian, Explicit solutions of nonlinear partial differential equations, Appl. Math. Comput. 88 (1997) 117-126. 
[2] W.F. Ames, Nonlinear Partial Differential Equations in Engineering, Academic Press, New York, 1965. 
[3] H. Bateman, Some recent researches on the motion of fluids, Monthly Weather Rev. 43 (1915) 163-170. 
[4] E. Benton, G.W. Platzman, A table of solutions of the one-dimensional Burges equations, Quart. Appl. Math. 

30 (1972) 195-212. 
[5] J.M. Burger, A Mathematical Model Illustrating the Theory of Turbulence, Adv. in Appl. Mech. I, Academic Press, 

New York, 1948, pp. 171-199. 
[6] J. Caldwell, P. Wanless, A.E. Cook, A finite element approach to Burgers' equation, Appl. Math. Modelling 5 (1981) 

189-193. 
[7] J.D. Cole, On a quaslinear parabolic equations occurring in aerodynamics, Quart. Appl. Math. 9 (1951) 225-236. 
[8] D.J. Evans, A.R. Abdullah, The group explicit method for the solution of Burger's equation, Computing 32 (1984) 

239-253. 
[9] C.A. Fletcher, Burgers equation: a model for all reasons, in: J. Noye (Ed.), Numerical Solutions of Partial Differential 

Equations, North-Holland, Amsterdam, 1982. 
[10] Y.C. Hon, X.Z. Mao, An efficient numerical scheme for Burgers' equation, Appl. Math. Comput. 95 (1998) 37-50. 
[11] E. Hopf, The partial differential equation ut + uux=l~U~, Comm. Pure Appl. Math. 3 (1950) 201-230. 
[12] V.I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975. 
[13] E.L. Miller, Predictor-correetor studies of Burger's model of turbulent flow, M.S. Thesis, University of Delaware, 

Newark, Delaware, 1966. 
[14] R.C. Mittal, P. Sighhal, Numerical Solution of Burger's Equation, Comm. Numer. Meth. Eng. 9 (1993) 397-406. 



S. Kutluay et al./Journal of Computational and Applied Mathematics 103 (1999) 251-261 261 

[15] T. Ozi~, A. ()zde~, A direct variational methods applied to Burgers' equation, J. Comput. Appl. Math. 71 (1996) 
163-175. 

[16] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Clarendon 
Press, Oxford, 1987. 

[17] E. Varo~lu, W.D.L. Finn, Space time finite elements incorporating characteristics for the Burgers' equations, Int. 
J. Numer. Meth. Eng. 16 (1980) 171-184. 


